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Abstract

In this paper a fuzzy method for a certain
kind of image pixel classification is intro-
duced. It is the most important result of
the development of an inspection system for a
silk—screen printing process. The algorithm
computes a fuzzy segmentation of a given im-
age into four different types of areas which
are to be checked by applying different cri-
teria. The second part of the text deals with
the optimization of the parameters involved.
For this purpose some variants of genetic al-
gorithms are tried out and compared with
other probabilistic optimization methods.

1 The Basic Idea

As anticipated above, we have to decide for each pixel
of an image to which kind of area it belongs. The
following four types were specified by experts of the
collaborating company. For certain reasons, which can
be explained with the special principles of the silk-
screen printing process, it is sufficient to consider only
these types:

Homogeneous area: uniformly colored area

Edge area: pixels within or close to visually signific-
ant edges

Raster: area which looks rather homogeneous from a
certain distance, but which is actually obtained
by printing small raster dots of two or even more
colors

Aquarelle: rastered area with high chaotic deviations
(e.g. small high-contrasted details in picture
prints)

The magnifications in figure 1 show how theses areas
typically look like. Of course, transitions between two
or more of these areas are possible, hence a fuzzy
model is recommendable.

First of all we should define more precisely what we
are talking about.

Homogeneous

Raster Aquarelle

Figure 1: Magnifications of typical representatives of
the four types

Definition 1 An N x M matrix of the form
.. .. .. j=1,....M
((UT(ZJJ)Jug(ZJJ)Jub(zaj)))gzll,___,N (1)

with 3-dimensional entries (u,(i,7), ug(4, j), us(, j)) €
{0,...,255}3 is called a 24-bit color image of size N x
M. A coordinate pair (i,j) is called a pixel and the
values (ur(i,J),uq(i,5),us(i,j)) are called the gray-
values of pixel (i, j).

It is near at hand to use something like the vari-
ance or an other measure for deviations to distinguish
between areas which show only low deviations, such as
homogeneous areas and rasters, and areas with high
deviations, such as edge areas or aquarelles. On the
contrary, it is intuitively clear that such a measure can
never be used to separate edge areas from aquarelles,
because any geometrical information is neglected. Ex-
periments have shown that well-known standard edge
detectors, like the Laplacian and Mexican Hat, cannot
distinguish sufficiently if deviations are chaotic or an-
isotropic. Another possibility we also took into con-
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Figure 2: Enumeration of the neighborhood of a pixel

sideration was to use wavelet transforms. Since the
size of the image is approximately 1 Megabyte and the
segmentation has to be done in at most three seconds,
it is obvious that such highly advanced methods would
require too much time. Finally we found a fairly good
alternative which is based on the discrepancy norm.
This approach uses only, as filter masks like the Lapla-
cian or the Mexican Hat also do, the closest neighbor-
hood of a pixel. Figure 2 shows how the neighbors are
enumerated for our algorithm. For an arbitrary but
fixed pixel (7,7) we can define the enumeration map-
ping [ with the following table:

3 1)

1 ( ? 7.]_1)

2 (Z_laj__l)

41 (i-1,j+1) (2)
5(( % ,7+1)

6| (e+1,5+1)

71 (i+1, j )

8| (i+1,57+1)

If we plot one color extraction with respect to this
enumeration, i.e (ug(I(k))keq1,...,s} Where z € {r,g,b},
we typically get curves like those ones shown in figure
3. From these sketches it can be seen easily that a
measure for the deviations can be used to distinguish
between homogeneous areas, rasters, and the other two
types. On the other hand, the most eyecatching dif-
ference between aquarelles and edge areas is that edge
areas show long connected peaks while aquarelles typ-
ically show chaotic, mostly narrow peaks. So a method
which judges the shape of the peaks should be used in
order to separate edge areas from aquarelles. A simple
but effective method for this purpose is the so-called
discrepancy norm.

2 The discrepancy norm ||.|[p
Definition 2

|-llp : R*" — RT"

(xl,...,mn) — (3)

sz

1<a<ﬂ<n i—a

It can be proven easily that this mapping is a norm, a
proof is provided e.g. in [Bodenhofer, 1996].

0 8 0 8
Homogeneous Raster
A
0 8 0 8
Edge Aquarelle
Figure 3: Typical gray-value curves of the form

(Uz(l(k))ke{l,...,s}

In measure theory the discrepancy between two
measures g and v on R is defined by D(u,v) :=
milicm([a, b)) —v([a,b])]. If we have two discrete
a

measures f and 7 on the set {1,...,n}, where fi(i) =
z; and (%) =: y;, then D(f1,7) and ||Z— ]| p are equal.
Thus we will call ||.||p discrepancy norm in R"™.
Obviously,the computation of ||.||p by using the
definition requires O(n?) operations. The following
theorem allows us to compute ||.||p with linear speed.

Theorem 3

7D = max Xp— min Xa, (@

where the values

J
Xj = E T
i=1

denote the partial sums.

Proof: If we assign 0 to zy and z,,+1 we can conclude

B
1D =, 2o, | & o
el a—1
- 1<ﬂ3n+1 1<a<n+1 ; z; i
B a
= max max 1), Ti- 2

= max max X3 — X,
1<ﬂ<n1<a<n

= max Xg— min X,
1<8<n 1<a<ln



3 The Fuzzy System

For each pixel (¢,j) we consider the nearest eight
neighbors enumerated as described in section 1. Then
we can use
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as a measure for the size of the deviations in the neigh-
borhood of (4,j) and

e(i, j) =llu (1)) = (7,....,7) D
+llug (1) = (g>--->9)llp (6)

+lup((.)) = (b,-..,b) [Ip
as a measure whether the pixel is part of or lying ad-

jacent to a visually significant edge, where 7, g and b
denote the mean values
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Of course, e itself can be used as an edge detector.
Figure 4 shows how good it works compared with the
commonly used Mexican Hat filter mask.

The fuzzy decision is then done in a rather simple
way: We have to compute the degrees of member-
ship to which the pixel belongs to the four types of
areas. Hence the output of the fuzzy system is a
vector t(lJJ) = (tH(Z,]),tE(l,]),tR(’l,j),tA(l,j)) with
th, te, tr, ta € [0, 1]. Since the parameterization of the
fuzzy systems is independent from the coordinates in
our case we just write v and e for the two inputs v(i, )
and e(4, ) which are treated as linguistic variables in
the following. Experiments have shown that [0,600]
and [0,200] are appropriate universes of discourse for
v and e, respectively. We used simple fuzzy partitions
for the fuzzy decomposition of the input space. Their
typical shape can be seen in figure 5.

Five rules, which cover all the possible cases, com-
plete the fuzzy system:

IF v is low THEN t=H
IF vismed AND eishigh THEN t=E
IF wvis high AND eishigh THEN ¢t=E
IF wvismed AND eislow THEN ¢=R
IF wvis high AND eislow THEN ¢t=A

Experimental results: Since it is not possible to re-
produce the results with a black and white print, res-
ults will be shown in the lecture on color transparen-
cies. The algorithm does not even take three seconds
for an image with approximately 200000 pixels on a
workstation with a 150 MHz CPU.

With added noise

Without noise

Original image

Discrepancy method

Mexican hat

Figure 4: Comparison between e and a standard 3 x 3
filter mask

4 Genetic Optimization

As apparent from figure 5, the partitions depend on
the six parameters vy, vy, v3, v4, €1, and es. An in-
teresting question is, of course, how to choose these
values properly. In order to optimize them, we need
an objective criterion for judging the quality of the
decision. Unfortunately, the specification of the four
types is given in a verbal, vague form, which cannot
be formalized mathematically. However, it can be de-
cided by a human whether the result of the segment-
ation algorithm for given parameters matches his own
understanding of the four areas. So we implemented
a little painting program with pencils, rubbers, edge
detection- and filling algorithms which can be used to
make a segmentation by hand. This handmade seg-
mentation can then be used as a reference.

Now assume that we have N sample pixels for
which the inputs (vg,er)reqi,..,n} are already com-
puted and that we have a reference classification of
these pixels #(k) = (tn(k),te(k),tr(k),fa(k)) where
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Figure 5: The linguistic variables v and e

k € {1,...,N}.! Then one possibility to define the
performance (fitness) of the fuzzy systems would be

L JZV; (d(tu(k), tu(k)) + d(te(k), e (k)
P (7)

+d(tr(k), tr(k)) + d(ta(k), ta(k))),

where t(k) = (tu(k),te(k),tr(k),ta(k)) are the clas-
sifications actually obtained by the fuzzy system for
the input pairs (vg,er) with respect to the paramet-
ers vy, va, U3, U4, €1, and es. d(.,.) is an arbitrary
metric on [0, 1]. The problem of this brute force ap-
proach is that the output of the fuzzy system has to
be evaluated for each pair (vg,eg), even if many of
these values are similar. In order to keep the amount
of computation low, we “simplified” the procedure as
follows: Choose a partition (Py, ..., Pk) of the input
space and count the number (ni,...,nk) of sample
points {p],..., piLJ,} each part contains. Then the de-
sired classification of a certain part can be defined as

. 1 SN
ix(P) :ZFZtX(p;-) with X € {H,E,R,A}. (8)
(] j*l

If ¢ is a function which maps each part to a repres-
entative value (e.g. its center of gravity) we can define
the fitness as

flvi,...,v4,€1,€2) :%an@—(*)) 9)

with
(ix(P) —tx(¢(P)))” .

(%) := Z

Xe{H,E,R,A}

If the number of parts is chosen moderately (e.g. a
rectangular 64 X 32 net which yields K = 2048) the
evaluation of the fitness function takes considerably
less time than it would take if we used (7).

!Since the geometry plays no role if the values v and e
are already computed, we can switch to one dimensional
indices here, what simplifies the formulas a little bit.
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Figure 6: Cross section of a function of type (9)

Remark 4 Note that in (9) the fitness is already
transformed such that it can be regarded as a degree
of matching between the desired and the actually ob-
tained classification measured in percent. This value
has then to be maximized.

Figure 6 shows a sketch of such a fitness function,
where vy, v3, v4, €1 and ey are kept constant and vy is
varied between 0 and 200. It can be seen easily that f
is continuous but not differentiable and that there are
a lot of local maxima. Hence, it is not recommend-
able to use a conventional optimization method, such
as gradient descent or a Newton-like method. Seem-
ingly the one and only way out of this trap was to use
a probabilistic method. This requires, first of all, a
coding of the parameters. We decided to use a coding
which maps the parameters vy, va, v3, v4, €1 and es
to a string of six 8-bit integers s, ..., s¢ which range
from 0 to 255. The following table shows how the en-
coding and decoding is done:

ST = M vT = 81

Sy = V2 — U1 Vg = 81+ 82

S3 = V3 — U2 V3 = 81+ 82+ S3

S4 = Vg4 —U3 Vg = 81+ 82+ 83+ 584
S5 = €1 e1 = S8p

S¢ = e2—e es = S5+ Sg

If fuzzy sets of a more general shape are used, this
coding is unapplicable. Codings for such cases can,
for instance, be found in [Takagi and Lee, 1993] or
[Shimojima et al., 1995].

In order to compare the performance of various ap-
proaches, we considered the following methods:

Hill climbing: always moves to the best-fitted neigh-
bor of the current string until a local maximum
is reached; the initial string was generated ran-
domly.

Simulated annealing: powerful, often-used probab-
ilistic method which is based on the imitation of



the solidification of a crystal under slowly decreas-
ing temperature (see [van Laarhoven and Aarts,
1987] or [Otten and van Ginneken, 1989] for a de-
tailed description)

Raw genetic algorithm with proportional selec-
tion, one-point crossing over, and bitwise muta-
tion (see [Goldberg, 1989], [Geyer-Schulz, 1994),
or [Holland, 1975]); the size of the population was
20.

Hybrid GA: combination of a genetic algorithm
with the hill climbing method

Each one of these methods requires only a few binary
operations in each step. Most of the time is consumed
by the evaluation of the fitness function. So it is near
at hand to take the number of evaluations as a measure
for the speed of the algorithms.

Results

All these algorithms are probabilistic methods, there-
fore their results are not well-determined, they can dif-
fer randomly within certain boundaries. So we tried
out each one of them 20 times for one certain problem
in order to get more information about their behavior.
For the given problem we found out that the maximal
degree of matching between the reference classification
and the classification actually obtained by the fuzzy
system was 94.3776% . Table 1 shows the results in
more detail.

The hill climbing method with a random selection
of the initial string converged rather quickly. Unfortu-
nately it always got caught in a local maximum, but
never reached the global solution (at least in these 20
trials).

The simulated annealing algorithm showed similar
behavior at the very beginning. After tuning the in-
volved parameters, the performance could be improved
remarkably.

The raw genetic algorithm looked pretty good from
the first run on, but it seemed inferior to the improved
simulated annealing.

Next we tried a hybrid GA, where we kept the ge-
netic operations and parameters of the raw GA, but
every 50-th generation the best-fitted individual was
taken as initial string for a hill climbing method. Al-
though the performance increased, the hybrid method
still seemed to be worse than the improved simulated
annealing algorithm. The reason that the effects of the
modification were not so dramatical might be that the
probability is rather high that the best individual is
already a local maximum. So we modified the proced-
ure again. This time a randomly chosen individual of
every 25-th generation was used as initial string of the
hill climbing method. The result exceeded the expect-
ations by far. The algorithm was, in all cases, nearer
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Table 1: Some results

T
94.3526 94.3776

94.3206
< Genetic Algorithm

o Hybrid GA (elite)

o Improved Simulated Annealing * Hybrid GA (random)

94.2759
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94.2006
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Figure 7: A graphical representation of the results



to the global solution than the improved simulated an-
nealing was (compare with table 1) but, surprisingly,
sufficed with less invocations of the fitness function.
Figure 7 shows the results in more detail. Each line
in this graph corresponds to one algorithm. The curve
shows, for a given fitness value x, how many of the 20
different solutions had a fitness higher or equal to x.
It can be seen easily from this graph that the hybrid
GA with random selection brought the best results.
The z axis is not a linear scale in this figure. It was
transformed in order to make small differences visible.
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