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Abstract

In this paper a fuzzy method for a certain
kind of image pixel classification is intro-
duced. It is the most important result of
the development of an inspection system for
a silk-screen printing process. The algorithm
computes a fuzzy segmentation of a given im-
age into four different types of areas which
are to be checked by applying different cri-
teria. Furthermore, it is discussed how this
algorithm is integrated in the inspection sys-
tem.

1 INTRODUCTION

The main goal of this project was to design an auto-
matic inspection system which does not sort out every
print with defects, but only those which have visible
defects. It is intuitively clear that the visibility of a de-
fect depends on the structure of the print in its neigh-
borhood. While little spots can hardly be recognized
in very chaotic areas, they are disturbing in rather
homogeneous areas. So, the first step towards a sensi-
tive inspection is to extract areas from the print which
should be checked differently.

The following four types were specified by experts of
our partner company. For certain reasons, which can
be explained with the special principles of the silk-
screen printing process, it is sufficient to consider only
these types:

Homogeneous area: uniformly colored area;

Edge area: pixels within or close to visually signifi-
cant edges;

Raster: area which looks rather homogeneous from a
certain distance, but which is actually obtained
by printing small raster dots of two or even more
colors;
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Figure 1: Magnifications of typical representatives of
the four types

Aquarelle: rastered area with high chaotic devia-
tions (e.g., small high-contrasted details in picture
prints).

The magnifications in Figure 1 show how theses areas
typically look like. Of course, transitions between two
or more of these areas are possible, hence a fuzzy model
is recommendable.

First of all, we should define precisely what an image

is:

Definition 1 An N x M matrix of the form
. . sy g=1,.., M
((Ur(z,]),ug(l,]),Ub(@,‘?)))j:l,m’N (1)
with three-dimensional entries

(ur(4, ), ug(iy ), us(4, §)) € {0,...,255}3
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Figure 2: Enumeration of the neighborhood of a pixel

is called a 24-bit color image of size N x M. A
coordinate pair (i,5) is called a pixel; the values
(ur(i,5),uq(i,7), us(i, j)) are called the gray values of
pixel (i, ).

It is near at hand to use something like the variance
or an other measure for deviations to distinguish be-
tween areas which show only low deviations, such as
homogeneous areas and rasters, and areas with high
deviations, such as edge areas or aquarelles.

On the contrary, it is intuitively clear that such a mea-
sure can never be used to separate edge areas from
aquarelles, because any geometrical information is ne-
glected. Experiments have shown that well-known
standard edge detectors, such as the Laplacian and
the Mexican Hat filter mask, cannot distinguish suf-
ficiently if deviations are chaotic or anisotropic. An-
other possibility we also took into consideration was
to use wavelet transforms (see [3] or [5]). Since the
size of the image is approximately 1 Megabyte and the
segmentation has to be done in at most three seconds,
it is obvious that such highly advanced methods would
require too much time. Finally, we found a fairly good
alternative which is based on the discrepancy norm.
This approach uses only, as filter masks like the Lapla-
cian or the Mexican Hat also do, the closest neighbor-
hood of a pixel. Figure 2 shows how the neighbors are
enumerated for our algorithm. For an arbitrary but
fixed pixel (¢,7) we can define the enumeration map-
ping [ with the following table:
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If we plot one color extraction with respect to this enu-
meration, i.e (uz(I(k))kreq1,... 83, Where z € {r, g,b}, we
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Homogeneous Raster
0 8 0 8
Edge Aquarelle
Figure 3: Typical gray value curves of the form

(Uz(l(k)))ke{l,...,s}

typically get curves like those ones shown in Figure 3.
From these sketches it can be seen easily that a mea-
sure for the deviations can be used to distinguish be-
tween homogeneous areas, rasters, and the other two
types. On the other hand, the most eyecatching dif-
ference between aquarelles and edge areas is that edge
areas show long connected peaks while aquarelles typi-
cally show chaotic, mostly narrow peaks. So, a method
which judges the shape of the peaks should be used in
order to separate edge areas from aquarelles. A simple
but effective method for this purpose is the so-called
discrepancy norm.

2 THE DISCREPANCY NORM

Definition 2

Illp: B* — R
B
7 — max |y, x; (3)
1<a<p<n ;=4

It can be proven easily that this mapping is a norm, a
proof is provided, e.g., in [2].

In measure theory the discrepancy between two mea-
sures u and v on R is normally defined as

D(p,v) = sup |u([a, b]) — v ([a,B])].
a<b

If we have two discrete measures @& and 7 on the set
{1,...,n}, where T(i) =: x; and 7(i) =: y;, then
D(m,7) and ||Z— ]| p are equal (see [6] and [4]). Thus,
it is reasonable to call ||.||p discrepancy norm in R™.



Obviously, the computation of ||.||p primitively using
the definition requires O(n?) operations. The follow-
ing theorem allows us to compute ||.||p with linear
speed:

Theorem 3 For all ¥ € R the equation

|Z]lp = max Xg— min X, (4)
1<B<n 1<a<n

holds, where the values X; := 2521 x; denote the par-
tial sums.

Proof: If we assign 0 to z¢ and x,+1 we can conclude

B
IZlp = petex Easc
3 a1
T 1<Bomtt1<asnt1 Z; T 1-221 i
3 a

= max max |Xg— Xa|
1<p<n 1<a<ln

= max Xg— min X,.
1<B<n 1<a<n

3 THE FUZZY SYSTEM

For each pixel (i,j) we consider the nearest eight

neighbors enumerated as described in (2). Then we
can use
8
o 2
(i g) = Y (un(U(k) = 7)
k=1
8
+ Y (ug(U(k)) —7)° (5)
k=1

k=1

as a measure for the size of the deviations in the neigh-
borhood of (4,5) and

fur(1(.)) = (T,....,7) D

+ () = @ Do (6)
+ lup(1()) = (b,-..,0) lIp

as a measure whether the pixel is part of or lying ad-

jacent to a visually significant edge, where 7, g and b
denote the mean values

e(i,j) =

=% él ur(l(k)), 9 := ék; ug(I(k)),
B=l 3 w(I(k))

>
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Figure 4: Comparison between e and a standard 3 x 3
filter mask

Of course, e itself can be used as an edge detector.
Figure 4 shows how good it works compared with the
commonly used Mexican Hat filter mask.

The fuzzy decision is then done in a rather simple
way: We have to compute the degrees of member-
ship to which the pixel belongs to the four types of
areas. Hence, the output of the fuzzy system is a
vector t(ivj) = (tH(ivj)7tE(ivj)vtR(ivj)vtA(ivj)) with
th, te, tr, ta € [0, 1]. Since the parameterization of the
fuzzy systems is independent from the coordinates in
our case we just write v and e for the two inputs v(4, j)
and e(i,7) which are treated as linguistic variables in
the following. Experiments have shown that [0,600]
and [0,200] are appropriate universes of discourse for
v and e, respectively. We used simple fuzzy partitions
for the fuzzy decomposition of the input space. Their
typical shape can be seen in Figure 5.

Five rules, which cover all the possible cases, complete
the fuzzy system:
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Figure 5: The linguistic variables v and e

IF vis low THEN t¢t=H
IF vismed AND eishigh THEN ¢=E
IF vishigh AND eishigh THEN t=E
IF vismed AND eislow THEN t=R
IF vishigh AND eislow THEN ¢=A

The classification ¢(7,j) is then computed for each
pixel (7,j) by evaluating the rulebase above with re-
spect to the inputs v(7, j) and e(4, 7). In this case tra-
ditional Mamdani inference is applied with the opera-
tions min and max.

Experimental results: The algorithm does not even
take three seconds for an image with approximately
250000 pixels on a workstation with a 150MHz CPU.

In [1] and [2] methods for optimizing the fuzzy sets
of the two variables (see Figure 5) with genetic algo-
rithms are presented.

4 THE INSPECTION PROCEDURE

As already mentioned, the size of the images is ap-
proximately 1MB. The output frequency of the print-
ing machine is one print per second. Therefore, it
might be clear that it is impossible to check print after
print independently, because this requires a profound
analysis of the contents of the picture. Since external
references are not available, the first three prints of
an order, which typically consists of a few thousand
prints, are used as a reference. Consequently, the op-
erator has to take special care of these prints in order
to avoid that the following prints are checked against
erroneous ones.

Figure 6 shows how the whole system is configured.
The inspection program runs autonomously. No ad-
ditional operators are necessary. The checks and the
recognition of order changes are completely automa-
tized.

The following algorithm provides a schematical out-
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Figure 6: Schematical configuration of the inspection
hardware

line of how the inspection of one single order is accom-
plished. While the segmentation and the tolerance in-
tervals are computed, which takes approximately three
seconds, the printing machine is halted in order to
avoid unchecked prints.

Algorithm 4

store the first three prints;
compute a reference from these;

compute the segmentation as proposed in 3;
compute tolerance intervals according
to the segmentation;

WHILE order not finished DO
BEGIN
store actual print;
compute deviations from reference;
perform quality decision
END

The final quality decision is done with a fuzzy system
whose schematical structure can be seen in Figure 7.

First of all, the number of pixels which exceed the
tolerance intervals is computed for each area. Then
a quality decision is performed for each area inde-
pendently (variables qualityy, qualityg, qualityg, and
quality). For this purpose, the afore said numbers
of error pixels (variables errory, errorg, errorg, and
errora) and the average sizes of the deviations (vari-
ables conty, contg, contr, and conta) are taken into
account.

Finally, the decision, whether the prints are classified
as good or not good, is carried out taking the qualities
of the four areas and the geometrical shape (i.e., “dis-
tributed spots”, “horizontal direction”, “horizontal di-
rection”, “large blur”, contained in variable geometry)
of the error surface into account. The geometrical in-
formation is computed with techniques which are also
based on the discrepancy norm.
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Figure 7: Sketch of the fuzzy system performing the
quality decision
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