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Abstract

In this paper, we propose a generalized concept of
openness and closedness with respect to arbitrary
fuzzy relations, along with appropriate opening and
closure operators. We will show that this framework
includes the existing concept defined for fuzzy pre-
orderings as well as the triangular norm-based ap-
proach to fuzzy mathematical morphology.
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1 Introduction

Opening and closure operators occur in at least two
different contexts in fuzzy set theory. Firstly, it is
possible to define meaningful concepts of opening
and closure operators with respect to fuzzy preorder-
ings. Secondly, such concepts are used in fuzzy math-
ematical morphology as well.

In analogy to topology, it seems reasonable to con-
nect opening and closure operators to some con-
cepts of openness and closedness. In a strict set-
ting, the terms “opening” and “closure” only make
sense if they give open and closed results, respec-
tively, preferably fulfilling some extremal properties.
Another basic requirement for the appropriateness of
these terms is idempotency.

In the first case of fuzzy preorderings, all these ba-
sic properties can be satisfied [3, 4]. Unfortunately,
all the properties collapse if either reflexivity or tran-
sitivity is not fulfilled, implying that these concepts
are not applicable to general fuzzy relations.

Fuzzy mathematical morphology, on the other
hand, uses slightly different concepts for defining

opening and closure operators, for which some of the
crucial properties we mentioned above can be guar-
anteed. A recent investigation [17] has shown that
fuzzy mathematical morphology inherently uses con-
cepts we know from the field of fuzzy relations, how-
ever, leaving the implications in terms of algebraic
properties unclarified.

In this paper, we introduce general concepts of
openness and closedness with respect to arbitrary
fuzzy relations together with opening and closure
operators which fulfill all necessary algebraic prop-
erties. It will turn out that this framework includes
the fuzzy preordering-based concept as well as the
t-norm-based approach to fuzzy mathematical mor-
phology.

2 Preliminaries

Throughout the whole paper, we will not explicitly
distinguish between fuzzy sets and their correspond-
ing membership functions. Consequently, uppercase
letters will be used for both synonymously.

We will restrict ourselves to common standard
systems of fuzzy logics—logics on the unit interval
equipped with a left-continuous t-norm and its cor-
responding residual implication [6, 7, 11, 14]. From
the practical point of view, however, this is not a
serious restriction.

Definition 1. A triangular norm (t-norm for short)
is an associative, commutative, and non-decreasing
binary operation on the unit interval (i.e. a [0, 1]2 →
[0, 1] mapping) which has 1 as neutral element. A t-
norm is called left-continuous if and only if both par-
tial mappings T (x, .) and T (., x) are left-continuous.

In order to provide the reader with the basic prop-
erties of residual implications, let us briefly recall



them. For proofs, the reader is referred to the liter-
ature (e.g. [6, 7]).

Definition 2. For a left-continuous t-norm T , the
residual implication (residuum) T

→
is defined as

T
→

(x, y) = sup{u ∈ [0, 1] | T (u, x) ≤ y}.

Lemma 3. Consider a left-continuous t-norm T .
Then the following holds for all x, y, z ∈ [0, 1]:

1. x ≤ y ⇐⇒ T
→

(x, y) = 1

2. T (x, y) ≤ z ⇐⇒ x ≤ T
→

(y, z)

3. T
(
T
→

(x, y), T
→

(y, z)
)
≤ T
→

(x, z)

4. T
→

(1, y) = y

5. T
(
x, T
→

(x, y)
)
≤ y

6. y ≤ T
→(

x, T (x, y)
)

Furthermore, T
→

is non-increasing and left-continu-
ous in the first argument and non-decreasing and
right-continuous in the second argument.

In this paper, we will solely consider binary fuzzy
relations, i.e. fuzzy subsets of a product space X2 =
X × X, where X is an arbitrary crisp set, where
images of fuzzy relations will be of particular impor-
tance.

Definition 4. Consider an arbitrary fuzzy subset
A ∈ F(X). The full image of A under R, denoted
R↑A, and its dual R↓A are defined as

R↓A(x) = inf
y∈X

T
→(

R(x, y), A(y)
)
,

R↑A(x) = sup
y∈X

T
(
A(y), R(y, x)

)
.

Lemma 5. The following holds for all A,B ∈ F(X):

1. A ⊆ B =⇒ R↓A ⊆ R↓B

2. A ⊆ B =⇒ R↑A ⊆ R↑B

Proof. These propositions follow directly from the
monotonicity properties of triangular norms and
their residual implications (see [6,9] for more detailed
proofs).

3 Opening and Closure Opera-
tors of Arbitrary Fuzzy Re-
lations

We will now propose operators which enable us to
define a concept of openness and closedness with
respect to an arbitrary fuzzy relation. As it will
turn out later, these operators directly correspond
to the appropriate opening and closure operators.
Throughout this section, assume that R is an ar-
bitrary binary fuzzy relation on a domain X.

Definition 6. The operators R◦ and R• are defined
in the following way:

R◦A = R↑(R↓A)
R•A = R↓(R↑A)

We will now investigate the properties of these two
operators. Let us start with a following fundamental
inclusion property.

Lemma 7. The following chain of inclusions holds
for any fuzzy set A ∈ F(X):

R◦A ⊆ A ⊆ R•A

Proof. Consider an arbitrary x ∈ X:

R◦A(x) = sup
y∈X

T
(
R↓A(y), R(y, x)

)
= sup

y∈X
T

(
inf
z∈X

T
→

(R(y, z), A(z)), R(y, x)
)

= (∗)

Setting z = x, we obtain by Lemma 3, 5.,

(∗) ≤ sup
y∈X

T
(
T
→

(R(y, x), A(x)), R(y, x)
)

= sup
y∈X

T
(
R(y, x), T

→
(R(y, x), A(x))

)
≤ A(x).

For proving A ⊆ R•A, we apply an analogous tech-
nique (setting again z = x, but applying Prop. 6. of
Lemma 3):

R•A(x) = inf
y∈X

T
→(

R(x, y), R↑A(y)
)

= inf
y∈X

T
→(

R(x, y), sup
z∈X

T (A(z), R(z, y))
)

≥ inf
y∈X

T
→(

R(x, y), T (R(x, y), A(x))
)

≥ A(x)



We have already seen in Lemma 5 that the im-
ages R↓ and R↑ are monotonic. As we will see next,
the same monotonicity trivially transfers to the two
operators R◦ and R•.

Lemma 8. The following holds for all A,B ∈ F(X):

1. A ⊆ B =⇒ R◦A ⊆ R◦B

2. A ⊆ B =⇒ R•A ⊆ R•B

Proof. Immediate consequences of Lemma 5.

Now we are able to define the general concepts of
openness and closedness.

Definition 9. A fuzzy set A ∈ F(X) is called R-
open if and only if

R◦A = A.

Correspondingly, A is called R-closed if and only if

R•A = A.

The next theorem provides a unique characteriza-
tion of R-openness and R-closedness by means of the
two image operators R↓ and R↑, respectively.

Theorem 10. The following equivalences hold for
any fuzzy set A ∈ F(X):

1. A is R-open if and only if there exists a fuzzy
set B ∈ F(X) such that A = R↑B.

2. A is R-closed if and only if there exists a fuzzy
set C ∈ F(X) such that A = R↓C.

Proof. 1. First of all, let us assume that A is R-
open, i.e. R↑(R↓A) = A. Then choosing B =
R↓A proves the first implication.

Now suppose that A can be represented as R↑B
for some B ∈ F(X). We know from Lemma 7
that A ⊇ R◦A in any case. In order to prove the
reverse inclusion, let us consider the following
(using Prop. 6. of Lemma 3):

R↓A(x) = inf
y∈X

T
→(

R(x, y), A(y)
)

= inf
y∈X

T
→(

R(x, y), R↑B(y)
)

= inf
y∈X

T
→(

R(x, y), sup
z∈X

T (B(z), R(z, y))
)

≥ inf
y∈X

T
→(

R(x, y), T (R(x, y), B(x))
)

≥ B(x)

We have shown that R↓A ⊇ B; therefore, by
Lemma 5,

R◦A = R↑(R↓A) ⊇ R↑B = A,

which implies R◦A = A.

2. If we assume that A is R-closed, i.e. R↓(R↑A) =
A, choosing B = R↑A proves the first implica-
tion.

Conversely, assume that A can be represented
as R↓C for some C ∈ F(X). Lemma 7 states
that A ⊆ R•A. To prove the reverse inclusion,
we consider (making use of Prop. 5. of Lemma
3):

R↑A(x) = sup
y∈X

T
(
A(y), R(y, x)

)
= sup

y∈X
T

(
R↓C(y), R(y, x)

)
= sup

y∈X
T

(
R(y, x), inf

z∈X
T
→

(R(y, z), C(z))
)

≤ sup
y∈X

T
(
R(y, x), T

→
(R(y, x), C(x))

)
≤ C(x)

We have shown that R↑A ⊆ C; therefore, by
Lemma 5, we obtain

R•A = R↓(R↑A) ⊆ R↓C = A,

which finally completes the proof.

The following fundamental theorem justifies to call
R◦ the opening operator of R and to call R• the clo-
sure operator of R.

Theorem 11. For any fuzzy set A ∈ F(X), R◦A
is the largest R-open subset of A and R•A is the
smallest R-closed superset of A.

Proof. Lemma 7 states that R◦A ⊆ A and R•A ⊇ A.

Since R◦A = R↑(R↓A), there exists a B = R↓A
such that R◦A = R↑B. Therefore, by Theorem 10,
R◦A is R-open. In an analogous way, we can prove
that R•A is R-closed (with C = R↑A).

Now let us assume that B is an R-open subset of
A. From the monotonicity property of the opening
(cf. Lemma 8), we obtain

B = R◦B ⊆ R◦A.

Therefore, R◦A must be the largest R-open subset
of A .



Analogously, take an arbitrary R-closed fuzzy set
with C ⊇ A and the following holds:

C = R•C ⊇ R•A

Hence, there cannot exist any R-closed superset of A
which is smaller than R•A.

Finally, we are able to prove another fundamen-
tal property of opening and closure operators—
idempotency.

Corollary 12. The following holds for any A ∈
F(X):

R◦(R◦A) = R◦A (1)
R•(R•A) = R•A (2)

Proof. We know from Theorem 11 that R◦(R◦A) is
the largest subset of R◦A which is R-open. Since
R◦A is R-open itself, the equality (1) must hold.

Analogously, the equality (2) can be deduced from
Theorem 11.

4 Links to Existing Concepts

In the previous section, we have proposed general-
ized concepts of openness and closedness with respect
to arbitrary fuzzy relations and the corresponding
opening and closure operators. An important ques-
tion, however, remained unclarified—whether the
proposed concepts are useful and appropriate. We
will try to answer this question by considering two
special cases for which these concepts have existed
already and which were not considered to be related
so far—fuzzy preorderings and fuzzy mathematical
morphology.

4.1 Openings and Closures with Re-
spect to Fuzzy Preorderings

A concept of closedness with respect to a fuzzy rela-
tion appeared first in connection with fuzzy equiv-
alence relations under the name “extensionality”
[11, 13, 15]. The notion of extensionality and the
corresponding opening and closure operators have
turned out to be extremely helpful in practical terms,
in particular when the analysis and interpretation of
fuzzy partitions and controllers is concerned [10–13].
In [3,4], these concepts were generalized to the non-
symmetric case, i.e. to arbitrary fuzzy preorderings.
Again, fruitful applications have demonstrated the

richness and usefulness [2–4]. We will now show that
the results from [3, 4] smoothly fit into the general
framework.

Definition 13. A binary fuzzy relation R ∈ F(X2)
is called

1. reflexive if and only if ∀x ∈ X : R(x, x) = 1,

2. symmetric if and only if

∀x, y ∈ X : R(x, y) = R(y, x),

3. T -transitive if and only if

∀x, y, z ∈ X : T
(
R(x, y), R(y, z)

)
≤ R(x, z).

A reflexive and T -transitive fuzzy relation is called
fuzzy preordering with respect to a t-norm T , short
T -preordering. A symmetric T -preordering is called
fuzzy equivalence relation with respect to T , short
T -equivalence.

In previous studies [3, 4, 13, 15], closedness of a
fuzzy set A with respect to a fuzzy preordering R
was usually expressed by the property

∀x, y ∈ X : T
(
A(x), R(x, y)

)
≤ A(y). (3)

We denote this property with R-congruence in the
meantime. In the remaining section, let R be a fuzzy
preordering with respect to some left-continuous t-
norm T .

Nonchalantly speaking, the meaning of congruence
is that, for any element x ∈ A, also all y are con-
tained in A which are in relation to x.

The following theorem marks one of the corner-
stones for investigating the relationship between R-
congruence, R-closedness, and R-openness.

Theorem 14. [3, 4] For any A ∈ F(X), R↓A is
the largest R-congruent subset of A and R↑A is the
smallest R-congruent superset.

Theorem 14 already gives a hint that the two op-
erators R↓ and R↑ can be considered as some kind
of opening or closure operators, respectively, as long
as a T -preordering is concerned.

As immediate consequences, we are able to deduce
some fundamental properties.

Corollary 15. [3,4] The following holds for any A ∈
F(X):

1. A is R-congruent if and only if A = R↓A.



2. A is R-congruent if and only if A = R↑A.

3. R↓(R↓A) = R↓A

4. R↑(R↑A) = R↑A

5. R↓(R↑A) = R↑A

6. R↑(R↓A) = R↓A

In particular, Propositions 5. and 6. above state
that, as long as we consider a T -preordering R, the
two operators R↓ and R◦ coincide, while, under the
same conditions R↑ and R• are equal. This finally
enables us to clarify the relationship between R-
congruence and the general concepts of R-openness
and R-closedness.

Theorem 16. Provided that R is a T -preordering,
the following three statements are equivalent for any
fuzzy subset A ∈ F(X):

(i) A is R-congruent.

(ii) A is R-open.

(iii) A is R-closed.

Proof. Immediate consequence of Corollary 15.

Moreover, Theorem 14 and Corollary 15 guarantee
that the opening and closure operators induced by
the concept of R-congruence fit into the framework
proposed in the previous section.

We conclude this section with a few simple exam-
ples which show the richness of properties that can
be expressed by means of congruence, closedness, or
openness of fuzzy preorderings:

1. A crisp set is closed with respect to a crisp equiv-
alence relation if and only if it can be repre-
sented as the union of equivalence classes.

2. A crisp set is closed with respect to a crisp or-
dering if and only if it is an up-set.

3. A fuzzy set is closed with respect to a crisp or-
dering � if and only if its membership function
is non-decreasing with respect to �.

4.2 Fuzzy Mathematical Morphology
Based on Triangular Norms

In a general setting, binary mathematical morphol-
ogy is concerned with finding specific structures in
binary images [18, 19]. Fuzzy mathematical mor-
phology is an extension of binary mathematical mor-
phology which allows treatment of gray-scale data
by employing concepts from fuzzy set theory. One
prominent approach among others is to use trian-
gular norms and their residual implications in or-
der to generalize the morphological operations [1, 5,
16]. Throughout the remaining section, assume that
there exists a binary operation +: X2 → X such that
(X, +) is an Abelian group, where we denote the neu-
tral element with 0 and the inverse element of x with
−x. For convenience, we abbreviate x + (−y) with
x− y.

The two key concepts of mathematical morphology
are erosions and dilations. We adopt the notations
of [8], whose generalization to the t-norm-based fuzzy
case is rather straightforward [1, 5, 16].

Definition 17. Let A,B ∈ F(X) be two fuzzy sets.
Then the erosion of A with respect to the structuring
element B is defined as

(A	B)(x) = inf
y∈X

T
→(

B(x− y), A(y)
)
.

The dilation of A with respect to the structuring el-
ement B is defined as

(A⊕B)(x) = sup
y∈X

T
(
A(y), B(y − x)

)
.

The opening A ◦ B and the closing A • B of fuzzy
set A with respect to the structuring element B are
defined as

A ◦B = (A	B)⊕B,

A •B = (A⊕B)	B.

Now let us clarify in which way fuzzy mathemat-
ical morphology, which does not involve fuzzy rela-
tions so far, relates to the concepts established earlier
in this paper.

Definition 18. A binary fuzzy relation R ∈ F(X2)
is called shift-invariant if and only if the following
holds for all x, y, z ∈ X:

R(x, y) = R(x + z, y + z)

Proposition 19. A fuzzy relation R ∈ F(X2) is
shift-invariant if and only if there exists a fuzzy set
B ∈ F(X) such that the following representation
holds for all x, y ∈ X:

R(x, y) = B(x− y) (4)



Proof. First, we define B(x) = R(x,0). Assuming
that R is shift-invariant, we obtain

R(x, y) = R(x− y, y − y) = R(x− y,0) = B(x− y).

Conversely, assume that Eq. (4) holds. Since (X, +)
is an Abelian group, this implies

R(x + z, y + z) = B
(
(x + z)− (y + z)

)
= B(x− y + z − z)
= B(x− y) = R(x, y),

which proves that R is shift-invariant.

Proposition 19 demonstrates that shift-invariant
fuzzy relations are uniquely characterized by a sin-
gle fuzzy set—some kind of “structuring element”.
This representation can be utilized to show the ma-
jor correspondence between the concepts defined for
fuzzy relations and fuzzy mathematical morphology
(see [17] for a similar argumentation).

Theorem 20. Suppose that R is a shift-invariant
fuzzy relation and that B is a fuzzy set such that
representation (4) is satisfied. Then the following
equalities hold for any A ∈ F(X):

R↓A = A	B

R↑A = A⊕B

R◦A = A ◦B

R•A = A •B

Proof. Follows directly from the definitions.

These correspondences allow to prove several im-
portant properties of fuzzy morphological opera-
tions.

Definition 21. Consider a fuzzy set B ∈ F(X). A
fuzzy set A ∈ F(X) is called B-open if and only if
A ◦ B = A holds. Correspondingly, A is called B-
closed if and only if A •B = A holds (see also [5]).

Corollary 22. The following assertions hold for all
fuzzy sets A,B ∈ F(X):

1. A ◦B is largest B-open fuzzy subset of A.

2. A •B is smallest B-closed fuzzy superset of A.

3. A is B-open if and only if there exists a fuzzy
set C ∈ F(X) such that A = C ⊕B holds.

4. A is B-closed if and only if there exists a fuzzy
set D ∈ F(X) such that A = D 	B holds.

5. (A ◦B) ◦B = A ◦B

6. (A •B) •B = A •B

Proof. If we define a fuzzy relation R by means of
the structuring element B such that representation
(4) holds, 1. and 2. can be proved by Theorem 11; 3.
and 4. follow from Theorem 10, while 5. and 6. are
immediate consequences of Corollary 12.

Note that Propositions 3. and 4. of the previous
theorem have already been proved directly in [5].
Equalities 5. and 6. have been proved in a slightly
more general setting in the same paper, however,
under the restriction that T has to be a continuous
t-norm and that the structuring element has to have
a finite range.

5 Concluding Remarks

This paper has been concerned with a general frame-
work in which openness and closedness with respect
to arbitrary fuzzy relations can be expressed. Within
this framework, general opening and closure oper-
ators have been defined which are idempotent and
fulfill all necessary extremal properties.

In the second part of the paper, we have demon-
strated the richness of these notions by embedding
existing concepts of opening and closure operators
into the general framework. As two case studies, we
have considered fuzzy preorderings and fuzzy mor-
phological operations. In both cases, we have demon-
strated full compatibility with the general setting.
Moreover, we were able to deduce important non-
trivial relationships from the general case.
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