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Abstract

In continuation of research work on
the unary ordering-based modifiers
‘at least’ and ‘at most’, this paper
is concerned with the construction
of a fuzzy concept of ‘between’ op-
erator, both in an inclusive and a
non-inclusive setting. After motivat-
ing the practical need for such oper-
ators, we introduce the basic frame-
work and investigate its most impor-
tant properties.

Keywords: Fuzzy Orderings, Or-
dering-Based Modifiers.

1 Introduction

Fuzzy systems have always been regarded
as appropriate methodologies for controlling
complex systems and for carrying out compli-
cated decision processes [17]. The compact-
ness of rule bases, however, is still a crucial
issue—the surveyability and interpretability
of a rule base decreases with its number of
rules. In particular, if rule bases are repre-
sented as complete tables, the number of rules
grows exponentially with the number of vari-
ables. Therefore, techniques for reducing the
number of rules in a rule base while still main-
taining the system’s behavior and improving
surveyability and interpretability should re-
ceive special interest. In this paper, we deal
with operators which are supposed to serve as
a key to rule base reduction—ordering-based
modifiers.

Almost all fuzzy systems involving numerical
variables implicitly use orderings. It is almost
standard to decompose the universe of a lin-
early ordered system variable into a certain
number of fuzzy sets by means of the order-
ing of the universe—typically resulting in la-
bels like ‘small’, ‘medium’, or ‘large’.

Let us consider a simple example. Suppose
that we have a system with two real-valued
input variables x1, x2 and a real-valued out-
put variable y, where all domains are divided
into five fuzzy sets with the linguistic labels
‘Z’, ‘S’, ‘M’, ‘L’, and ‘V’ (standing for ‘ap-
prox. zero’, ‘small’, ‘medium’, ‘large’, and
‘very large’, respectively).

x1\
x2 Z S M L V

Z Z S M L V
S S S M L L
M S M L M M
L S S M M S
V Z S M S Z

It is easy to see that, in the above table,
there are several adjacent rules having the
same consequent value. Assuming that we
had a unique and unambiguous computa-
tional methodology to compute ‘at least A’,
‘at most A’, or ‘between A and B’, it would
be possible to group and replace such neigh-
boring rules. For instance, the three rules

IF x1 is ‘S’ AND x2 is ‘Z’ THEN y is ‘S’
IF x1 is ‘M’ AND x2 is ‘Z’ THEN y is ‘S’
IF x1 is ‘L’ AND x2 is ‘Z’ THEN y is ‘S’

could be replaced by the following rule1

1It depends on the underlying inference scheme
whether the result is actually the same; we leave this
aspect aside for the present paper, since this is not its
major concern.



(adopting an inclusive view on the adverb ‘be-
tween’):

IF x1 is ‘btw. S and L’ AND x2 is ‘Z’ THEN y is ‘S’

Of course, there is actually no need to do so in
such a simple case. Anyway, grouping neigh-
boring rules in such a way could help to reduce
the size of larger high-dimensional rule bases
considerably.

It is considered as another opportunity for re-
ducing the size of a rule base to store only
some representative rules and to “interpolate”
between them [13], where, in this context, we
understand interpolation as a computational
method that is able to obtain a meaningful
conclusion even if an observation does not
match any antecedent in the rule base [12].
In any case, it is indispensable to have crite-
ria for determining between which rules the
interpolation should take place. Beside dis-
tance, orderings play a fundamental role in
this selection. As an alternative to distance-
based methods [13], it is possible to fill the
gap between the antecedents of two rules us-
ing a non-inclusive concept of fuzzy ‘between’.

In [1, 2, 6], a basic framework for defining the
unary modifiers ATL and ATM (short for ‘at
least’ and ‘at most’, respectively) by means of
image operators of fuzzy orderings has been
introduced. This general approach has the
following advantages: it is applicable to any
kind of fuzzy set, it can be used for any kind
of fuzzy ordering without any restriction to
linearly ordered or real-valued domains, and it
even allows to take a domain-specific context
of indistinguishability into account.

This paper is concerned with an extension
of this framework by two binary ordering-
based modifiers named BTW and SBT which
both represent fuzzy ‘between’ operators,
where BTW stands for the inclusive and
SBT (“strictly between”) stands for the non-
inclusive interpretation.

2 Preliminaries

Throughout the whole paper, we will not ex-
plicitly distinguish between fuzzy sets and
their corresponding membership functions.

Consequently, uppercase letters will be used
for both synonymously. The set of all fuzzy
sets on a domain X will be denoted with
F(X). As usual, we call a fuzzy set A nor-
malized if there exists an x ∈ X such that
A(x) = 1 holds.

In general, triangular norms [11], i.e. associa-
tive, commutative, and non-decreasing binary
operations on the unit interval (i.e. a [0, 1]2 →
[0, 1] mappings) which have 1 as neutral ele-
ment, will be considered as our standard mod-
els of logical conjunction. In this paper, as-
sume that T denotes a left-continuous trian-
gular norm, i.e. a t-norm whose partial map-
pings T (x, .) and T (., x) are left-continuous.
Definition 1. Let T be a t-norm. The T -
intersection of two fuzzy sets A,B ∈ F(X) is
defined by means of the following membership
function:

(A ∩T B)(x) = T
(
A(x), B(x)

)
For T = min, we will simply use the notation
A∩B. Correspondingly, the max-union of two
fuzzy sets A,B ∈ F(X) is defined as

(A ∪B)(x) = max
(
A(x), B(x)

)
.

So-called residual implications will be used as
the concepts of logical implication [7, 8].
Definition 2. For any left-continuous t-norm
T , the corresponding residual implication T

→
is

defined as

T
→

(x, y) = sup{u ∈ [0, 1] | T (u, x) ≤ y}.

The residual implication can be used to define
a logical negation which logically fits to the t-
norm and its implication.
Definition 3. The negation corresponding to
a left-continuous t-norm T is defined as

NT (x) = T
→

(x, 0).

Lemma 4. NT is a left-continuous non-
increasing [0, 1] → [0, 1] mapping. Moreover,
the so-called law of contraposition holds

T
→

(x, y) ≤ T
→(

NT (y), NT (x)
)

which also implies

x ≤ NT

(
NT (x)

)
.



Note that the reverse inequality does not hold
in general (unlike the Boolean case, where
p ⇒ q is equivalent to ¬q ⇒ ¬p).

Definition 5. The T -complement of a fuzzy
set A ∈ F(X) is defined as

({T A)(x) = NT

(
A(x)

)
.

Lemma 6. The following holds for all fuzzy
sets A,B ∈ F(X):

1. A ∩T {T A = ∅
2. A ⊆ {T {T A

3. A ⊆ B implies {T A ⊇ {T B

Lemma 7. As long as only min-intersections
and max-unions are considered, the so-called
De Morgan laws hold:

{T (A ∪B) =
(
{T A

)
∩

(
{T B

)
{T (A ∩B) =

(
{T A

)
∪

(
{T B

)
As usual, we call a fuzzy set on a product
space X × X binary fuzzy relation. The fol-
lowing two kinds of binary fuzzy relations will
be essential.

Definition 8. A binary fuzzy relation E on a
domain X is called fuzzy equivalence relation
with respect to T , for brevity T -equivalence,
if and only if the following three axioms are
fulfilled for all x, y, z ∈ X:

1. Reflexivity: E(x, x) = 1

2. Symmetry: E(x, y) = E(y, x)

3. T -transitivity:

T
(
E(x, y), E(y, z)

)
≤ E(x, z)

Definition 9. Let L : X2 → [0, 1] be a T -
transitive binary fuzzy relation. L is called
fuzzy ordering with respect to T and a T -
equivalence E, for brevity T -E-ordering, if
and only if it additionally fulfills the following
two axioms for all x, y ∈ X:

1. E-reflexivity: E(x, y) ≤ L(x, y)

2. T -E-antisymmetry:

T
(
L(x, y), L(y, x)

)
≤ E(x, y)

A subclass, which will be of special impor-
tance in the following, are so-called direct
fuzzifications.

Definition 10. A T -E-ordering L is called a
direct fuzzification of a crisp ordering � if and
only if it admits the following resolution:

L(x, y) =
{

1 if x � y
E(x, y) otherwise

It is worth to mention that there is a one-
to-one correspondence between direct fuzzifi-
cations of crisp linear orderings and so-called
fuzzy weak orderings, i.e. reflexive and T -
transitive binary fuzzy relations which fulfill
strong completeness (i.e., for all x, y ∈ X,
max(L(x, y), L(y, x)) = 1) [2, 4].

3 Unary Ordering-Based Modifiers

Throughout the remaining paper, assume
that we are given a T -E-ordering L (for some
T -equivalence E and a left-continuous t-norm
T ). Then the unary ordering-based modifiers
ATL and ATM are defined as follows [1, 2]:

ATL(A)(x) = sup{T
(
A(y), L(y, x)

)
| y ∈ X}

ATM(A)(x) = sup{T
(
A(y), L(x, y)

)
| y ∈ X}

In the case that L coincides with a crisp
ordering �, we will explicitly indicate that
by using the notations LTR and RTL (short
for “left-to-right” and “right-to-left continu-
ations”) instead of ATL and ATM, respec-
tively. It is easy to verify that the following
simplified representation holds in such a case:

LTR(A)(x) = sup{A(y) | y � x}
RTL(A)(x) = sup{A(y) | y � x}

Moreover, for a given fuzzy set A, LTR is the
smallest superset of A with a non-decreasing
membership function and RTL is the small-
est superset of A with a non-increasing mem-
bership function. For convenience, let us use
the notation EXT for the so-called extensional
hull operator of the T -equivalence E:

EXT(A)(x) = sup{T
(
A(y), E(y, x)

)
| y ∈ X}

Note that, for an arbitrary fuzzy set A,
EXT(A) is the smallest superset fulfilling the



property

T
(
A(x), E(x, y)

)
≤ A(y)

for all x, y ∈ X. This property is usually
called extensionality [9, 10, 14].

Theorem 11. [2] If L is a direct fuzzifica-
tion of some crisp ordering �, the following
equalities hold:

ATL(A) = EXT(LTR(A)) = LTR(EXT(A))
= EXT(A) ∪ LTR(A)

ATM(A) = EXT(RTL(A)) = RTL(EXT(A))
= EXT(A) ∪ RTL(A)

Moreover, ATL(A) is the smallest fuzzy su-
perset of A which is extensional and has a
non-decreasing membership function. Analo-
gously, ATM(A) is the smallest fuzzy super-
set of A which is extensional and has a non-
increasing membership function.

The notion of convexity and convex hulls will
the essential in the following.

Definition 12. Provided that the domain X
is equipped with some crisp ordering � (not
necessarily linear), a fuzzy set A ∈ F(X) is
called convex (compare with [15, 16]) if and
only if, for all x, y, z ∈ X,

x � y � z implies A(y) ≥ min
(
A(x), A(z)

)
.

Lemma 13. Assume that � is an arbitrary,
not necessarily linear ordering on a domain
X. Then the fuzzy set

CVX(A) = LTR(A) ∩ RTL(A)

is the smallest convex fuzzy superset of A.

Theorem 14. [2] With the assumptions of
Theorem 11 and the definition

ECX(A) = ATL(A) ∩ATM(A),

the following representation holds:

ECX(A) = EXT
(
CVX(A)

)
= CVX

(
EXT(A)

)
= EXT(A) ∪ CVX(A)

Furthermore, ECX(A) is the smallest fuzzy
superset of A which is extensional and con-
vex.

4 The Inclusive Operator

Finally, we can now define an operator repre-
senting an inclusive version of ‘between’ with
respect to a fuzzy ordering.

Definition 15. Given two fuzzy sets A,B ∈
F(X), the binary operator BTW is defined as

BTW(A,B) = ECX(A ∪B).

Note that it can easily be inferred from basic
properties of ATL and ATM that the follow-
ing alternative representation holds:

BTW(A,B) =
(
ATL(A) ∪ATL(B)

)
∩

(
ATM(A) ∪ATM(B)

)
This representation is particularly helpful to
prove the following basic properties of the
BTW operator.

Proposition 16. The following holds for all
fuzzy sets A,B ∈ F(X):

1. BTW(A,B) = BTW(B,A)

2. A ⊂ BTW(A,B)

3. BTW(A, ∅) = BTW(A,A) = ECX(A)

4. BTW(A,B) is extensional

If L is a direct fuzzification of a crisp order-
ing �, then BTW(A,B) is convex as well and
BTW(A,B) is the smallest convex and exten-
sional fuzzy set containing both A and B.

It is, therefore, justified (in particular due to
Point 2. above) to speak of an inclusive in-
terpretation. Moreover, it is even possible to
show that BTW is an associative operation;
hence (F(X), BTW) is a commutative semi-
group.

5 The Non-Inclusive Operator

Now let us study how a ‘strictly between’ oper-
ator can be defined. It seems intuitively clear
that ‘strictly between A and B’ should be a
subset of BTW(A,B) which should not in-
clude any relevant parts of A and B.



Definition 17. The ‘strictly between’ opera-
tor is a binary connective on F(X) which is
defined as

SBT(A,B) = BTW(A,B)
∩ {T

(
(ATL(A) ∩ATL(B))
∪ (ATM(A) ∩ATM(B))

)
.

Proposition 18. The following holds for all
fuzzy sets A,B ∈ F(X):

1. SBT(A,B) = SBT(B,A)

2. SBT(A,B) ⊆ BTW(B,A)

3. SBT(A, ∅) = A

4. SBT(A,B) is extensional

If L is a direct fuzzification of a crisp ordering
�, SBT(A,B) is convex as well. Moreover, if
we assume that A and B are normalized, the
following holds:

5. SBT(A,A) = ∅
6. ECX(A) ∩T SBT(A,B) = ∅

Note that the last equality particularly im-
plies

A ∩T SBT(A,B) = ∅

which justifies to speak of an non-inclusive
concept.

6 Ordering Properties

Despite basic properties that have already
been presented in the previous two sections,
it remains to be clarified whether the results
BTW(A,B) and SBT(A,B) obtained by the
two operators are really lying between A and
B. We will approach this question from an
ordinal perspective. It is straightforward to
define the following binary relation on F(X):

A �L B iff ATL(A) ⊇ ATL(B) and
ATM(A) ⊆ ATM(B)

This relation is reflexive, transitive, and an-
tisymmetric up to the following equivalence
relation:

A ∼L B if and only if ECX(A) = ECX(B)

Moreover, if we restrict ourselves to fuzzy
numbers and to the natural ordering of real
numbers, it is relatively easy to see that �L

coincides with the interval ordering of fuzzy
numbers induced by the extension principle.
It is, therefore, justified to consider �L as
a meaningful general concept of ordering of
fuzzy sets with respect to a given fuzzy order-
ing L [2, 3, 5].

The following theorem gives a clear justifica-
tion that we may consider the definitions of
the operators BTW and SBT as appropriate.

Theorem 19. Suppose that we are given two
normalized fuzzy sets A,B ∈ F(X) such that
A �L B holds. Then the following inequality
holds:

A �L BTW(A,B) �L B

Now let us assume that L is strongly complete
(therefore, a direct fuzzification of a crisp lin-
ear ordering �) and that there exists a value
x ∈ X which separates A and B in the follow-
ing way (for all y, z ∈ X):

A(y) > 0 implies y ≺ x and
B(z) > 0 implies x ≺ z

Then the following inequality holds too:

A �L SBT(A,B) �L B

7 Examples

In order to underline these rather abstract
results with an example, let us consider two
fuzzy subsets of the real numbers:

A(x) = max(1− 3 · |1− x|,
0.7− 2 · |1.5− x|, 0)

B(x) = max(1− |4− x|, 0)

It is easy to see that both fuzzy sets are nor-
malized; B is convex, while A is not convex.

The natural ordering of real numbers ≤ is a
fuzzy ordering with respect to any t-norm and
the crisp equality. If we take the  Lukasiewicz
t-norm TL(x, y) = max(x+y−1, 0), we obtain
the fuzzy sets BTW(A,B) and SBT(A,B) as
shown in Figure 1.
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Figure 1: Two fuzzy sets A,B (top) and
the results of BTW(A,B) (middle) and
SBT(A,B) (bottom), using TL and the crisp
ordering of real numbers

Now let us consider the following two fuzzy
relations:

E(x, y) = max(1− |x− y|, 0)

L(x, y) =
{

1 if x ≤ y
E(x, y) otherwise

One easily verifies that E is indeed a TL-
equivalence on the real numbers and that L
is a TL-E-ordering which directly fuzzifies the
linear ordering of real numbers [2, 4]. Figure
2 shows the results of computing BTW(A,B)
and SBT(A,B) for A and B from above. It
is a routine matter to show that B is exten-
sional and that A is not extensional. This
means that A contains parts that are defined
in an unnaturally precise way . Since the op-
erators BTW and SBT have been designed to
take the given context of indistinguishability
into account, they try to remove all uncertain-
ties arising from the non-extensionality of A.
This is reflected in the fact that BTW(A,B)
also contains some parts to the left of A that
are potentially indistinguishable from A. In a
dual way, SBT(A,B) does not include those
parts to the right of A that are potentially
indistinguishable from A.
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Figure 2: Two fuzzy sets A,B (top) and
the results of BTW(A,B) (middle) and
SBT(A,B) (bottom) with respect to a fuzzy
ordering on R

8 Conclusion

This paper has been concerned with the defi-
nition of two binary ordering-based modifiers
BTW and SBT. The operator BTW has been
designed for computing the fuzzy set of all
objects lying between two fuzzy sets includ-
ing both boundaries. The purpose of SBT
is to extract those objects which are lying
strictly between two fuzzy sets—not includ-
ing the two boundaries. We have shown sev-
eral basic properties of the two operators and,
from the viewpoint of orderings of fuzzy sets,
that the two operators indeed yield meaning-
ful results. Therefore, we conclude that the
two operators are appropriate as modifiers for
fuzzy systems applications and rule interpola-
tion.
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