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Abstract. The purpose of this paper is to introduce a general frame-
work for comparing fuzzy sets with respect to fuzzy orderings in a gradual
way. This approach is applicable to fuzzy subsets of any kind of universe
for which a fuzzy ordering, no matter whether linear or not, is known.

1 Introduction

Orderings and rankings are essential in any field related to decision making. Ad-
mitting vagueness or impreciseness naturally results in the need for specifying
vague preferences in crisp domains, but also in the demand for techniques for
deciding between fuzzy alternatives. It is, therefore, not surprising that orderings
and rankings of fuzzy sets have become central objects of study in fuzzy decision
analysis. Since the 1970s, a host of different methods for ordering or ranking
fuzzy sets has been published (see [1–3] for detailed reviews). All of these ap-
proaches, however, have been based on strictly crisp comparisons of fuzzy sets.
In the author’s point of view, this is a serious restriction. Fuzzy sets have been
introduced to model vagueness and impreciseness by admitting gradual member-
ship . If a very small change in a degree of membership is sufficient to change an
ordering or a ranking of fuzzy sets completely, the original motivation of fuzzy
sets is disavowed.

This paper attempts at providing a way out of this pitfall. We start from a
general fuzzy ordering [4–6] on the given domain (without any further restric-
tions) and define ordering-based modifiers [7, 8]. Such ordering-based modifiers
can be used to define a crisp ordering of fuzzy sets [9]. By employing an ap-
propriate inclusion measure and a related similarity measure for fuzzy sets, this
crisp ordering of fuzzy sets can be fuzzified.

2 Fuzzy Orderings

Throughout the whole paper, the symbols T , T ′, and T̃ are supposed to denote
left-continuous t-norms. As already mentioned, we do not want to restrict to
specific domains (e.g. real numbers equipped with their natural ordering), but
we want to start from a most general ordinal concept—a general fuzzy ordering
on the domain X. This is mainly motivated by the fact that vague environments
are equipped with a certain—implicit or explicit—context of indistinguishability



[10]. For this purpose, similarity-based fuzzy orderings [4–6, 11], which are based
on the idea to take an underlying context of indistinguishability into account,
are perfectly suitable.

Definition 1. A binary fuzzy relation E : X2 → [0, 1] is called fuzzy equivalence
relation1 with respect to T , for brevity T -equivalence, if and only if the following
three axioms are fulfilled for all x, y, z ∈ X:

1. Reflexivity: E(x, x) = 1
2. Symmetry: E(x, y) = E(y, x)
3. T -transitivity: T (E(x, y), E(y, z)

)
≤ E(x, z)

Definition 2. Let L : X2 → [0, 1] be a binary fuzzy relation. L is called fuzzy
ordering with respect to T and a T -equivalence E : X2 → [0, 1], for brevity T -
E-ordering, if and only if it is T -transitive and additionally fulfills the following
two axioms for all x, y ∈ X:

1. E-reflexivity: E(x, y) ≤ L(x, y)
2. T -E-antisymmetry: T

(
L(x, y), L(y, x)

)
≤ E(x, y)

3 Ordering-Based Modifiers

The modifiers ‘at least’ and ‘at most’ with respect to a fuzzy ordering L will
be essential for these investigations. They can be defined by means of image
operators [7, 8, 15].

Definition 3. Suppose that X is equipped with some T -E-ordering L. Then,
for a fuzzy subset A of X, the fuzzy sets ‘at least A’ and ‘at most A’ (with
respect to L), abbreviated ATL(A) and ATM(A), respectively, can be defined
as follows:

ATL(A)(x) = sup{T (A(y), L(y, x)) | y ∈ X}
ATM(A)(x) = sup{T (A(y), L(x, y)) | y ∈ X}

ATL(A) can be regarded as the smallest superset of A the membership func-
tion of which is non-decreasing with respect to the fuzzy ordering L, analogously
for ATM(A). For detailed studies of the interpretation of these operators and
their properties, we refer to the literature [7, 8, 11].

1 Note that various diverging names for this class of fuzzy relations appear in literature,
like similarity relations, indistinguishability operators, equality relations, and several
more [10, 12–14]



4 Orderings of Fuzzy Sets

The ordering-based modifiers defined above can serve as the basis for defining
an ordering of fuzzy sets. Let us briefly recall the well-known partial ordering of
real intervals

[a, b] ≤I [c, d] ⇔ (a ≤ c ∧ b ≤ d)

The inequality a ≤ c means that there are no elements of the set [c, d] which are
below the entire interval [a, b]. The inequality b ≤ d, analogously, means that
there are no elements of [a, b] which lie completely above [c, d]. As ATL(A) gives
the “left flank” of fuzzy set A and ATM(A) gives the “right flank” of fuzzy set
A, the generalization of the above interval ordering is straightforward.

Definition 4. Let L be a fuzzy ordering on X. Then the relation �L on F(X)
is defined in the following way (with the usual notation that A ⊆ B if and only
if A(x) ≤ B(x) for all x ∈ X):

A �L B ⇔
(
ATL(A) ⊇ ATL(B) ∧ATM(A) ⊆ ATM(B)

)
It is trivial to see that �L is a reflexive and transitive fuzzy relation on F(X).

Its non-antisymmetry is characterized in the following way.

Theorem 1. The following holds for all fuzzy subsets A,B ∈ F(X), where
ECX(A) = ATL(A) ∩ ATM(A) (with ∩ being the intersection with respect to
the minimum t-norm):(

A �L B ∧A �L B
)
⇔ ECX(A) = ECX(B)

For more detailed argumentation and interpretation of this correspondence,
see [9, 11]. We just mention that there is a very close connection between the
operator ECX and the convex hull. Moreover, it is worth to note that this
approach—if the crisp linear ordering on the real numbers is considered—coin-
cides with well-known fuzzification of the linear ordering of real numbers based
on Zadeh’s extension principle [16–18].

The reader should be aware that, in any case, different heights of two fuzzy
sets immediately imply incomparability with respect to �L. Therefore, we re-
strict our considerations to normal fuzzy sets in the following (i.e. fuzzy sets A
for which at least one element exists that fulfills A(x) = 1).

5 Fuzzy Orderings of Fuzzy Sets

If we consider the two convex fuzzy quantities A3 and B3 shown in Figure 3,
it is easy to see that, if we construct �L by means of choosing L to be the
natural ordering ≤ of real numbers, these two triangular fuzzy quantities are
incomparable. Even if a fuzzy ordering L fuzzifying ≤ is taken, the situation
cannot be better. What we are facing here is exactly the inappropriateness of
comparing vague phenomena crisply, which leads to artificial preciseness.



In this section, we want to overcome this problem by allowing intermediate
degrees to which a fuzzy set is smaller or equal than another. For this purpose,
let us reconsider the definition of A �L B:

ATL(A) ⊇ ATL(B) ∧ATM(A) ⊆ ATM(B) (1)

If we want to make this crisp expression fuzzy, we have to specify (1) a fuzzy
concept of subsethood and (2) a conjunction operation. Now assume that we
are given a fuzzy relation SIM on F(X) measuring the similarity of fuzzy sets
(commonly called similarity measure) and that we are given a fuzzy relation
INCL on F(X) that measures the degree to which a fuzzy set is a subset of
another. Then we can directly write down a generalized definition of (1) (with
T̃ being some t-norm):

LL(A,B) = T̃
(
INCL(ATL(B),ATL(A)), INCL(ATM(A),ATM(B))

)
The question arises which properties we can expect from the fuzzy relation LL

or, in other words, which requirements need to be fulfilled in order to achieve
reasonable properties of LL. The following theorem tries to give an answer.

Theorem 2. If SIM is a fuzzy equivalence relation on F(X) with respect to
some t-norm T ′ and INCL is a T ′-SIM-ordering on F(X), then LL as defined
above with T̃ = min is a fuzzy ordering with respect to T ′ and the T ′-equivalence

EL(A,B) = SIM
(
ECX(A),ECX(B)

)
.

Note that the t-norm T is the one that the fuzzy relations L and E are taking
into account and the t-norm T ′ is the one that relates to INCL and SIM. These
two t-norms need not be equal, therefore, we explicitly distinguish between these
two here.

It remains to clarify how SIM and INCL can be chosen such that the condi-
tions of Theorem 2 are fulfilled. We will now provide an approach that is based
on residual implications.

Definition 5. For a left-continuous t-norm T ′, the residual implication (resi-
duum) is defined as

T
→′

(x, y) = sup{z ∈ [0, 1] | T ′(x, z) ≤ y},

while the corresponding biimplication (equivalence) is defined as

T
↔′

(x, y) = min
(
T
→′

(x, y), T
→′

(y, x)
)
.

In the framework of many-valued predicate logics based on residuated lattices
[19, 20], it is natural to define the degree of inclusion of a fuzzy set A in another
fuzzy set B as [21, 15]

INCLT ′(A,B) = inf
x∈X

T
→′(

A(x), B(x)
)
.



Theorem 3. The relation INCLT ′ is a fuzzy ordering on F(X) with respect to
T ′ and the fuzzy equivalence relation

SIMT ′(A,B) = inf
x∈X

T
↔′(

A(x), B(x)
)
.

As a consequence, we obtain that the fuzzy relation

LL,T ′(A,B) = min
(
INCLT ′(ATL(B),ATL(A)),
INCLT ′(ATM(A),ATM(B))

)
is fuzzy ordering on F(X) with respect to T ′ and the fuzzy equivalence relation

EL,T ′(A,B) = SIMT ′
(
ECX(A),ECX(B)

)
.

So far, it remains an open question in which way the crisp ordering .L and
the fuzzy ordering LL,T ′ are related to each other. The next result gives an
exhaustive answer:

Theorem 4. The following characterization of the kernel of LL,T ′ holds (for all
fuzzy sets A,B ∈ F(X)):

LL,T ′(A,B) = 1 ⇔ A �L B

The relationship between EL,T ′ and the symmetric kernel of �L is given analo-
gously (for all fuzzy sets A,B ∈ F(X)):

EL,T ′(A,B) = 1 ⇔ ECX(A) = ECX(B)

In particular, this entails that �L is a subrelation of LL,T ′ which implies
that the comparability of two fuzzy sets with respect to LL cannot be worse
than comparability with respect to �L.

Example 1. Let us choose L to be the crisp linear ordering of real numbers (i.e.
L = χ≤) and T ′(x, y) = TL(x, y) = max(x + y − 1, 0). For the fuzzy quantities
shown in Figures 1 and 2, we obtain the following:

LL,T ′(A1, B1) = 1 LL,T ′(A2, B2) = 1
LL,T ′(B1, A1) = 0 LL,T ′(B2, A2) = 0
EL,T ′(B1, A1) = 0 EL,T ′(B2, A2) = 0

For the examples shown in Figures 3 and 4, the following encouraging results
are obtained:

LL,T ′(A3, B3) = 0.9 LL,T ′(A4, B4) = 5
8

LL,T ′(B3, A3) = 0 LL,T ′(B4, A4) = 5
12

EL,T ′(B3, A3) = 0 EL,T ′(B4, A4) = 5
12



6 Concluding Remarks

In this paper, a general fuzzy concept for ordering fuzzy sets with respect to
fuzzy orderings was introduced. We have seen that this concept smoothly fits
into the framework of fuzzy orderings. The examples and studies in this paper
were based on implication-based inclusion and similarity measures (INCLT ′ and
SIMT ′), which is a relatively restrictive setting. The future challenge is now to
find and study other inclusion and similarity measures that provide reasonable
properties in the spirit of Theorem 2, but allow more freedom.
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Fig. 1. A1 (solid), B1 (dashed)
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Fig. 2. A2 (solid), B2 (dashed)
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Fig. 3. A3 (solid), B3 (dashed)
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Fig. 4. A4 (solid), B4 (dashed)


