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Abstract. This contribution aims at the dissemination of a similarity-based gen-
eralization of fuzzy orderings, however, not from a purely theoretical perspective,
but from the viewpoint of possible practical applications. After a short motiva-
tion of similarity-based fuzzy orderings, we consider four case studies with the aim
to illustrate the application potential of fuzzy orderings—flexible query answering
systems, ordering-based modifiers, orderings of fuzzy sets, and interpretability of
linguistic variables.

1 Introduction

There are two most fundamental relational concepts in mathematics which ac-
company mathematicians as well as computer scientists and engineers through-
out their life in science—equivalence relations (reflexive, symmetric, and tran-
sitive relations) and (partial) orderings (reflexive, antisymmetric, and transi-
tive relations).

It is not surprising that, within the early gold rush of fuzzification of
virtually any classical mathematical concept, these two fundamental types of
relations did not have to await the introduction of their fuzzy counterparts
for a long time [44].

Fuzzy equivalence relations are now well-accepted concepts for expressing
equivalence/equality in vague environments [26, 30, 39, 40] (in contrast to
Zadeh’s original definition, now with the additional degree of freedom that the
conjunction in transitivity may be modeled by an arbitrary triangular norm,
i.e. a binary operation on the unit interval that is commutative, associative,
non-decreasing, and has 1 as neutral element [28]).

Definition 1. A binary fuzzy relation E on a domain X is called fuzzy equiv-
alence relation with respect to a t-norm T , for brevity T -equivalence, if and
only if the following three axioms are fulfilled for all x, y, z ∈ X:

(i) Reflexivity: E(x, x) = 1
(ii) Symmetry: E(x, y) = E(y, x)
(iii) T -transitivity: T

(
E(x, y), E(y, z)

)
≤ E(x, z)

In the meantime, fuzzy equivalence relations have turned out to be helpful
tools in various disciplines, in particular, as soon as the interpretation of
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fuzzy sets, partitions, and controllers [22,27,30,40] is concerned. More direct
practical applications have emerged in flexible query answering systems [24,
33] and fuzzy databases in general [35].

Fuzzy (partial) orderings have been introduced more or less in parallel
with fuzzy equivalence relations [44], however, they have never played a sig-
nificant role in real-world applications.

Definition 2. A binary fuzzy relation R on a domain X is called fuzzy (par-
tial) ordering with respect to a t-norm T , for brevity T -ordering, if and only
if the following three axioms hold (for all x, y, z ∈ X):

(i) Reflexivity: R(x, x) = 1
(ii) T -antisymmetry: T

(
R(x, y), R(y, x)

)
= 0 whenever x 6= y

(iii) T -transitivity: T
(
R(x, y), R(y, z)

)
≤ R(x, z)

This kind of fuzzy relations has only been of some importance in the pref-
erence modeling niche [19,34], but so far not at all in fuzzy systems applica-
tions, although almost every fuzzy system inherently uses ordinal structures
in vague environments—there might be only a very small minority of fuzzy
systems in which expressions like ‘small’, ‘medium’, or ‘large’ do not occur.

This paper advocates a “similarity-based” generalization of fuzzy order-
ings, however, not from the pure mathematical viewpoint of logic or algebra
(for what we would like to refer to the extensive studies in [3,4,23]). Instead,
we attempt to demonstrate the potential for applications by means of consid-
ering comprehensive overviews of four case studies. Those are flexible query
answering systems, ordering-based modifiers, and orderings of fuzzy sets. Fi-
nally, we also discuss the interpretability property, for which orderings of
fuzzy sets are of fundamental importance.

2 “Similarity-Based” Fuzzy Orderings

In the crisp case, equivalence relations and orderings are both special cases
of preorderings (reflexive and transitive relations). While equivalence rela-
tions can be constructed as symmetric kernels of preorderings, orderings are
obtained from preorderings by factorization with respect to the symmetric
kernel. In the fuzzy case, the first correspondence still holds, i.e. fuzzy equiv-
alence relations are uniquely described as symmetric kernels of fuzzy pre-
orderings (reflexive and T -transitive fuzzy relations) [40]. Fuzzy orderings,
however, have not been constructed as factorizations of fuzzy preorderings.
Instead, Definition 2 is just a straightforward generalization of the three clas-
sical axioms of orderings, but without taking the deeper algebraic background
into account. This important fact has been addressed first in [23], where a
generalization is proposed which complies with these deep correspondences
by taking the strong relationship between ordering and equivalence (“simi-
larity”) into account. This idea has been revitalized and further developed
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in [3, 4]. In these two papers, it is also shown that several serious practical
shortcomings of fuzzy orderings in the sense of Definition 2 are resolved in
the more general framework.

Definition 3. A fuzzy relation L : X2 → [0, 1] is called fuzzy ordering with
respect to a t-norm T and a T -equivalence E, for brevity T -E-ordering, if
and only if it fulfills the following three axioms for all x, y ∈ X:

(i) E-Reflexivity: E(x, y) ≤ L(x, y)
(ii) T -E-antisymmetry: T

(
L(x, y), L(y, x)

)
≤ E(x, y)

(iii) T -transitivity: T
(
L(x, y), L(y, z)

)
≤ L(x, z)

Note that the above formulations of reflexivity and antisymmetry (both
with respect to an underlying fuzzy equivalence relation) emulate the clas-
sical factorization construction in an elegant way without using factor sets
explicitly. Since it is not the major concern of this paper, we will not repeat
all representation and construction results and refer to [3,4] instead. However,
we will mention an important subclass which will be of particular practical
interest throughout the remaining paper.

Definition 4. A T -E-ordering L is called strongly linear if and only if, for
all x, y ∈ X,

max
(
L(x, y), L(y, x)

)
= 1.

As the term “strong linearity” suggests, this property can be considered as
a generalization of the classical linearity property. However, strong linearity
is usually too strong a requirement to be acceptable as a general concept of
linearity in specific logical and algebraic terms [8]. Anyway, as we will see
next, strongly linear fuzzy orderings have a certain practical importance.

Definition 5. A crisp ordering � on a domain X and a T -equivalence E :
X2 → [0, 1] are called compatible, if and only if the following holds for all
x, y, z ∈ X:

x � y � z ⇒ E(x, z) ≤ min
(
E(x, y), E(y, z)

)
Compatibility between a crisp ordering � and a fuzzy equivalence relation

E can be interpreted as follows: the two outer elements of an ordered three-
element chain are at most as similar as any two inner elements.

Theorem 1. [3, 4] Consider a fuzzy relation L on a domain X and a T -
equivalence E. Then the following two statements are equivalent:

(i) L is a strongly linear T -E-ordering.
(ii) There exists a linear ordering � the relation E is compatible with such

that L can be represented as follows:

L(x, y) =
{

1 if x � y
E(x, y) otherwise (1)
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Theorem 1 allows to consider strongly linear T -E-orderings as “linear or-
derings with imprecision”, which are common phenomena in everyday life.
Consider, for instance, the old example of comparing the heights of people.
Although we have a clear crisp concept for ordering heights (which are just
positive real numbers), there is undoubtedly a certain tolerance for impreci-
sion or indistinguishability in the way we actually perform such a comparison.
Similar situations occur in virtually any application where values have to be
processed for which a crisp ordering would exist, but where small differences
are either impossible to grasp (e.g. due to limited measurement accuracy) or
simply not even necessary to be considered.

3 Flexible Query Answering Systems

Flexible query answering systems can be considered as a subbranch of fuzzy
database systems [35]. They address the problem how query interfaces to
conventional databases with crisp data can be extended such that a flexible
interpretation of queries is possible [11, 12, 17, 24, 25, 31, 33, 37, 38]—with the
motivation to suggest alternatives close to the query, in particular, in cases
where no record matches the query in an exact way. Existing flexible query
answering systems use fuzzy equivalence relations or other concepts of gradual
similarity in order to achieve this goal.

While most other systems use similarity tables to compute the degrees
of fulfillment of a query, the developers of the so-called Vague Query System
(VQS) [31,32] have chosen the pragmatic way to map non-numeric to numeric
values (e.g. color labels to RGB values) in order to apply simple Euclidean
distances to compute degrees of similarity between a database records and
queries.

Almost all flexible query answering systems are only able to deal with
degrees of similarity, although ordering-based queries would also be highly
important from a practical point of view. For instance, a user sending a query
to a tourist information system may not primarily be interested in hotel rooms
that cost $70 per night, but rather in those which do not exceed this limit.
In either case, a result of $70.50 should still be in the result set,1 since 50
cents do not make a significant difference. It is easy to observe that this is
exactly a situation as described at the end of the previous section—we have a
clear concept of crisp (even linear) ordering, but with a certain tolerance for
indistinguishability. There are attempts in this direction [25], however, they
are not based on the proposed framework of similarity-based fuzzy orderings
which would be able to provide a simple and sound basis.

Therefore, under the assumption that we have a linear ordering for some
attribute and a concept of similarity modeled by a fuzzy equivalence relation
which is compatible with the ordering in the sense of Definition 5, Theorem 1
1 Flexible query answering systems usually give sorted lists of results ranked ac-

cording to the similarity between the records and the query.
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gives a clear hint how the semantics of ordering-based queries can be defined.
In [9,10], an extension of the existing VQS system is presented which makes
use of fuzzy orderings. In the new variant, VQS uses an extension of SQL
in which the conditions “IS”, “IS AT LEAST”, “IS AT MOST”, and “IS
WITHIN” can be interpreted in a fuzzy way (generalizing the standard SQL
constructs “=”, “>=”, ‘<=”, and “BETWEEN”, respectively). Provided that
we are given an attribute on a domain X for which we know a crisp linear
ordering � and a T -equivalence E which is compatible to �, the fuzzy relation
defined in (1) is a strongly linear T -E-ordering. Then we can compute the
degrees of fulfillment of the following query fragments in the following way
(for a query value q and a record x):

t(“x IS q”) = E(q, x)
t(“x IS AT LEAST q”) = L(q, x)
t(“x IS AT MOST q”) = L(x, q)

t(“x IS WITHIN (a, b)”) = T
(
L(min(a, b), x), L(x, max(a, b))

)
Note that the definition of T -equivalences from Euclidean distances is straight-
forward by the duality of pseudo-metrics and T -equivalences (with the addi-
tional requirement that T has to be continuous and Archimedean) [9, 10, 15,
16, 28]. Therefore, this extension smoothly integrates into the existing VQS
framework. For extensive details, see [9].

4 Ordering-Based Modifiers

Already in their beginning, fuzzy systems were considered as appropriate
tools for controlling complex systems and for carrying out complicated de-
cision processes [45]. It is well-known and easy to see that, if rule bases are
represented as complete tables, the number of rules grows exponentially with
the number of variables—a fact which has to be regarded as a severe practi-
cal limitation. Beside others, the integration of advanced linguistic constructs
such as modifiers (adverbs) may be considered as one possible measure to keep
rule bases compact. Ordering-based modifiers, such as ‘at least’, ‘at most’,
‘between’, for instance, could be used for grouping neighboring rules with the
same consequents, thereby, reducing the number of rules while improving
expressiveness and interpretability.

The most elegant and efficient way to define the semantics of such mod-
ifiers is to have an unambiguous computational model to construct, for ex-
ample, a fuzzy set with the meaning “at least A” for any given fuzzy set
A. Images with respect to fuzzy orderings provide such a methodology, even
with the freedom to take an underlying context of indistinguishability into
account [2, 7].
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Definition 6. [20] Let R be a binary fuzzy relation on a domain X and let
T be a triangular norm. For a given fuzzy set A on X, the image of A with
respect to R is defined as

R↑A(x) = sup{T
(
A(y), R(y, x)

)
| y ∈ X}.

In case that the t-norm T is left-continuous [28] and if R is a reflexive
and T -transitive (i.e. a so-called T -preordering), then the operator R↑ fulfills
certain extremal properties and is idempotent [3]. For a T -equivalence E and
a fuzzy set A, E↑A is often called extensional hull (of A) [26, 30], which we
will denote with the symbol EXT(A) in the following.

Most importantly, if L is a T -E-ordering, L↑A is nothing else than the
fuzzy set which contains A and “all those elements that are above the ele-
ments of A” [3, 2]. Therefore, L↑A models the expression ‘at least A’) (with
respect to a given fuzzy ordering L). We will abbreviate L↑A with ATL(A)
in the following. Analogously, for the image with respect to the inverse fuzzy
ordering G(x, y) = L(y, x), the symbol ATM(A) = G↑A—standing for ‘at
most A’—will be used.

If we denote the image operator of a crisp ordering � with LTR and
the image operator of its inverse with RTL, then the following simplified
representations hold [3]:

LTR(A)(x) = sup{A(y) | y � x}
RTL(A)(x) = sup{A(y) | x � y}

Furthermore, let us make the following definitions:

CVX(A)(x) = min
(
LTR(A)(x), RTL(A)(x)

)
ECX(A)(x) = min

(
ATL(A)(x), ATM(A)(x)

)
It is relatively easy to see that the operator CVX yields the smallest convex
fuzzy superset of A if we consider a fuzzy set B as convex if and only if the
following holds (for all x, y, z ∈ X) [3]:

x � y � z ⇒ B(y) ≥ min
(
B(x), B(z)

)
The following theorem gives a clear answer how the operators ATL, ATM,

and ECX are represented if a T -E-ordering is strongly linear—a case that is,
as already mentioned, of vital practical interest.

Theorem 2. [3] Provided that L is a strongly linear T -E-ordering on a do-
main X such that the representation (1) holds for some crisp linear ordering
�, the following equalities hold for every fuzzy set A on X:

ATL(A) = LTR(EXT(A)) = EXT(LTR(A))
ATM(A) = RTL(EXT(A)) = EXT(RTL(A))
ECX(A) = CVX(EXT(A)) = EXT(CVX(A))
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Fig. 1. A fuzzy set and the results obtained by applying various ordering-based
modifiers.

In order to demonstrate the actual meaning of the operators ATL and
ATM and the correspondences of Theorem 2, let us consider the following
two fuzzy relations on the real numbers:

E(x, y) = max(1− |x− y|, 0)

L(x, y) =
{

1 if x ≤ y
max(1− x + y, 0) otherwise

One easily verifies that E is a TL-equivalence on the real numbers and
that L is a TL-E-ordering, where TL stands for the  Lukasiewicz t-norm
TL(x, y) = max(x + y − 1, 0). Figure 1 shows a non-trivial (non-convex and
non-extensional) fuzzy set and the results obtained by the seven operators
we have discussed in this section.

5 Orderings of Fuzzy Sets

Orderings/rankings of fuzzy sets play an important role in fuzzy decision
analysis, but also in linguistic approximation, rule interpolation [29], and
many other disciplines. Most previous approaches have in common that they
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are restricted to certain subclasses of fuzzy sets and that they only work for
fuzzy subsets of the real numbers (see [41,42] for detailed reviews).

Based on the definition of ordering-based modifiers (as described in Sec-
tion 4), it is possible to define a preordering of arbitrary fuzzy sets on any
domain for which a T -E-ordering L is known [3, 5]. This relation is defined
as

A �L B ⇔
(
ATL(B) ⊆ ATL(A) and ATM(A) ⊆ ATM(B)

)
,

where ⊆ denotes the usual crisp inclusion of fuzzy sets, i.e. A ⊆ B if and only
if A(x) ≤ B(x) for any x ∈ X [43]. It is easy to see (compare with Fig. 1)
that the first inclusion ATL(B) ⊆ ATL(A) corresponds to the fact that the
left flank of A is above (to the left) of the left flank of B, while the second
inclusion ATM(A) ⊆ ATM(B) determines whether the right flank of A is
below (to the left) of the right flank of B.

The next theorem provides a unique characterization of non-antisymmetry
of �L.

Theorem 3. [3] Consider a t-norm T and a T -E-equivalence E. If L is a
T -E-ordering on the domain X, then �L is reflexive, transitive, and anti-
symmetric up to the equivalence relation

A ∼L B ⇔ ECX(A) = ECX(B).

Corollary 1. [3] Consider a crisp ordering �. Then

A �I B ⇔
(
LTR(A) ⊇ LTR(B) and RTL(A) ⊆ RTL(B)

)
is a reflexive and transitive relation which is antisymmetric up to the equiv-
alence relation

A ∼I B ⇔ CVX(A) = CVX(B).

In case that L is a strongly linear T -E-ordering, thereby admitting reso-
lution (1), Theorems 2 and 3 together with Corollary 1 provide very specific
information about the non-antisymmetry of the relation �L.

This approach can be applied to any kind of fuzzy sets on a domain
for which a crisp or fuzzy ordering is known, with the only restriction that
these ordering methods cannot distinguish between fuzzy sets with equal
(extensional) convex hulls. In particular, no special assumptions concerning
the structure of the space X (e.g., linearity of the ordering, restriction to real
numbers or intervals, etc.) have to be made. Note that the above relations
are not complete in the sense that any two fuzzy sets are comparable. Since
orderings of fuzzy sets are still more general relations than interval orderings,
completeness would not be a natural assumption anyway [3,5].
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6 Interpretability of Linguistic Variables

The main difference between fuzzy systems and other control or decision
support systems is that they are parameterized in an interpretable way—
by means of rules consisting of linguistic expressions. If a fuzzy system is
constructed from expert knowledge, the resulting systems are most often
interpretable in the sense that a human can easily guess what the system is
approximately doing (afterwards, without even being involved in the design
process). If automatic tuning or machine learning methods are applied to
construct a fuzzy system according to some design goals (e.g. fitting of sample
data), the result is—depending on the method used—still a fuzzy system from
the formal point of view, but most often lacks this crucial property that a
human is able to guess its qualitative behavior easily.

This important fact is increasingly being recognized in the fuzzy control
community [1,13,14,18,36]. However, most researchers have approached this
problem simply by making some common sense assumptions about the shape
and mutual overlapping of membership functions, without even attempting
to ask in detail what interpretability actually is. In a recent investigation
[6], interpretability is defined as the possibility to estimate a fuzzy system’s
behavior by reading and understanding the rule base only. The framework
for expressing interpretability as a mathematical property is based on the
fact that humans do have a qualitative understanding of the semantics of
linguistic labels, such as “small”, “medium”, or “large”. If this information
can be formulated by means of (fuzzy) relations and if canonical counterparts
of these relations exist on the semantic level (i.e. the fuzzy sets modeling the
linguistic expressions), interpretability can be viewed as the preservation of
the relationships between the labels by the corresponding fuzzy sets.

As a simplistic example, assume that we are given a linguistic variable
which may take the values “small”, “medium”, or “large”. It is obvious that
humans associate a certain ordinal structure with these three labels. The
counterpart of this ordering on the semantic level is nothing else than an
ordering of fuzzy sets—which brings us back to the concepts discussed in
Section 5. In [6], a more elaborate (and less trivial) example is given which
also makes use of fuzzy orderings and orderings of fuzzy sets.

Taking interpretability in the automatic construction of fuzzy systems
into account implies that some mutual relationships between the different
fuzzy sets have to be preserved. From the computational point of view, this
leads to constrained optimization problems, which are always more difficult
to handle. In order to tackle this problem, more sophisticated optimization
algorithms are necessary (see [13] for an overview of different possible ap-
proaches, another promising approach based on numerical optimization is
presented in [21]).
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7 Conclusion

This paper is intended as a pleading for the importance of fuzzy orderings in
applications aside of preference modeling and decision analysis. In order to
support this claim, four potential fields of practical applications have been
discussed—one from the fuzzy database area, the other three rather from the
fuzzy systems/fuzzy control area. These four case studies clearly underline
that fuzzy orderings are not just of pure theoretical interest, but can also
have fruitful practical applications.
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