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Abstract

Since fuzzy logic has proven to be a very useful tool for representing human
knowledge by means of mathematical expressions� the optimization of the
involved parameters has been one of the most investigated problems in the
theory of fuzzy expert systems� Typically� fuzzy systems have two compo�
nents � a discrete one� the rules� and a continuous one on the other hand�
the so�called fuzzy sets� Very many recent publications concern with the
optimization of these two sets of parameters with genetic algorithms �GAs��

Genetic algorithms are optimization methods which are based on the
mechanisms of natural evolution� such as selection� mutation� or sexual re�
production� Genetic algorithms were introduced approximately 	
 years
ago and turned out to be a very promising approach to the solution of many
problems in arti�cial intelligence� During the last years the combination
of fuzzy logic and GAs has come into fashion� Nevertheless� or better� for
exactly that reason it is necessary to investigate this combination critically
and to expose the advantages and weaknesses objectively�

So far� we can distinguish between three classes of combinations� The
�rst one consists of approaches to the tuning of the �rst component� the
fuzzy sets� which represent� in some sense� the semantic information of the
rules� This mostly leads to continuous optimization problems with real�
valued parameters� The second class comprises methods for the discovery of
optimal rulebases� For these cases we typically get optimization problems
in discrete� but not necessarily �nite spaces� Last� we can collect all the
methods� which do not �t in the �rst two classes� in a third group of methods�
In particular� methods� where fuzzy sets and rules are tuned simultaneously�
belong to the third type�

This thesis is intended to provide a profound introduction to both fuzzy
logic and genetic algorithms and to explore the possibilities to combine the
two paradigms�
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Chapter �

Introduction

Growing specialization and diversi�cation have brought a host
of monographs and textbooks on increasingly specialized topics�
However� the �tree� of knowledge of mathematics and related
�elds does not grow only by putting forth new branches� It also
happens� quite often in fact� that branches which were thought to
be completely disparate are suddenly seen to be related�

Michiel Hazewinkel in the preface of �van Laarhoven and Aarts� ��
��

Many� if not most books and theses on fuzzy logic start referring to the
impressive success of this technique in the last decade �lling whole pages
with lists of successful applications� Since this is su�ciently known� it can
be omitted here� I think it is more important to take a look at the challenges
of the future than to exult over the success of the presence and the past�
Although fuzzy methods have turned out to be very useful tools in many
�elds� such as control theory� expert systems� cognitive problems� signal�
and image processing� robotics� to mention just a few of them� there are
many questions which are still to be clari�ed�

In a rough outline� fuzzy systems are rule�based systems which are ca�
pable of dealing with imprecise information� Their advantage is that nearly
everything inside the system can be kept interpretable for humans� Thus�
prototyping can be done very easy and fast in many cases� Unfortunately�
it can take a lot of time to tune all the involved parameters � a problem
which certainly becomes worse with increasing complexity of the system�
Since the trend turns more and more to the application of fuzzy methods to
very complex problems� it is necessary to deal with methods for performing
this optimization �semi�automatically� So far� we can roughly distinguish
between two categories of methods�

�



�� O
ine optimization� Search for parameters such that a given qual�
ity measure is optimal� in many cases this quality measure is the dis�
crepancy between the actually obtained output and the desired output
for some representative ��nite� set of inputs for which the desired or
correct output is known�

�� Online learning� In the narrow sense� fuzzy systems are nothing
else but static input�output functions with the advantage that the
parametrization is linguistically interpretable� So� there is de�nitely
no learning capability included in conventional fuzzy systems� On the
contrary� there are a lot of problems for which it is not so trivial or
even impossible to de�ne a global quality measure� which is required for
an o�ine optimization as described above� Additionally� it can be of
interest to design fuzzy systems which adapt to varying circumstances
automatically� This entails the demand for adaptive �learning� fuzzy
methods�

A class of optimization methods which have come into fashion during the
last decades are genetic algorithms �GAs�� They can be outlined as �evolu�
tionary methods��as methods which imitate� in some sense� the mechanisms
of evolution such as sexual reproduction� mutation� etc�

During the last ten years the number of publications concerning with the
application of genetic algorithms to the optimization of fuzzy systems has
increased strongly� Papers on o�ine optimization with genetic algorithms
can be found as well as a few publications about online learning systems
which use GAs for the adaptation operations� The present thesis gives a
survey of the various approaches�

How this Thesis is Organized

Chapter 	 provides a comprehensive introduction to the concepts and meth�
ods behind fuzzy systems� The methods� which are really used in the ap�
plications discussed later� are especially emphasized� Nevertheless� the the�
oretical background is also exposed as much as necessary and meaningful�

Similarly� chapter � provides an introduction to the theory of genetic
algorithms� At �rst� di�erent concepts and variants are discussed followed
by a brief convergence analysis� The chapter is closed with a view to hybrid
methods and other extensions�

Chapters ��� represent the real main part of this thesis� Based on the
considerations given in chapter 	 and �� they give a structured overview
and comparative analysis of actual possibilities to combine fuzzy logic and
genetic algorithms� While chapter � deals with the optimization of the

	



shape of fuzzy sets with GAs� chapter 
 gives an introduction to the �eld of
methods for the acquisation of rulebases� Chapter � closes the thesis with a
view to further ideas combining fuzzy logic and genetic algorithms�

Appendix A is intended to be a reference work� Some mathematical
symbols and notations� which occur di�erently in the world of mathematics�
are de�ned there in order to avoid misunderstandings� Moreover� a brief
introduction to probability theory is given there to provide the theoretical
framework for the convergence analysis of genetic algorithms in chapter ��

Technical Background of this Work

This text was typesetted using LATEX	� with a customized document class
based on the LATEX	� standard document class report� N� Schwarz�s dc

fonts were used as standard fonts� The work was additionally supported by
AMS fonts and symbols and the packages array� epsfig� exscale� ipa�
makeidx� and rotating� The bibliography database was created and main�
tained with BibTEX� The index was created with the immens help of the
makeindex program� Pictures and graphics were created with Mathemat�
ica� xfig� or other tools and included as encapsulated PostScript �les with
the epsfig package� Finally� the text was printed on a laser writer with a
resolution of ��� dpi�

Example programs were written in C on SiliconGraphics workstations
using the Irix�C�compiler with X���Motif and graphics libraries�

�



Chapter �

The Fuzzy Rule�Based

Approach to Arti�cial

Intelligence

fuzzy n�f�z�en adj fuzz�i�er� �est �� covered with or re�
sembling fuzz �� not clear� indistinct �perhaps from
Low German fussig �loose� spongy�� � fuzz�i�ly n�f�z�
��len adv � fuzz�i�ness n�f��z�e�n�sn n

Webster�s New Encyclopedic Dictionary

Seriously� the goal of arti�cial intelligence is not to build androids� The main
aim of arti�cial intelligence has always been to construct programs and�or
devices which perform human�like operations� decisions� etc� in order to
speed up production� to eliminate humans as factors of insecurity� or just to
give humans support in their decisions and actions�

The �rst approaches to arti�cial intelligence were �crisp� expert systems
and models imitating the functionality of the human brain � so�called arti�
�cial neural networks �ANNs�� While conventional expert systems are rule�
based systems� which manipulate symbolic expressions based on traditional
binary logic� neural nets are systems with� in most cases� real�valued input
and output� which can learn from sample data� but without the possibility
to survey the actions inside� From that point of view� fuzzy logic can be
seen as an alternative to the two paradigms mentioned above� Why this is
the case should become clear within the next pages�

In a rough outline� fuzzy systems are rule�based systems which are able to
process vague� imprecise data� In this sense� fuzzy systems can be regarded

�



as generalized rule�based expert systems� Obviously� this generalization re�
quires a mathematical formulation of impreciseness and inference methods
adapted to this model�

��� Fuzzy Sets

����� The Basics

As anticipated above� we must de�ne a mathematical framework for impre�
ciseness which should� in some sense� be an extension of binary logic� Let
us start with an example where mathematical preciceness is inappropriate
and unnatural� Consider for instance how to de�ne the set of old people�
If we want to express �old� with a conventional set� it would be necessary
to �x a certain limit above people are old and below people are not old�
respectively� If we �x 	
 as limit why should it then be justi�ed to say that
a 	� year old person is old� but� on the other hand� a �
 year old person is
not old Obviously� this is not the understanding of the term �old� humans
have� Fuzzy logic overcomes this problem by allowing intermediate degrees
of membership� This concept was introduced by L� A� Zadeh in ���
 �see
�Zadeh� ���
��� The following de�nition can be regarded as the basis of fuzzy
logic�

De�nition ��� Let X be an arbitrary set� the so�called universe of dis�
course� Then a mapping � � X �� �
� �� is called a fuzzy subset of X� We
will often abbreviate this with �fuzzy set�� The set of fuzzy subsets �the
fuzzy powerset� of X is denoted with F�X� �� X ������ A fuzzy set � is called
normalized if and only if �x � X � ��x� � ��

The values ��x� represent the degrees of membership to which the points
x belong to the fuzzy set �� Of course� a membership value of 
 means that
an x does de�nitely not belong to the fuzzy set � and a value of � means
that x certainly belongs to ��

In classical set theory the characteristic function of a set M is de�ned as

�M � X �� f
� �g

x ���

�

 if x ��M
� if x �M

�	���

Obviously� there is a bijective relationship between subsets M 	 X and
functions f � X � f
� �g�

i � P �X� �� Xf���g

M 	 X ��� �M






From this point of view� subsets and characteristic functions can be identi�ed
with each other�

Analogously� we speak of a fuzzy set A and its corresponding membership
function �A� although� in this case� exactly the same object is meant�

Furthermore� it is clear from the de�nitions above that conventional so�
called crisp sets are special fuzzy sets whose membership values are either 

or �� but nothing in between�

In order to calculate with fuzzy sets we must generalize the basic set
operations such as union and intersection� The intersection and the union
of two crisp sets is given by

A 
B �� fx � Xjx � A � x � Bg�
A �B �� fx � Xjx � A 
 x � Bg�

or formulated with characteristic functions

�A�B�x� �� �A�x� � �B�x��
�A�B�x� �� �A�x� 
 �B�x��

�	�	�

From these formulas it is obvious that union and intersection are nothing
else but the application of � and 
 to the membership values �A�x� and
�B�x� for each x� So� for de�ning a fuzzy intersection and a fuzzy union�
it is near at hand to de�ne generalized logical operators and to apply them
analogously to �	�	��

De�nition ��� A t�norm �triangular norm� is a binary operation on the
unit interval T � �
� ��� �� �
� �� which satis�es the following axioms�

�x� y � �
� �� � T �x� y� � T �y� x� �Commutativity�
�x� y� z � �
� �� � T �x� T �y� z�� � T �T �x� y�� z� �Associativity�
�x� y� y� � �
� �� � y � y� �� T �x� y� � T �x� y�� �Monotonicity�
�x� y � �
� �� � T �x� �� � x � T ��� y� � y �Boundary condition�

Similarly� a binary operation S � �
� ��� �� �
� �� is called a t�conorm �trian�
gular conorm� if the conditions

�x� y � �
� �� � S�x� y� � S�y� x� �Commutativity�
�x� y� z � �
� �� � S�x� S�y� z�� � S�S�x� y�� z� �Associativity�
�x� y� y� � �
� �� � y � y� �� S�x� y� � S�x� y�� �Monotonicity�
�x� y � �
� �� � S�x� 
� � x � S�
� y� � y �Boundary condition�

are ful�lled� It is easy to see that t�norms and t�conorms interpolate the
classical AND and OR�

Remark ��� Due to the associativity of t�norms and t�conorms� it is justi�
�ed to consider t�norms and t�conorms as n�ary operations�
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Figure 	��� Commonly used t�norms

Example ��� Figure 	�� shows graphs of four important representatives of
t�norms� The �rst one is

TM�x� y� �� min�x� y�� �	���

which was introduced by L� A� Zadeh himself in his epoch�making paper
�Zadeh� ���
�� The second one

TL�x� y� �� max�x� y � �� 
� �	���

goes to back to J� !ukasiewicz� a Polish pioneer of multivalued logic� Very
popular in many applications due to its smoothness is the product�

TP�x� y� �� x � y �	�
�

Rather unusual for applications but of theoretical interest is the so�called
drastic t�norm�

TW�x� y� ��

��
�

y if x � �
x if y � �

 otherwise

�	���

It can be proven easily that TM is the biggest and that TW is the smallest
t�norm�

In fact� there are in�nitely many di�erent t�norms and lots of classes
or parameterized families of t�norms� more information can be found for

�



example in �Butnariu and Klement� ������ �Kruse et al�� ����� or �Geyer�
Schulz� ���
��

De�nition ��� Analogously to �	�	�� we can now de�ne the fuzzy inter�
section with respect to a t�norm T and the fuzzy union with respect to a
t�conorm S�

�A�TB�x� �� T ��A�x�� �B�x��
�A�SB�x� �� S��A�x�� �B�x��

�	���

Again we can consider the union and the intersection as n�ary operations�
In the following we will often use expressions� such as

S

n�
i��

Ai�

where the union is set to A� if n � �� analogously for the intersection�

Figure 	�	 shows how the shape of the intersection is in�uenced by the t�
norm�

Another question� which must also be clari�ed in this framework� is how
to de�ne the complement of a fuzzy set� It is not so hard to see that this is
related to the de�nition of a generalized logical negation�

De�nition ��
 The complement CA of a fuzzy set A is de�ned as

�CA�x� �� �� �A�x�� �	�
�

In the world of fuzzy logic �A is commonly used for the fuzzy complement�
The notation CA was chosen just for consistency and to avoid confusions
with the topological closure�

Remark ��� Of course� other generalized negations are reasonable� In
�Geyer�Schulz� ���
� a fuzzy negation is de�ned as an arbitrary non�increas�
ing function n � �
� �� � �
� �� which ful�lls some additional boundary con�
ditions� The reason that only �� x was de�ned here is that it is almost the
only one which is really used in practice�

An important questions is� of course� how many properties of classical
binary logic are preserved in the fuzzy case� One equality� which is very use�
ful for simplifying expressions� is the so�called De�Morgan law� Its classical
formulation is ��a � b� � �a 
 �b� Obviously� the fuzzy equivalent is

�� T �x� y� � S��� x� �� y�� �	���

It can be seen easily that this formula itself is a criterion for checking if
a t�norm�t�conorm pair satis�es the De�Morgan law� Moreover� from this
formula a suitable t�conorm S for a given t�norm T can be derived with
S�x� y� �� �� T ��� x� � � y� and vice versa�
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Figure 	�	� Fuzzy intersections with respect to di�erent t�norms

Example ��	 The following table shows suitable t�conorms for the four
examples shown in 	���

Minimum TM Maximum SM
TM�x� y� � min�x� y� SM�x� y� �� max�x� y�

Product TP Probabilistic Sum SP
TP�x� y� � x � y SP�x� y� �� x� y � x � y

!ukasiewicz t�norm TL Bounded Sum SL
TL�x� y� � max�x� y � �� 
� SL�x� y� �� min�x� y� ��

Drastic t�norm TW Drastic Sum SW

TW�x� y� �

��
�

y if x � �
x if y � �

 otherwise

SW�x� y� ��

��
�

y if x � 

x if y � 

� otherwise

�



The proofs that the De�Morgan law really holds for these pairs are left to
the reader�

����� More about Operations on Fuzzy Sets

De�nition ��� Under the assumption that A and B are fuzzy subsets of
universes of discourse X and Y � respectively� the fuzzy Cartesian product of
A and B in the product space X �Y with respect to t�norm T is de�ned as

�A�TB�x� y� �� T ��A�x�� �B�y��� �	����

Let us denote the set of all fuzzy Cartesian products of fuzzy subsets of X
and Y with F�X� �T F�Y � �� fA�T BjA � F�x� �B � F�Y �g�

Note that F�X��TF�Y � 	 F�X�Y � but for any pairX� Y with jXj � �
and jY j � � a trivial example shows that F�X� �T F�Y � �� F�X � Y ��

De�nition ���� For a �xed � � �
� �� the crisp set

A�� �� fx � Xj�A�x� � �g �	����

is called ��cut of fuzzy set A� Analogously� we de�ne the set

A�� �� fx � Xj�A�x� � �g �	��	�

which is called strict ��cut of fuzzy set A�

In some application it can be necessary to transform one or more pa�
rameters� If these parameters are given in a fuzzy form� the transformation
must be applied to fuzzy sets� This leads us to the de�nition of the image
of a fuzzy set with respect to a given crisp function �� This idea is called
extension principle and goes back to L� A� Zadeh too�

De�nition ���� Let X be an arbitrary universe of discourse and let � �
X � Y be a function� Then the extension of � to F�X� is de�ned in the
following way�

�� � F�X� �� F�Y �

A ��� ���A�

where
���	A
 � Y �� �
� ��

y ��� supf�A�x�jy � ��x�g�

�	����

The following theorem gives a representation of the strict ��cuts of the
extension which are actually the images of the strict ��cuts of the original
fuzzy subset�

��



Theorem ����

�� � XY �A � F�X� �� � �
� �� � ���A��� � ��A��� �	����

Proof� Let �� A� and � � �
� �� �trivial for � � �� be �xed� Then

���A��� � fy � Y j supf�A�x�jy � ��x�g � �g
� fy � Y j�x � X � y � ��x� � �A�x� � �g
� fy � Y j�x � A�� � y � ��x�g � ��A����

The extension can also be generalized to Cartesian products�

De�nition ���� If we have universes of discourse �Xi�i���n� Y � correspond�

ing fuzzy subsets �Ai�i���n with Ai � F�Xi�� and a function 	 �
nN
i��

Xi � Y �

then the extension of 	 to F�X���T � � � �T F�Xn� with respect to t�norm
T is de�ned as

�	 � F�X���T � � � �T F�Xn� � F�Y �

A� �T � � � �T An �� �	�A� �T � � � �T An�

with

� ��	A��T ����TAn

�y� �� supfT ��A��x��� � � � � �An�xn��j

y � 	�x�� � � � � xn�g�
�	��
�

Again a representation with strict ��cuts can be proven�

Theorem ���� Under the assumptions of de�nition ��	
� the extension�
which was de�ned there� matches exactly the result of applying the extension
principle de�ned in ��		 in the product space� Then ��	� yields for any
� � �
� ��

�	�A� �T � � � �T An�
�� � 	��A� �T � � � �T An�

���� �	����

If T � TM� we can conclude further that

�	�A� �T � � � �T An�
�� � 	�A��

� � � � � �A��
n �� �	����

Proof� If we apply the extension principle 	��� in the product space� we
get

� ��	A��T ����TAn

�y� � supf�A��T ����TAn�x�� � � � � xn�jy � 	�x�� � � � � xn�g

� supfT ��A��x��� � � � � �An�xn��jy � 	�x�� � � � � xn�g

��



for an arbitrary y � Y and we have shown the consistency� Then �	����
follows directly from theorem 	��	�

Now suppose that T � TM� then

�A� �T � � � �T An�
�� � f�x�� � � � � xn�jmin��A��x��� � � � � �An�xn�� � �g

� f�x�� � � � � xn�j�i � �� n � �Ai�xi� � �g
� A��

� � � � � �A��
n

and we get� together with �	�����

�	�A� �T � � � �T An�
�� � 	�A��

� � � � � �A��
n ��

��� Fuzzy Reasoning

As already anticipated previously� our goal is to formalize a rule�based
paradigm which is capable of dealing with imprecise information� Since
we have already de�ned fuzzy sets as an appropriate model for imprecise�
ness� it is now time to discuss concepts for dealing with fuzzy information
in a rule�based way�

����� Rulebases

Crisp rule�based expert systems normally consist of rules of the following
shape�

IF A THEN B� �	��
�

where B is an arbitrary statement which is executed if and only if the logical
expression A is true� A is called the antecedent� premise� or condition� B is
called consequence� The rule �	��
� can be regarded as an implementation
of the so�called classical modus ponens�

�A� A �� B� j� B �	����

As we are mainly discussing expert systems� decision systems� etc�� it
is su�cient to restrict to rulebases with a �nite number of rules m of the
following kind�

IF L��x� is A��� � � � � xn is A�n� THEN y �� b�
���

���
���

���
IF Lm�x� is Am�� � � � � xn is Amn� THEN y �� bm

�	�	��

where �xi�i���n are the input variables taken from the input spaces �Xi�i���n�
�Aji�j���m are subsets of the corresponding input space Xi� y is the output
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variable taken from the output space Y � �bj�j���m are values in Y � and
�Lj�j���m are n�ary logical expressions� Note that Xi can be arbitrary sets
such as real intervals� sets of natural numbers� and� of course� which is very
usual in decision systems� sets of linguistic labels�

Before we turn to the fuzzy case we have to analyze the semantics of
of the rulebase above in more detail� As apparent from �	�	��� the rule�
base is� in some sense� a function from a subset M of X� � � � � � Xn to
a subset N of Y � The statement �xi is Aji� is a more readable notation
for the truth value of xi � Aji which is� of course� �Aji�xi�� With the
setting Rj �� f�x�� � � � � xn�jLj��Aj��x��� � � � � �Ajn�xn�� � �g we can de�ne
the semantics of the rulebase� the input�output function � according to the
rulebase� respectively�

� � M 	
nN
i��

Xi �� N 	 Y

�x�� � � � � xn� ��� bj if �x�� � � � � xn� � Rj

�	�	��

Obviously� � is well�de�ned if and only if

m�
j��

�M 
Rj� �M and �k �� j � Rk 
Rj 
M �� � � bk � bj �

The rules� the premises of which are true for a given input� are called �ring
rules�

The fuzzi�cation of the inference discussed above poses the following
problems for us�

�� Since we want to model transitions� we must allow more than one
�ring rule� Consequently� we have to �nd a method to aggregate the
outputs of the di�erent �ring rules�

	� In the crisp case the transition from the premise of a rule to the output�
the so�called inference� is nothing else but the classical modus ponens�
Since we also want to deal with truth values which are not necessarily

 or �� it is necessary to have concepts which generalize the classical
modus ponens� This generalization is often called approximate rea�
soning�

�� In some applications it can be required to process a fuzzy set as input
instead of a single value�

����� Mamdani Inference

First of all� we should de�ne an exact notion for a �fuzzy variable� �see also
�Zadeh� ��
�a� and �Zadeh� ��
�b���

��



De�nition ���� A linguistic variable is a quintuple of the form

�A� T �A�� U�G�M�� �	�		�

where A� T �A�� U � G� and M are de�ned as follows�

�� A is the name of the linguistic variable

	� T �A� is the ground set of verbal values of A

�� U is the universe of discourse of variable A

�� G is the de�nition of the grammar which produces the names of the
values of A


� M is a semantic rule which maps every verbal value X � T �A� to its
meaning �fuzzy subset of U� M�X�

This de�nition provides a generality which is an overkill in many cases� In
the following� we will often su�ce with a simpli�ed variant�

De�nition ���
 A fuzzy variable is a tuple V � �X�A�� where X is a crisp
set� the universe of discourse of variable V � and A is a �nite set of fuzzy
subsets of X� We assume implicitely that there are unique verbal labels for
the variable and the fuzzy sets�

The �rst step towards the fuzzi�cation of rulebases is� of course� to re�
place the input variables in �	�	�� by fuzzy variables in the sense of 	����

If we replace the consequent values bj by one�elementary sets Bj ��
fbjg� we get an equivalent formulation of �	�	�� which can be fuzzi�ed in a
straightforward way� The procedure of computing the output of the rulebase
��x�� � � � � xn� can then be implemented as follows�

B �� ��

FOR j �� � TO m DO

IF Lj��Aj��x��� � � � � �Ajn�xn�� THEN
B �� �B �Bj��

As apparent from this algorithm� the output set is the union of all those
output sets Bj for which Lj��Aj��x��� � � � � �Ajn�xn�� � �� With other words

B �

m�
j��

Cj�x�� � � � � xn�� �	�	��

��



with the de�nition

�Cj	x������xn
�y� ��

�
Lj��Aj��x��� � � � � �Ajn�xn�� if y � bj

 otherwise�

�	�	��

i�e�
�Cj	x������xn
�y� � �Bj �y� � Lj��Aj��x��� � � � � �Ajn�xn��� �	�	
�

From this point of view� the degree of membership� to which bj belongs to the
�nal output set B� is exactly the truth value of the expression Lj�x�� � � � � xn��
Obviously� in this formulation we can allow an arbitrary number of �ring
rules� even if they have di�erent consequences� This procedure can now be
fuzzi�ed easily�

We consider the following fuzzy rulebase�

IF �L��x� is A��� � � � � xn is A�n� THEN y is B�
���

���
���

���
IF �Lm�x� is Am�� � � � � xn is Amn� THEN y is Bm�

�	�	��

where �Lj are �fuzzy� logical expressions� �xi � �Xi�Ai��i���n and y � �Y�B�
are fuzzy variables� Aij and Bj are fuzzy subsets of Xi and Y with Aij � Ai

and Bj � Bj� respectively�

In order to formulate a semantical interpretation of �	�	�� we �rst need a
t�norm T� and the suitable t�conorm S� for evaluating the logical expressions
�Lj� a t�norm T�� and a t�conorm S� for computing the output set� Then we
can write down the corresponding input�output function explicitely�

� � M 	
nN
i��

Xi �� F�Y �

�x�� � � � � xn� ��� ��x�� � � � � xn� �� S�

m�
j��

Cj�x�� � � � � xn��
�	�	��

with

�Cj	x������xn
 � Y �� �
� ��

y ��� T���Bj �y��
�Lj��Aj��x��� � � � � �Ajn�xn����

�	�	
�

what is obviously a fuzzi�cation of �	�	
�� This approach was invented by
E� H� Mamdani �see �Mamdani and Assilian� ���
� and �Mamdani� ������� a
pioneer of fuzzy control� Thus� this method is called Mamdani inference�

����� Generalizations

In this paragraph more general concepts of fuzzy inference are presented�
They are based� in particular� on the notion of so�called fuzzy relations�

�




In classical logic a relation on X � Y is a logical predicate of the form
x � y �� logical expression� Obviously� this predicate can be regarded
as the characteristic function of a subset of X � Y � Hence� the following
generalization is near at hand�

De�nition ���� Assume thatX and Y are arbitrary universes of discourse�
then a fuzzy subset R is called a fuzzy relation on X�Y � The value �R�x� y�
can be regarded as the degree to which x is R�related to y�

Of course� many notions and de�nitions of the traditional relational calculus
can be taken over in a more or less straightforward way� We mention the
most important ones just for the sake of completeness�

De�nition ���	 Let X� Y � and Z be crisp sets� T a given t�norm� and
R and Q fuzzy relations on X � Y and Y � Z� respectively� Then the
composition Q � R � F�X � Z� is de�ned as

�Q�R � X � Z �� �
� ��
�x� z� ��� supfT ��R�x� y�� �Q�y� z��jy � Y g�

�	�	��

If R is a relation on X �X for an arbitrary X� we can de�ne the following
properties�

�� R is called re�exive if and only if �R�x� x� � � for every x � X

	� R is called symmetric if and only if �R�x� y� � �R�y� x� for every pair
�x� y� � X�

�� R is called T �transitive if and only if T ��R�x� y�� �R�y� z�� � �R�x� z�
for every triple x� y and z

A fuzzy relation which ful�lls all these three conditions is called a fuzzy
equality �relation��

The next thing we have to de�ne in our theoretical investigation of fuzzy
inference is the �image� of a fuzzy set with respect to a fuzzy relation R�

De�nition ���� For given sets X and Y � a fuzzy subset A � F�X�� a given
t�norm T � and a fuzzy relation R on X � Y the image R � A � F�Y � of A
with respect to relation R is de�ned as

�R�A�y� �� supfT ��A�x�� �R�x� y��jx � Xg �y � Y� �	����

��



As they are intended to be� rulebases represent nothing else but input�
output relations� So� it is not so far�fetched to interpret fuzzy rulebases as
fuzzy relations� On the other hand� it can be of interest to �x relationships
between input and output and to try to �nd an appropriate fuzzy relation�
inference method� respectively� which models exactly these relationships�

Without loss of generality� we can restrict to rulebases with only one
input variable� The reason is that a rulebase with n inputs �Xi�Ai�i���n can

be rewritten easily as a rulebase with one input �X� � � � � �Xn� �A� where
the fuzzy subsets in �A are intersections and unions of Cartesian products of
fuzzy subsets from �Ai with respect to t�norm T� and t�conorm S��

If we want to represent the fuzzy rule

IF x is A THEN y is B

with a fuzzy relation as close as possible� we have to �nd a fuzzy relation R
on X � Y such that the relational equation

R � A � B �	����

is ful�lled� For m rules we get a system of relational equations

R � Ai � Bi� i � ��m �	��	�

which has to be solved�

Theorem ���� For a relational equation of the form ���
	�� where A is a
normalized fuzzy subset of X� R � A �T B is the exact solution �see also

Bauer et al�� 	���� for comparison��

Proof� We have to show that �A �T B� � A � B� Let y � Y be arbitrary
but �xed� then

�	A�TB
�A�y� � supfT ��A�x�� �A�TB�x� y�jx � Xg
� supfT ��A�x�� T ��A�x�� �B�y���jx � Xg
� supfT �T ��A�x�� �A�x��� �B�y��� �z �

��		


jx � Xg�

t�norms are monotonic in each component� thus ��� takes its supremum
in that point �x where �A also takes its supremum� A was assumed as
normalized� hence we get

�	A�TB
�A�y� � T �T ��� ��� �B�y�� � �B�y��

��



which completes the proof�

For systems of more than one relational equation the existence of a so�
lution is not guaranteed in such a simple way� The following relation is an
approximate solution of the system �	��	��

R �� S�

m�
i��

�Ai �T� Bi� �	����

The question is now how to compute the output of a rulebase which is given
in the relational form�

De�nition ���� Let R be a fuzzy relation on X � Y � Then the fuzzy
constraint Rjx� � F�Y � of R with respect to x� � X is de�ned as

�Rjx� �y� �� �R�x�� y� �y � Y� �	����

If R is a fuzzy relation representing a rulebase� then the fuzzy output of
the rulebase for a given x� � X is de�ned as the constraint Rjx� of R with
respect to x��

The next theorem closes the loop to the previous section�

Theorem ���� If we compute the output of a rulebase with one input vari�
able �X�A� and the output variable �Y�B� and rules of the form

IF x is Ai THEN y is Bi

using the Mamdani inference� the input�output function is exactly

� � X �� F�Y �
x ��� Rjx�

�	��
�

where the fuzzy relation R is de�ned as in ���

��

Proof� With the de�nitions of �	�	�� and �	�	
� we can write down the
Mamdani inference for our case as

� � X �� F�Y �
x ��� ��x� �� C��x� �S� � � � �S� Cm�x�

with
�Cj	x
 � Y �� �
� ��

y ��� T���Bj �y�� �Aj �x��

We have to show that for every x� � X the equation

S�

m�
j��

Cj�x�

� �z �
��D

�

	

 S�

m�
j��

�Aj �T� Bj�

�
A
������
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Figure 	��� Geometrical interpetration of the Mamdani inference �taken
from �Bauer et al�� ���
��

holds� Let y � Y be arbitrary but �xed� Then the equation

�Rjx� �y� � �R�x�� y�
� S��T���A��x��� �B��y��� �z �

��C��x��	y


� � � � � T���Am�x��� �Bm�y��� �z �
��Cm�x��

	y


�

� �D�y��

holds� which completes the proof�

Figure 	�� shows a geometrical interpretation of this fact�

As apparent from

�R�fx�g�y� � supfT ��fx�g�x�� �R�x� y��jx � Xg
� T ��fx�g�x��� �R�x�� y�� � �R�x�� y� � �Rjx� �y��

the equation
Rjx� � R � fx�g �	����

holds� If we replace the one�elementary set fx�g by an arbitrary fuzzy set�
we get a method for processing fuzzy input�

De�nition ���� For a rulebase with one input variable �X�A� and the
output variable �Y�B�� where the rulebase is given in the form of the fuzzy
relation R � F�X � Y �� the image of a fuzzy set A � F�X� is de�ned as

R �A�

��
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Figure 	��� Example for the application of the compositional rule of inference
�taken from �Bauer et al�� ���
��

For R � A we have the explicit form

�R�A�y� � supfT���A�x�� �R�x� y��jx � Xg�

This formula can also be interpreted geometrically �see also �Bauer et al��
���
�� as the composition of the following operations

�� cylindric extension of A to A� Y

�A�T�Y �x� y� � �A�x�

	� intersection of A� Y with the relation R

�	A�T�Y 
�T�R�x� y� � T���A�T�Y �x� y�� �R�x� y��

� T���A�x�� �R�x� y��

�� projection of this intersection onto Y

�B�y� �" supf�	A�T�Y 
�T�R�x� y�jx � Xg

" supfT���A�x�� �R�x� y��jx � Xg � �R�A�y�

This algorithm is called the compositional rule of inference� Figure 	�� shows
a schematical visualization of the compositional rule of inference for a simple
example�
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Concluding remarks

The previous pages dealing with theoretical aspects of fuzzy inference were
intended to provide an introduction to the �elds� which are required later�
with a reasonable amount of generality� Of course� there are many more
aspects and di�erent treatments of approximate reasoning� For further ap�
proaches based on relations and equality relations see �Bauer� ������ �Kruse
et al�� ������ and �Bauer et al�� ���
�� For details on possibilistic approaches
we refer to �Kruse et al�� ������ �Geyer�Schulz� ���
�� and some papers by
R� R� Yager� �Yager� ��
�� and �Yager� ��
���

��� Processing the Output of a Rulebase

As de�ned above� the output of rulebases consists of fuzzy sets� This is
undesired in many applications� Mainly� there are two types of applications
where postprocessing of the output is required� On the one hand� in certain
types of expert systems� such as diagnosis systems� the output should be
a verbal expression� a linguistic label� We call the process of searching for
verbal labels for arbitrary fuzzy sets linguistic approximation� On the other
hand� especially in control applications� it may be necessary to have crisp
values as output� The methods� which compute a representative value of a
fuzzy set� are called defuzzi�cation methods�

����� Linguistic Approximation

First of all� take a closer look at the de�nition of a linguistic variable

�A� T �A�� U�G�M��

In many applications T �A� is a �nite set of linguistic labels such as �small��
�large�� or �hot�� M � T �A� � F�U� is the function which maps each
linguistic label to its meaning � a fuzzy subset of U � So� M may be an
injective mapping� but� since T �A� is� at most� a countable set� but F�U�
is always an uncountable one� it cannot be surjective� The aim of linguistic
approximation is to �nd a generalized �inverse� function �M which gives
linguistic interpretations of arbitrary fuzzy subsets of U �see also �Geyer�
Schulz� ���
���

The Best Fit Method

This method can be applied if T �A� is a �nite set� The main idea of the
best �t method is to use a certain measure of discrepancy between two fuzzy
sets� For a given fuzzy subset B of the domain U the linguistic label of an

	�



arbitrary fuzzy subset of U is determined as the linguistic label of the fuzzy
set in T �A� with the least distance to B�

�M�B� ��M
��C� with �d�B�C� � inff �d�B�D�jD � T �A�g� �	����

where �d��� �� is a pseudometric on F�U��

Other Approaches

If the grammar G consists of more than only atomic expressions� so�called
primary terms� the exhaustive best �t method may be unapplicable because
G can be de�ned recursively with the consequence that T �A� can be an
in�nite set� In such cases� the following grammatical elements are commonly
used �compare with �Geyer�Schulz� ���
���

Adjectives� atomic expressions such as �small� or �heavy�

Adverbs� modi�ers such as �above�� �very�� or �not�� they can be realized
by logical operations but they can also be given as transformations of
the adjectives �see 	���	�

Connectives� binary �logical� connectives� such as �and�� �or�� �but�� etc�
They are realized as unions� intersections� etc�

These elements can� for instance� be combined using the following grammar


verbal expressioni �" 
adjective� j
��� 
adverb� 
verbal expression� ��� j
��� 
verbal expression� 
connective� 
verbal expression� ����

For this case there are two approaches well�known so far� One is the
method of successive approximation which is based on re�ning the approx�
imation by applying more and more modi�ers recursively� Further details
can be found in �Geyer�Schulz� ���
�� The second method is based on the
egmentation of a fuzzy set into several parts� Then the parts are inter�
preted independently� Finally� these parts are joined together to a whole
approximation by applying the connectives� This is called the method of
piecewise decomposition� It can be found in �Geyer�Schulz� ���
�� �Eshrag
and Mamdani� ������ or �Nov#k� ��
���

����� Defuzzi�cation

In lots of applications the output of a rulebase should not be a verbal answer
or a fuzzy set but a certain control such as a force or a current� So� it can

		



be necessary to have one representative value of the output set� Here we
restrict to universes of discourse which are �nite intervals� This is not a seri�
ous restriction since forces� temperatures� or currents cannot take arbitrary
values in practice� Let O be a fuzzy subset of the domain Y � �a� b� in the
following �see also �Kruse et al�� �������

Mean of Maximum Method �MOM�

The mean of maximum method concentrates on the area where the degree
of membership is maximal� If the set

Ceil�O� �� fy � Y j�O�y� � sup
x�Y

�O�x�g �	��
�

is non�empty and measurable� the MOM defuzzi�cation of O is de�ned as

�MOM�O� ��

R
Ceil	O


y dyR
Ceil	O


� dy
�	����

Center of Gravity Method �COM�

A more global strategy� which also takes areas with lower degree of member�
ship into account� is the center of gravity �COG� method� It mostly yields
better analytical properties of the output function in terms of smoothness�
It is de�ned as the �rst coordinate of the center of gravity of the area under
the membership function� Under the assumption that �O is an integrable
function� the COG defuzzi�cation of O is de�ned as

�COG�O� ��

bR
a

y � �O�y� dy

bR
a

�O�y� dy

� �	����

Center of Area Method �COA�

The center of area method �COA� takes that point which separates the
area under the membership function into equally sized parts� If �O is an

	�
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Figure 	�
� A fuzzy set where the MOM� COG� and COA method may yield
undesired results

integrable function� the COA defuzzi�cation of O is de�ned as mean value
of �x� and �x�� where

�x� �� inffx � Y � �a� b�j
xR
a

�O�y� dy �
bR
x

�O�y� dyg

�x� �� supfx � Y � �a� b�j
xR
a

�O�y� dy �
bR
x

�O�y� dyg�

�	����

Max Criterion Methods

Figure 	�
 shows a reasonable output for the steering angle of an object
which has to be moved around without colliding with obstacles� This set
can be interpreted as �evade the obstacle either by turning to the left or
to the right�� Obviously� each of the three methods discussed above would
yield 
 as defuzzi�ed value what means� in fact� crashing directly into the
obstacle�

The max criterion methods are a class of methods which have in common
that they choose an element of the set Ceil�O� by applying some random
selection� The disadvantage of this approach is unpredictable� in some cases
instable behavior�

An alternative could be the following technique which is applicable when�
ever Ceil�O� is a union of �nitely many disjoint intervals ��ai� bi��i���N �

�MMC�O� ��

��
�

aj�bj
� if jC�O�j � �

ak�bk
� with �ak� bk� chosen

randomly from C�O� if jC�O�j � �

�	��	�

where C�O� �� f�al� bl�jl � �� N� bl � al � maxi���N �bi � ai�g is the set of
intervals with maximal length� We call this modi�ed max criterion method
�MMC��
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��� Fuzzy Systems

Since we have discussed all the essential ingredients of fuzzy systems� a term�
which we have used more or less intuitively until now� we can now join these
together in order to de�ne exactly what a fuzzy system is� Roughly� fuzzy
systems are input�output systems which incorporate the methods we have
already dealt with� In literature there is nearly no exact de�nition �fuzzy
system� given� Nevertheless� it would be nice to have an exact� compact
de�nition and a mathematical representation of what a fuzzy system is� Of
course� �fuzzy system� is a term which can be interpreted in various ways�
So� the following de�nitions are only one possibility� They were chosen such
that all the elements� which we need in the following� are provided�

De�nition ���� An atomic fuzzy system with fuzzy output is a quintuple
of the form

�X�V� ��O�RT� 
S�
T�
S��� �	����

where

�� X is a family of n input spaces �X�� � � � � Xn��

	� V is a family of �n linguistic variables �Ai� Ti�Ai�� Ui� Gi�Mi�i����n�

�� � is a preprocessing function from X� � � � � �Xn to U� � � � � � U�n

�� O � �B�T �B�� UB � GB�MB� is the output variable�


� RT�
S�
T�
S� is a rulebase whose semantics can be interpreted as a fuzzy
relation on U� � � � � � U�n � UB � Inside� the logical expressions are
evaluated using the operations T� and S�� the inference is performed
applying T� and S� as discussed in 	�	�

Note that such a system is capable of dealing with fuzzy input as well�
since we have discussed how to extend the function � to fuzzy subsets of
X� � � � � �Xn�

The output of such a system is then de�ned as

� �
nN
i��

�� F�UB�

�x�� � � � � xn� ��� RT�
S�
T�
S� � f��x�� � � � � xn�g
�	����

for crisp input and as

� � F�
nN
i��

� �� F�UB�

A ��� RT�
S�
T�
S� � ���A�
�	��
�

	




for fuzzy input�

An atomic fuzzy system with crisp output is de�ned as a tuple

�X�V� ��O�RT� 
S�
T�
S� � �� �	����

where the �rst �ve entries are de�ned as above and � is a defuzzi�cation
method� Then the output is de�ned as

� �
nN
i��

�� UB

�x�� � � � � xn� ��� � �RT�
S�
T�
S� � f��x�� � � � � xn�g�
�	����

for crisp input and as

� � F�
nN
i��

� �� UB

A ��� �


RT�
S�
T�
S� � ���A�

� �	��
�

for fuzzy input�

Remark ���� The concept of the preprocessing function is not commonly
used in the world of fuzzy logic� Here it is intended to allow expressions
such as

IF x� � x� is �low� THEN � � �

which can be very useful in many applications�

Now we can turn to more complicated systems� As it is useful in many
applications to bundle the information� we consider hierarchical fuzzy sys�
tems�

De�nition ���
 A composite �or hierarchical� fuzzy system is a triple of
the form

�X�F�C�� �	����

where

�� X � �X�� � � � � Xn� is a family of n input spaces�

	� F � �F�� � � � � FN � is a set of N pairwise di�erent atomic fuzzy systems�
which can have either crisp or fuzzy output�

�� C � �cij�i���N�j���n�N is a N � �n � N� connectivity matrix with
natural entries� which ful�lls the following conditions�

� Assume that the atomic fuzzy system Fi has ni inputs� then the
i�th line of C must have exactly ni non�zero entries and the set
of non�zero entries must be exactly �� ni�
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Figure 	��� A composite fuzzy system

� Two atomic fuzzy systems Fj and Fi are called primarly con�
nected if and only if ci�n�j �� 
� Fj and Fi are called con�
nected if there is a primarly connected sequence �Fi� � � � � � Fik�
with Fi� � Fj and Fik � Fi� There must not be any Fi which is
connected to itself�

� If cij � a for � � i � n then the input space with number a of
the atomic fuzzy system Fi must be equal to Xj � If cij � a for
n�� � i � n�N then the input space with number a of atomic
fuzzy system Fi must be the same as the universe of discourse of
the output variable of atomic fuzzy system Fj � n�

cij � K means that the K�th input variable of the atomic fuzzy system Fi
is either the j�th input variable of the system� if � � j � n� or� otherwise�
the output variable of Fj
n� Logically� two atomic fuzzy systems Fj and Fi
are primarly connected if the output of Fj is an input of Fi� The output
variables of these atomic fuzzy systems� which are not connected to any
others� are called output variables of the fuzzy system�

It is intuitively clear that a composite fuzzy system is a directed� cyclefree
graph of atomic fuzzy systems� In the following we will call a composite
fuzzy system just fuzzy system for abbreviation�

Example ���� The connectivity matrix C of the fuzzy system shown in
�gure 	�� would be
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The following lemma guarantees that the output of a composite fuzzy
system as de�ned above is well�de�ned even if it is not a tree�

Lemma ���	 Under the assumptions of de�nition ����� the relation Fi �
Fj �� �Fi � Fj� 
 �Fi is connected to Fj� is a partial order on R� The
minimal elements with respect to � are those atomic fuzzy systems Fk where
all the entries in the k�th line of C are between � and n� Then the output
of the fuzzy system can be computed in a well�de�ned way�

Proof� Obviously�� is a re�exive and transitive relation� Assume that there
are Fi and Fj which are inequal but Fi � Fj and Fj � Fi� Then we have two
nontrivial primarly connected sequences Fi � � � � � Fj and Fj � � � � � Fi�
If we merge these two sequences� we get a nontrivial primarly connected
sequence Fi � � � � � Fj � � � � � Fi� which is a contradiction� Thus� � is also
antisymmetric�

From the de�nition above we see that� if there is no atomic fuzzy system
Fj which is connected to a certain Fi� all the entries must be between � and
n�

Since we are dealing with a partial order on a �nite set� there exists
at least one minimal element �lemma of Zorn�� So� we can compute all
the outputs of minimal atomic fuzzy systems� This process can be repeated
inductively by removing the minimal elements from the list of systems� whose
output still has to be computed� and computing the output of the minimal
elements of the remaining list until the list is empty�

Algorithm ���� Based on the proof of 	�	
 we can write down an algo�
rithm which computes the output of a fuzzy system of the form �	�����

WHILE there are unmarked atomic fuzzy systems DO
BEGIN

select an unmarked Fi whose input is already available�
compute the output of Fi�
mark Fi

END

where �input already available� means that the input of Fi consists of input
variables of the system or of outputs of already marked atomic fuzzy systems�

	




Lemma 	�	
 guarantees that this procedure terminates and yields the correct
output�

��� Fuzzy Control

A very important subclass of fuzzy systems are so�called fuzzy controllers�
They are simple fuzzy systems of a special kind which are used in typical
control applications� So far� we can distinguish between two important kinds
of fuzzy controllers�

����� Mamdani Controllers

De�nition ���� An atomic fuzzy system with n crisp inputs� without pre�
processing function� and with crisp output

�X�V� id� O�RT�
S�
T�
S� � �COG� �	�
��

is called Mamdani controller if

� for each Vi � �Ai� Ti�Ai�� Ui� Gi�Mi� we have Ui � Xi �of course�
because we have no preprocessing function��

� the domain UB of the output variable O � �B� T �B�� UB � GB�MB� is
a measurable subset of R� an interval in the simpliest case�

� every MB�C�� where C � T �B�� is integrable�

The semantical interpretation of a Mamdani controller as de�ned above is
then

� �
nN
i��

�� UB

�x�� � � � � xn� ���

R
UB

y��RT��S��T��S�
	x������xn�y
 dy

R
UB

�RT��S��T��S�
	x������xn�y
 dy

�
�	�
��

Unfortunately� the output surface � of a Mamdani controller can have very
bad properties in terms of smoothness and interpolation behavior�
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����� Sugeno Controllers

The second class of a fuzzy controllers� which is named after M� Sugeno
�see �Sugeno� ��

��� is much simplier� It cannot be seen in the context
of our considerations on fuzzy systems at �rst glance� The advantages of
this approach are its simplicity and the good smoothness and interpolation
properties�

De�nition ���� A rulebase with m rules of the form

IF x is Aj THEN y is fj�x�� �	�
	�

with the semantical interpretation

� � X �� Y

x ���

mP
j��

�Aj 	x
�fj	x


mP
j��

�Aj

�
�	�
��

where fj � X � Y are arbitrary functions and Aj are fuzzy subsets of the
input space X� is called a Sugeno controller�

In many applications fj are constants� Often they are a�ne linear
functions� linear manifolds� Controllers of this kind are sometimes called
Takagi�Sugeno controllers �see �Takagi and Sugeno� ��

�� after T� Takagi
and M� Sugeno�

The weighted sum may look like a discrete version of the COG method�
Indeed�

Theorem ���� A Sugeno controller with pairwise di�erent constants bj on
the right hand side can be represented as Mamdani controller with operations
TM and SM�

Proof� With the de�nitions Bj �� �bj��� bj���� where � is chosen such that
the sets Bj are pairwise disjoint� we can write the input�output function of
the Mamdani controller with rulebase

IF x is Aj THEN y is Bj

as

��x� �

R
R

y � �R�x� y� dyR
R

�R�x� y� dy
�

��



where

�R�x� y� � SM�TM��A��x�� �B��y��� � � � � TM��Am�x�� �Bm�y��� �

�

�
�Aj �x� if y � Bj


 otherwise�

because the sets Bj are disjoint� Hence� we get

��x� �

mP
j��

bj��R
bj��

y��Aj 	x
 dy

mP
j��

bj��R
bj��

�Aj 	x
 dy

�

mP
j��

�Aj 	x


bj��R
bj��

y dy

mP
j��

�	��Aj 	x


�

mP
j��

�Aj 	x
��	�bj

�	
mP
j��

�Aj 	x

�

mP
j��

�Aj 	x
�bj

mP
j��

�Aj 	x


and the proof is completed�

There are a lot of publications concerning with the properties of Sugeno
controllers� L� X� Wang has proven ��Wang� ���	�� that the set of Sugeno
controllers with X � �a�� b���� � �� �an� bn� as input space is dense in the set
of continous functions f � X � R with respect to the sup norm� B� Moser
�see �Moser� ������ has shown that the set of Sugeno controllers with X �
�a�� b�� � � � � � �an� bn� as input space with a bounded number of rules is
nowhere dense in the set of continous functions f � X � R� again with
respect to the sup norm� Further works also concerning with these properties
are� just for example� �Kosko� ���	�� �Buckley� ������ �Bauer et al�� ������ and
�Bauer et al�� ���
��

��



Chapter �

Genetic Algorithms

Although the belief that an organ so perfect as the eye could have
been formed by natural selection� is enough to stagger any one�
yet in the case of any organ� if we know of a long series of gra�
dations in complexity� each good for its possessor� then� under
changing conditions of life� there is no logical impossibility in
the acquirement of any conceivable degree of perfection through
natural selection�

Charles Robert Darwin about di�culties of his theory ��Darwin� ������

Applying mathematics to a problem of the real world mostly means� at
�rst� modeling the problem mathematically� maybe with hard restrictions�
idealizations� or simpli�cations� then solving the mathematical problem� and
�nally� drawing conclusions about the real problem based on the mathemat�
ical solutions� During the last decades the� in some sense� opposite way has
come into fashion � imitating intelligent procedures� which occur in the real
world� with mathematical algorithms� Three examples of such algorithms�
which can be regarded as based on procedures of nature� are arti�cial neu�
ral networks� genetic algorithms� and a probabilistic optimization method
called simulated annealing�

If we disregard religious aspects for a moment� the world as we see it to�
day� with its variety of di�erent creatures� its individuals highly adapted to
their environment� with its ecological balance �under the ideal assumptions
that there is still one�� is the product of a three billion years experiment we
call evolution� a process based on sexual and asexual reproduction� selec�
tion� mutation� and so on� If we look inside� these procedures are certain
operations on the genetic material of the individuals� The complexity and

�	



adaptability of today�s creatures has been achieved by re�ning and combin�
ing the genetic material over a long period of time� Genetic algorithms are
probabilistic optimization methods which try to imitate this process� This
concept was �rst introduced in ���� by J� D� Bagley in his PhD thesis �The
Behavior of Adaptive Systems Which Employ Genetic and Correlative Al�
gorithms� ��Bagley� ������� The theory and applicability was also strongly
in�uenced by J� H� Holland� a pioneer of genetic algorithms� The �rst text�
book on GAs� which has become a standard reference work� was written
by D� E� Goldberg ��Goldberg� ��
���� Another useful standard work is the
collection �Davis� ������

��� Concepts and Notions

����� The Basics

As anticipated above� genetic algorithms are optimization methods based on
the mechanisms of natural reproduction which are operations on the genetic
material of living beings� This genetic information is contained in the cell
nuclei of the sex cells of these creatures� It consists of a certain number of
chromosomes which carry the genetic information� the genes� So� for obvious
reasons� genetic algorithms operate on structures which are organized similar
to chromosomes�

Let us consider the following optimization problem�

Find an x� � X such that f is maximal in x�� where f � X � R

is an arbitrary real�valued function� i�e� f�x�� � sup
x�X

f�x�� �����

We call X the search space of the uncoded problem� f is called objective
function of the optimization problem� Let S be a set of strings and G a
grammar which describes the syntax of the strings contained in S� Then the
function

c � X �� S
x ��� c�x�

���	�

and the function
�c � S �� X

s ��� �c�s�
�����

are called coding� and decoding function� respectively� if and only if �c is in�
jective and �c��c� � idS � S is called search space of the encoded optimization
problem�

Find an s� � S such that �f �� f � �c is maximal in s��
i�e� �f�s�� � sup

s�S

�f�s�� �����

��



A genetic algorithm is now a probabilistic optimization method which tries
to solve the optimization task ����� by applying genetic operations�

The following table lists analogies between natural evolution and the
genetic algorithm paradigm�

Natural Evolution Genetic Algorithm
genotype coded string
phenotype uncoded point
chromosome string
gene string position
allele value at a certain position
�tness objective function value

Of course� a GA can only be a simpli�ed model of the process of evolution�
The most important di�erence is that ��tness� in the real world cannot be
expressed by a single value� Seriously� �tness in the real world is a vector
with components� such as �intelligence�� �strength�� or �fertility��

We have seen above that genetic algorithms try to solve a coded �trans�
formed� optimization problem instead of the real problem itself� The second
signi�cant di�erence between conventional methods and genetic algorithms
is that GAs do not operate on single points but on whole sets of trial points
� a generation �population� of strings� The most general formulation of a
GA is the following outline of an algorithm�

Algorithm ���

t �� 
�
Compute B��

WHILE stopping condition not ful�lled DO

BEGIN

Bt�� �� ��Bt��
t �� t� �

END

� is the so�called probabilistic transition operator which computes the next
generation Bt�� from the previous one Bt taking the �tness of its individuals
into account�

Normally� � is a composition of various probabilistic operators which we will
discuss in the following�

Compared with traditional continuous optimization methods� such as
Newton� or gradient descent methods we can state the following signi�cant
di�erences�
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�� GAs manipulate coded versions of the problem parameters instead of
the parameters themselves�

	� While almost all conventional methods search from a single point�
GAs always operate on a whole population of points �strings�� This
contributes to the robustness of genetic algorithms� It improves the
chance of reaching the global optimum and� vice versa� reduces the
risk of becoming trapped in a local stationary point�

�� Normal genetic algorithms do not use any auxiliary information about
the objective function value such as derivatives�

�� GAs use probabilistic transition operators� conventional methods for
continuous optimization apply exclusively deterministic transition op�
erators�

From this point of view� it seems clear that genetic algorithms are robust
methods which can� due to their generality� be applied to a wide range of
di�erent optimization problems� On the other hand� they can be of weak
performance� because they disregard all information which can be useful�

Let us �rst consider the simpliest kind of a genetic algorithm which is
widely used in the solution of continous optimization problems as well as in
discrete optimization� It is characterized as a GA which operates on �not
necessarily binary� strings of a �xed length n �see especially �Holland� ���	�
and �Goldberg� ��
����

����� Genetic Algorithms with Objects of Fixed Size

Above� we have already mentioned that GAs use probabilistic transition
operators which are imitations of mechanisms occuring in the natural sexual
reproduction process� A simple genetic algorithm� which operates on strings
of �xed size� incorporates the following methods in its transition operator ��

Selection� Individuals with high �tness are favored in the reproduction
process� Concretely� individuals with high �tness have a higher prob�
ability to survive and to reproduce themselves�

Mutation� In real evolution the genetic material can by changed randomly
by erroneous reproduction or other deformations of genes� e�g� by
gamma radiation� In genetic algorithms mutation can be realized as a
random deformation of the strings with a certain probability�

Crossing over� Method of merging the genetic information of two individ�
uals� this mechanism has contributed much to the fast adaptation of
sexually reproducing species�

�




We can summarize this in the following algorithm�

Algorithm ��� Let m be the size of the population�

t �� 
�
Compute initial population B� � �b���� � � � � bm����

WHILE stopping condition not ful�lled DO

BEGIN

FOR i �� � TO m DO

BEGIN

select an individual g from Bt�

IF Random�
� �� � pC THEN

cross g with a randomly chosen individual of Bt�

mutate g�

bi�t�� �� g
END

t �� t� �
END

This algorithm already contains the mechanisms we mentioned above� Now
it is time to take a closer look at these�

Selection

Selection is� in fact� the component which guides the algorithm to the so�
lution� It should be a mechanism which favors high��tted individuals but
disadvantages low��tted ones� It can be a deterministic operation� but� in
most implementations� it has random components�

One variant� which is very popular nowadays� is the following scheme�
where the probability to choose a certain individual is proportional to its
�tness� It can be regarded as a random experiment with

P�bj�t is selected� ��
f�bj�t�

mP
k��

f�bk�t�

� ���
�

Of course� this formula only makes sense if all the �tness values are positive�
If this is not the case� a transformation must be applied �a shift in the

��



simpliest case�� This random experiment is� in some sense� a roulette game
in which the probabilities to select a certain individual depends on its �tness�

As anticipated above� it can be necessary to use a transformed �tness
function in the selection� Then the probabilities can be expressed as

P�bj�t is selected� ��

�f�bj�t��

mP
k��


�f�bk�t��

�����

where 
 � R � R
� is a non�decreasing function� The function 
 can also

be useful to accelerate the accumulation of high��tted individuals� Consider
for instance 
�x� �� xp with p � �� In this case it becomes� depending on
p� less probable to select low��tted strings�

The algorithmical formulation of the selection scheme ���
� can be writ�
ten down as follows� analogously for the case of ������

Algorithm ���

x �� Random�
� ���
i �� �

WHILE i 
 m � x 

Pi

j�� f�bj�t��
Pm

j�� f�bj�t� DO
i �� i� ��

select bi�t�

Summarized� this mathematical selection is an equivalent to the struggle
for life in which high��tted individuals have better chances to survive� This
method will be called proportional selection in the following�

Crossing Over

In real sexual reproduction the genetic material of the two parents is merged
during meiosis �see �Linder� ����� or �Gerhardt et al�� ������� This mech�
anism is a very powerful tool to introduce new genetic material which is�
with high probability� of higher �tness than its parents� Several investiga�
tions have shown that crossing over is the reason why sexually reproducing
species have adapted faster than asexually reproducing ones�

Basically� crossing over is the exchange of genes between the chromo�
somes of the two parents� In real meiosis it is� simplistically� exchanging
of parts of chromosomes� In our investigation of genetic algorithms with
objects of �xed size crossing over can� in the simpliest case� be realized as
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Parents Children

�

�

�

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �

Figure ���� One�point crossing over of binary strings

cutting two strings at a randomly chosen position and swapping the two
tails� This process is visualized in �gure ���� We will call it one�point cross�
ing over in the following�

Algorithm ���

pos �� Randomf�� � � � � n� �g�

FOR i �� � TO pos DO
BEGIN

Child��i� �� Parent��i��
Child��i� �� Parent��i��

END

FOR i �� pos � � TO n DO
BEGIN

Child��i� �� Parent��i��
Child��i� �� Parent��i��

END

One�point crossing over is a simple and often�used method for GAs which
operate on binary strings� For other problems� di�erent codings� but also for
the case of binary strings� di�erent crossing over techniques are reasonable
or can even be necessary� We mention just a few of them� for more details
see �Geyer�Schulz� ���
��

N�point crossing over� Instead of only one N breaking points are chosen
randomly� Every second section is swapped�
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Segmented crossing over� Similar to N �point crossing over with the dif�
ference that the number of breaking points can vary�

Uniform crossing over� For each position it is decided randomly if the
positions are swapped�

Shu
e crossing over� First a randomly chosen permutation is applied to
the two parents� then N �point crossing over is applied to the shu�ed
parents� �nally� the shu�ed children are transformed back with the
inverse permutation�

Mutation

The last ingredient of our simple genetic algorithm is mutation� In the
real world it is the random deformation of the genetic information of an
individual by means of radioactive radiation or other outer in�uences� In
real reproduction the probability that a certain gene is mutated is almost
equal for all genes� So� it is near at hand to use the following mutation
technique for a given binary string S�

Algorithm ���

FOR i �� � TO n DO
IF Random�
� �� 
 pM THEN

invert S�i��

Again� similar to the case of crossing over� the choice of the appropriate
mutation technique depends on the coding and the problem itself� We men�
tion a few alternatives� more details can be found in �Geyer�Schulz� ���
��

Inversion of single bits� With probability pM one randomly chosen bit
is negated�

Inversion� With probability pM the whole string is inverted bitwise�

Random selection� With probability pM the string is replaced by a ran�
domly chosen one�

This completes our genetic algorithm� If we �ll in the methods described
above� we can write down a universal genetic algorithm for solving optimiza�
tion problems in the space f
� �gn�
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Algorithm ��


t �� ��
Create initial population B� � �b���� � � � � bm����

WHILE stopping condition not ful�lled DO

BEGIN

FOR i �� � TO m DO

BEGIN

�� proportional selection ��

x �� Random��� �	�
l �� �
WHILE l � m 
 x �

Pl
j�� f�bj�t��

Pm
j�� f�bj�t� DO

l �� l� ��
g �� bl�t�

�� one�point crossing over ��

IF Random��� �	 � pC THEN
BEGIN

Parent� �� g�
Parent� �� bRandomf������mg�t�
pos �� Randomf�� n� �g�

FOR i �� � TO pos DO

BEGIN

Child��i	 �� Parent��i	�
Child��i	 �� Parent��i	�

END

FOR i �� pos� � TO n DO

BEGIN

Child��i	 �� Parent��i	�
Child��i	 �� Parent��i	�

END

IF Random��� �	 � �
�
THEN

g �� Child��
ELSE

g �� Child��
END

�� mutation ��

FOR i �� � TO n DO
IF Random��� �	 � pM THEN

invert g�i	�
bi�t�� �� g

END

t �� t� ��
END

In this implementation� as usual� n is the size of the strings and m is the
size of the population�
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����� Genetic Programming

The second important class of genetic algorithms is comprised under the
term �genetic programming�� It is a genetic approach to a very important
problem in arti�cial intelligence � the problem of program induction� Pro�
gram induction is the method of teaching a computer to solve a problem
without being programmed explicitely� It is� in some sense� an inverse prob�
lem� instead of telling a computer explicitely how to solve a problem� the
computer is shown the problem and encouraged to �nd a program which
solves it� The idea of applying genetic algorithms to the problem of pro�
gram induction can again be traced back to J� H� Holland� Very important
research was also done by J� R� Koza who �rst introduced the term �genetic
programming� �see �Koza� ���	���

Obviously� the application of genetic algorithms to whole programs re�
quires more or less signi�cant modi�cations of the genetic machinery we
discussed previously� The most important one is that we must get away
from strings of �xed length� Although it is possible to restrict the length of
a program to a certain value� we cannot preserve the universality of a pro�
gramming language if we restrict the length of programs to a given number
of statements� In the following we assume that the syntax of a programming
language is given in Backus�Naur form �BNF� which describes the syntax of
the language recursively� A program� which is written in such a language�
can then be regarded as a �not necessarily binary� tree which can� of course�
be written as a nested list� The process of rewriting a program as a tree or
nested list can be done for every commonly used programming� language�
such as� C� FORTRAN� Pascal� or LISP� to mention just a few� It is easy to see
that it is least di�cult for restricted languages which allow only recursions�
such as LISP�

Now let us have a closer look at the basic things we need for an implemen�
tation of a genetic programming machinery� We do not go into very detail
here� a detailed and comprehensive treatment of these things is provided e�g�
in �Geyer�Schulz� ���
��

Choosing the Programming Language

As already mentioned above� it is possible to rewrite every program as a
list or tree� but it can be a crucial task for most of the common procedural
programming languages� In most applications and theoretical treatments
LISP is used� LISP programs are nested lists themselves and� therefore� very
easy to handle� because no complicated rewriting has to be done�

Another important aspect we must consider is which subset of the lan�
guage we should use� It is clear that it is not useful in every application
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to use the complete set of instructions the language o�ers� Consider for
instance a problem where logical operations have to be learned� For such a
case we can restrict to the logical operations AND� OR� and NOT� or even
to a subset of these� Under the assumption that the problem can be solved
within the subset� an intelligent choice of that subset can increase the per�
formance remarkably� The simple reason is� that the search space is smaller�
Consequently� this increases the chance to a considerably good solution�

Initialization

In the previous sections we did not pay any attention to the creation of
the initial population� We assumed implicitely that the individuals of the
�rst generation can be generated randomly with respect to a certain �mostly
uniform� probability distribution� The random generation of trees or nested
lists is a more subtle task�

Consider for instance the BNF of the following language which can be
used for representing ��ary logical functions�

Program �� 
expression� �

expression� �� ��� 
variable� ��� j

��� 
unary� 
expression� ��� j
��� 
binary� 
expression� 
expression� ��� �


variable� �� �x� j �y� j �z� �

unary� �� �NOT� �

binary� �� �AND� j �OR� �

Obviously� the syntactical elements of this LISP�like language are paren�
theses� the variables x� y� and z� and the operators NOT� AND� and OR�
It seems clear that a procedure� which creates strings with random entries
from this set of syntactical elements� is not a good variant of an initialization
procedure� because the probability of creating syntactically correct strings is
rather low� A better alternative could be a procedure which is based on the
BNF of the language itself� Such an algorithm can be outlined as follows�

�� Start with the root of the syntax �in our case Program�

	� Select an alternative of the current syntactical expression randomly

�� Fill in the alternative and apply the procedure recursively for all non�
atomic subexpressions of the alternative

It is intuitively clear that we must include mechanisms which avoid endless
recursion of this method� A common opportunity is to �x a maximumdepth
and to avoid non�atomic alternatives if this depth is reached or already

�	



exceeded� The following example illustrates this method more clearly for
the case of the language we de�ned above�

Example ��� Starting point is� of course� the root expression Program �the
currently evaluated expression is marked by underlining��


expression�

second alternative

�
unary� 
expression� 
expression��


unary� is an atomic expression with only one alternative

�NOT 
expression� 
expression��

third alternative

�NOT �
binary� 
expression� 
expression�� 
expression��

�rst alternative

�NOT �AND 
expression� 
expression�� 
expression��

�rst alternative

�NOT �AND �
variable�� 
expression�� 
expression��

second alternative

�NOT �AND �y� 
expression�� 
expression��

� � � and so on�

Crossing Programs

The second thing� which di�ers from case of strings signi�cantly� is the
crossing over operation� Of course� nested lists can be regarded as strings
to which a standard crossing over operation can be applied� The problem
is again that the probability of generating syntactically correct strings this
way is very low� Hence� it is necessary to �nd an alternative which preserves
syntactical correctness�

For this purpose� we use the interpretation of programs as trees� Of
course� there are many possible interpretations of this kind� the approach we
discuss here was suggested by A� Geyer�Schulz and can be found in �Geyer�
Schulz� ���
�� A correct program must be derivable from the underlying
grammar in at least one �not necessarily unique� way� This derivation tree
itself is then used as a representation� It is not so trivial to give an exact
formulation of the procedure of determining the derivation tree for a given
expression� We give a simple example which should make everything clear�
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( <binary> <expression>

<expression>

NOT (  <variable>  )

 x

y

z

OR

)

AND (  <variable>  ) (  <unary>   <expression>  )

NOT (  <variable>  )

<expression>

(  <unary>   <expression>  )( <binary> <expression> <expression> )

Figure ��	� The derivation tree for �OR �AND �x� �NOT �y��� �NOT �z���

Example ��	 Figure ��	 shows the derivation tree of the expression

��x � �y� 
 �z�

which can be written as

�OR �AND �x� �NOT �y��� �NOT �z���

in our language�

It can be seen easily that every subtree corresponds to a subexpression�
The roots of these subtrees are called labels� The most common method
for crossing two expressions� which can be expressed with derivation trees�
is now to exchange subtrees which start with equal nodes� i�e� which are
equally labeled� This guarantees that the children are again syntactically
correct�

Example ��� Figure ��� shows a simple example for crossing two derivation
trees� The result in the form of nested lists is the following�
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�AND �x� �NOT �z�� � �AND �OR �y� �x���

l ��

�NOT �OR �y� �x�� � �NOT �NOT �z��

Mutating Programs

After all this preparatory work it is comparatively easy to give a mutation
technique for programs of the usual form� The most common method is to
select a subtree of the derivation tree randomly and to replace it by another
subtree which was generated randomly by applying the same method we
have discussed in connection with the initialization procedure� Of course�
we have to pay special attention to the depth of this subtree again� Then it
is guaranteed that the syntactical correctness of the program is not damaged
by the mutation operation�

The Fitness Function

Another nontrivial task in connection with genetic programming is the def�
inition of an appropriate �tness function which measures how good a given
program solves the problem� The solution of this problem depends strongly
on the problem itself� a universal recipe for de�ning the proper �tness mea�
sure cannot be given seriously� One commonly used technique is to apply
a program to a �nite number of test inputs for which the desired output
is known� Of course� these cases must be selected in a careful way such
that they are really representative� Then� for instance� the number of cases
for which the correct output is obtained can be taken as a measure for the
correctness of a program� The following example shows a case where this
method is not useful�

Example ���� Let us consider the following grammar�

Function �� 
expression� �

expression� �� ��� 
variable� ��� j

��� 
constant� ��� j
��� 
binary� 
expression� 
expression� ��� �


variable� �� �x� �

constant� �� 
number����
number� �

number� �� ��� j � � � j ��� j 
number� �

binary� �� �$� j ��� j ����

This grammar describes a programming language for representing polynomi�
als with rational coe�cients� Our task is now to �nd a polynomial of some
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Figure ���� Example for crossing two derivation trees
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bounded degree such that it �ts a given set of representative test points
f�x�� y��� � � � � �xn� yn�g as good as possible� Since the probability that a
randomly chosen polynomial �ts at least one point exactly is nearly 
� the
number of exact matches are useless as �tness measure� An alternative
would be

f�P � �� k�y� � P �x��� � � � � yn � P �xn��k�

which should be minimized� where f is the �tness function of P � a given
polynomial� and k�k is an arbitrary �e�g� the Euclidean� norm on R

n �

Summary

Assume that we have a program induction problem� the programming lan�
guage is chosen� its syntax can be described by a BNF� we have a set
of representative test cases� and we have a function� which measures the
matching between the actually obtained and the desired output� then we
can write down a genetic algorithm for solving the program induction prob�
lem� This can be done easily by replacing the strings by programs and the
initialization�� crossing over�� and mutation techniques in ��	 by the adapted
operations we have discussed here�

In general� genetic programming can be applied to a wide range of di�er�
ent problems such as optimal control� symbolic regression� sequence induc�
tion� equation solving� discovering game playing strategies� inverse kinemat�
ics� or decision tree induction� More examples and applications can be found
in �Koza� ���	� and �Geyer�Schulz� ���
� to which we also refer for more in�
formation about genetic programming� especially theoretical considerations�
such as convergence theory�

��� Convergence Theory

After this practical survey of evolutionary computation� it is time to take a
close look at the theoretical properties of such methods� For conventional
deterministic optimization methods� such as gradient methods� Newton� or
Quasi�Newton methods� it is usual to have results which guarantee that
the sequence of iterations converges to a local optimum� more exactly to
a stationary point� with a certain speed or order� For any probabilistic
optimization method theorems of this kind cannot be given� because the
behavior of the algorithm is not determinable in general� So� statements
about the convergence of probabilistic optimization methods can only give
information about the expected or average behavior of such algorithms� For
the case of genetic algorithms there are a few circumstances which make it
even more di�cult to examine their convergence�
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� Since a single transition from one generation to the next one is a
combination of usually three probabilistic operators �selection� cross�
ing over� and mutation�� the inner structure of a genetic algorithm
is rather complicated� which increases the di�culty of examining the
convergence badly�

� For each of the involved probabilistic operators many di�erent vari�
ants are known� thus it is not possible to give general convergence
results due to the fact that the choice of the operators in�uences the
convergence fundamentally�

In this section some important convergence results are provided� Unfor�
tunately� they do not have the signi�cance as some results in conventional
continous optimization do� For simplicity� we restrict to the case of GAs
with a �xed number m of objects of �xed size n�

The �rst little theorem states that the convergence of a certain variant
is bounded below by the convergence of random search methods� It can be
regarded as boundary for the convergence in the worst case�

Theorem ���� Consider a genetic algorithm of type 
�� where random se�
lection with uniform distribution is used as mutation technique �see page

��� Then the probability to reach the global optimum is �� The expected
number of generations it takes to reach this optimum is at most

�

��


�� pM �

Nopt
�n

�m � �����

where Nopt is the number of strings which have maximal �tness�

Proof� In each step of a reproduction process the probability to reach the
global optimum is at least

pM �
Nopt
�n

�

Then the probability not to �nd the optimum in one complete reproduction
step is at most �

�� pM �
Nopt
�n

�m
�

The probability of �nding the maximum at all is then

�� lim
k��

��
�� pM �

Nopt
�n

�m�k
� �� 
 � ��

The probability to �nd the global maximum at �rst in the k�th generation
is at least��

�� pM �
Nopt
�n

�m�k
�
�

�
��

�
�� pM �

Nopt
�n

�m�
�

�




Then the expected number of generations it takes until the optimum is
reached is at most

�P
k��

k �




�� pM �
Nopt
�n

�m�k
�
�


��



�� pM �

Nopt
�n

�m�
		

� �

�


�
�
pM�

Nopt
�n

�m �

what completes the proof� The identity ��� can be derived easily from the
Taylor series of �

x�
at x� � ��

Remark ���� This expected number is very high even for moderate prob�
lems� Therefore� this result is of no practical relevance at all�

Before we turn to the next theorem we need a few prerequisites�

De�nition ����

�� A stringH � �h�� � � � � hn� over the alphabet f
� �� �g is called a schema�
An hi �� � is called a speci�cation� an hi � � is called a wildcard� From
the de�nition of the injective mapping

i � f
� �� �gn � P �f
� �gn�
H �� i�H� �� fGj�i � �� n � hi �� � � hi � gig

it is clear that schemata can be regarded as special subsets of f
� �gn�

	� A string G � �g�� � � � � gn� over the alphabet f
� �g ful�lls the schema
H � �h�� � � � � hn� ��� �i � fjjhj �� �g � gi � hi� We denote that
with G � H�

�� O�H� �� jfi � f�� � � � � ngjhi �� �gj is called the order of the schema H
�number of speci�cations��

�� The distance between the �rst and the last speci�cation ��H� �� i� i�
where i �� minfijhi �� �g and i �� maxfijhi �� �g� is called the de�ning
length of the schema H�

The following theorem is the fundamental theorem on the convergence
of GAs� The main statement is that schemata with a higher�than�average
�tness accumulate geometrically if proportional selection is used�

Theorem ���� �Schema Theorem � Holland �����

Consider a genetic algorithm of type 
�� with proportional selection� Then
the inequality

E�rH�t��� �
�f�H� t�
�f�t�

� rH�t � PC�H� � PM �H� ���
�

��



holds with the notations

rH�t � � � number of individuals which ful�ll the schema H at time t
�f�t� � � � average �tness of population at time t

�f�H� t� � � � estimated average �tness of schema H at time t� �f�H� t� ��
�

rH�t

P
bi�t�H

f�bi�t�

PC�H� � � � constant which depends only on the schema H and the
crossing over method

PM �H� � � � constant which depends only on the schema H and the
mutation operator

Depending on the involved methods� we can specify the constants PC�H� and
PM �H� in the following ways�

PC�H� �� �� pC �

	H

n
� for one�point crossing over

PC�H� �� �� pC �


��

�
�
�

�O	H

�

for uniform crossing over

PC�H� �� �� pC for any other crossing over method

PM �H� �� ��� pM�O	H
 for normal bitwise mutation

PM �H� �� �� pM � O	H

n

for the inversion of a single bit

PM �H� �� �� pM � jHj�n for random selection

Proof� Let the schema H be arbitrary but �xed� Assume that we have
to perform the transition from generation Bt to generation Bt��� Then the
number rH�t of individuals which ful�ll H at time t is known� The number
rH�t�� of individuals which ful�ll H at time t � � is determined by the
probabilistic operators and� therefore� a random variable� We can write
rH�t�� as

rH�t�� �
mX
i��

Zi

where Zi are the following random variables

Zi ��

�
� if bi�t�� ful�lls H�

 otherwise�

It can be easily seen from algorithm that the random variables Zi are com�
pletely independent and distributed equally� Hence� we can write

E�rH�t��� � m � E�Z�� �����

where Z is the random variable

Z ��

����
���

� an individual selected from Bt� crossed with a
randomly chosen individual� and mutated after�
wards� ful�lls H�


 otherwise�


�



The expectation of Z can then be estimated as follows �use theorem A���
which delivers the multiplicativity of the expectation��

E�Z� � p� � p� � p�� ������

where p� is the probability that an individual� which ful�llsH� is selected� p�
is the probability that an individual� which ful�lls H� still ful�lls H after it
is crossed with an arbitrary one� and p� is the probability that an individual�
which ful�lls H� still ful�lls H after it is mutated� The probability to select
an individual from Bt� which ful�lls H� is� if proportional selection is used�

p� �

P
bi�t�H

f�bi�t�

mP
i��

f�bi�t�

� ������

If we join ������ ������� and ������ together� and if we �ll in the lower bound�
aries for p� and r�� PC�H� and PM �H�� respectively� we get the result

E�rH�t��� � m � E�Z� � m � p� � p� � p� � m �

P
bi�t�H

f	bi�t


mP
i��

f	bi�t

� PC�H� � PM �H�

�

P

bi�t�H
f�bi�t�

rH�t
mP

i��
f�bi�t�

m

� rH�t � PC�H� � PM �H� �
�f	H�t

�f	t


� PC�H� � PM �H��

Now it remains to show the lower boundaries of the probabilities p� and p��
PC�H� and PM �H�� respectively�

� Obviously� the probability that an individual still ful�lls H after the
crossing over step is at least � � pC� because crossing over is only
performed with a probability pC�

� For the case of one�point crossing over we can conclude further that
the ful�llment of schema H is only destroyed if the breaking point lies
within the de�ning length of the schema� The probability that the
breaking point lies within the de�ning length is 
	H


n
� � For this case we

can de�ne PC�H� �� �� pC �

	H

n
� �

� The probability that schema H is disrupted by uniform crossing over

is � �
�
�
�

�O	H

� So� the probability that an individual� which ful�

�lls H� still ful�lls H after uniform crossing over is at least � � pC �

��

�
�
�

�O	H

�
�

� The probability that the ful�llment of schema H is not damaged by
normal bitwise mutation is� of course� ��� pM�O	H
�


�



� The probability that a speci�cation of H is chosen by the inversion�of�
one�single�bit mutation is exactly O	H


n
� Therefore the probability that

an individual still ful�llsH after this kind of mutation is ��pM � O	H

n

�

� The probability that an individual� which ful�lls H� is chosen by uni�
form random selection is jHj

�n � Thus� the probability that the mutated

individual also ful�lls H is �� pM � jHj�n �

This completes the proof�

From the schema theorem we can deduce the following generalization di�
rectly�

Corollary ���� With the notations and assumptions of theorem 
�	� the
inequality

E�rH�t�k� � rH�t � PC�H�k � PM �H�k �
k
�Y
i��

�f�H� t� i�
�f�t� i�

����	�

holds for every k � ��

Proof� Follows directly by applying theorem ���� k times �see also �Holland�
���	���

It is easy to see from the last corollary that schemata with a higher�
than�average �tness accumulate exponentially� especially if they have a low
order and� if one�point crossing over is used� a short de�ning length� Such
schemata are called building blocks� From these considerations it might be
clear that� in some sense� convergence is only possible if building blocks ex�
ist at all� This actually means that the coding must be chosen in a way
such that some certain features� i�e� schemata� correspond to a high �tness�
Then the probability of obtaining even better �tted children by crossing
good parents is higher than if this is not the case� The strategy of accumu�
lating high��tted schemata without forgetting completely about the other
ones is called implicit parallelism and contributes much to the robustness
of genetic algorithms and the chance to reach the global solution� For a
detailed mathematical investigation of the phenomenon of implicit paral�
lelism we refer to �Goldberg� ��
��� �Geyer�Schulz� ���
�� and� in particular�
�Holland� ���	��

Summarized� the convergence of genetic algorithms depends strongly on
how careful the coding was chosen� This must be done in a way that there
are building blocks� Unfortunately� there is not a more reliable convergence
theory for GAs of this general kind�


	



��� Extensions� Generalizations

Finally� we introduce concepts which di�er from the simple constructs we
have discussed previously�

Other Selection Schemes

Instead of proportional selection� many other selection methods are known
and successfully applied� We mention just a few�

Linear rank selection� Instead of the normalized �tness the rank of the
�tness in the generation is used as basis of the selection�

Tournament selection� A group of individuals is sampled from the pop�
ulation� the individual with best �tness is chosen for reproduction�

Elitism� It can often be of advantage to avoid that the best��tted individual
dies out� This can be achieved easily by selecting the best individuals
always without taking the other circumstances into account� This
method has often been used successfully in addition to other selection
methods�

Adaptive GAs

Adaptive genetic algorithms are GAs whose parameters� such as the popula�
tion size� the crossing over probability� or the mutation probability� or even
the genetic operators for selection� crossing over� and mutation� are varied
with the time �e�g� see �Chen and Chang� �������

Hybrid GAs

As they use the �tness function only in the selection step� genetic algo�
rithms are blind optimizers which do not use any auxiliary information such
as derivatives or other speci�c knowledge about the special structure of the
function� If there is such knowledge� it is possible to incorporate other
optimization techniques in order to support the GA and� consequently� to
improve convergence� This can� on the one hand� improve the speed con�
siderably� but it is� on the other hand� possible that the risk of premature
convergence also increases�


�



Self Organizing GAs

In the real world� the reproduction methods themselves and the representa�
tions of the genetic material were adapted through the billions of years of
evolution �see �Rechenberg� ����� for reference�� Many of these adaptations
of the natural genetic algorithm were able to increase the speed of adapta�
tion of the individuals� It is reasonable to encode not only the raw genetic
information but also further information� for example parameters of the cod�
ing function� This can lead to an automated adaptation of the coding such
that more signi�cant building blocks can be accumulated� which increases
the speed of adaptation� i�e� the convergence�


�



Chapter �

Optimizing Fuzzy Sets with

Genetic Algorithms

Once upon a time a �re broke out in a hotel� where just then a
scienti�c conference was held� It was night and all guests were
sound asleep� As it happened� the conference was attended by
researchers from a variety of disciplines� The �rst to be awak�
ened by the smoke was a mathematician� His �rst reaction was
to run immediately to the bathroom� where� seeing that there was
still water running from the tap� he exclaimed� �There is a so�
lution��� At the same time� however� the physicist went to see
the �re� took a good look and went back to his room to get an
amount of water� which would be just su�cient to extinguish the
�re� The electronic engineer was not so choosy and started to
throw buckets and buckets of water on the �re� Finally� when
the biologist awoke� he said to himself� �The �ttest will survive�
and went back to sleep�

Anecdote originally told by C� L� Liu

As already mentioned� fuzzy systems are capable of performing human�like
decisions by processing imprecise knowledge in a rule�based way� Since both
fuzzy sets and approximate reasoning are only models of the representation
of imprecise information and the inference method humans use� the way of
translating human knowledge into a fuzzy system is not a straightforward
one�

We can state that the behavior of a fuzzy system depends on three dis�
joint sets of parameters� First of all� the fuzzy subsets of the corresponding







universes� which are associated with the verbal values of the linguistic vari�
ables� determine the semantics of the rules� Second� the rules themselves
determine how the output is computed for a given input� Last� the involved
operations� such as t�norms and t�conorms� linguistic approximation� or de�
fuzzi�cation� in�uence the shape of the output surface too�

Many researchers have reported that they were able to design a proto�
type of a fuzzy system for a given task rapidly� but that it took a lot of
time and work to tune all these parameters� Since the complexity of the
problems� to which fuzzy systems are applied� is increasing strongly� it is
recommendable or even indispensable to take a closer look at methods for
tuning the parameters of a fuzzy system automatically�

If we assume that the structure of the fuzzy system� the universes of
discourse� and the operations are given� we can distinguish between three
di�erent learning tasks�

�� The rules are given� but the fuzzy sets are unknown at all and must
be found or� what happens more often� they can only be estimated
und must be optimized� A typical example would be the following�
The rules for driving a car are teached in a driving school �e�g� �For
starting a car let in the clutch slowly and� simultaneously� step on the
gas carefully���� but the beginner must learn from practical experience
what �slowly letting in the clutch� actually means�

	� The semantical interpretation of the rules is� at least su�ciently well
known� but the relations between the input and the output� i�e� the
rules� are unknown� A typical example is extracting certain risk factors
from patient data� In this case� it is su�ciently known which blood
pressures are high and which are low� but the factors� which really
in�uence the risk of a certain disease� are unknown�

�� Nothing is known� both fuzzy sets and rules must be acquired� for
instance from sample data�

The acquisation of rules is discussed in the next chapter� The third task
will then be treated brie�y in chapter �� The �rst one is the subject of this
chapter� where ��� provides some theoretical aspects of the application of
GAs to the optimization of fuzzy sets and ��	 demonstrates practical results�

Typically� in the case of the �rst problem� we get constrained optimiza�
tion problems in spaces of uncountable size� If the �tness function� which
judges the performance of the fuzzy system depending on the con�guration
of the fuzzy sets� is su�ciently smooth� it is possible to apply conventional
optimization method which are� in almost all cases� faster than GAs� The
reason why genetic algorithms are used� although they are disadvantaged


�



compared with conventional methods� is� on the one hand� that the �tness
function is often not as smooth as necessary� and� on the other hand� that
genetic algorithms often o�er a better chance to reach the optimal solution
instead of becoming trapped in a local stationary point� One aspect� which
should not be neglected either� is that GAs are rather easy to implement�

��� Fuzzy GAs

A fuzzy genetic algorithm� we will abbreviate this with �fuzzy GA� in the
following� is a genetic algorithm which is applied to the optimization of some
parameters of a fuzzy system�

The �rst thing� which must be examined� is how to encode fuzzy sets or�
more exactly� the parameters� which describe them� into binary strings�

����� Coding Fuzzy Sets

Here� our main aim is to represent a whole con�guration of fuzzy sets by a
binary string� As already mentioned� we assume that the rules and the oper�
ators are �xed and� consequently� that only the fuzzy sets can be varied� The
number of rules is �nite� hence the number of fuzzy subsets of corresponding
universes� which are to be considered� is also �nite� This collection of fuzzy
sets consists of all the semantical interpretations M�v� of those expressions
v� which occur in at least one rule� Assume that we have already strings�
which represent each one of the fuzzy sets� we can concatenate them to one
string which is then a representation of the whole con�guration� Hence� the
only problem� which remains to be solved� is how to encode single fuzzy sets�

Since F�X� is an uncountable set even if X is �nite� we must restrict to
certain subsets of F�X�� if we want to represent them by a binary string of
�nite length�

The Case of a Finite Universe of Discourse

If the corresponding universe of discourse X is �nite� a fuzzy subset of X
can be regarded as a vector of dimension n �� jXj with entries from �
� ���
Assume that we have a coding� i�e� a discretization of real values between 

and � of length m� then an arbitrary fuzzy subset of X can be encoded with

c � F�X� � �
� ��n �� f
� �gn�m

�x�� � � � � xn
�� ��� �b�� � � � � bn�m
���
�����

where the substring �bi�m� � � � � b	i��
�m
�� is the coded version of xi�


�



Example ��� A typical method of encoding a value of a �nite real interval
�a� b� is mapping a value x to a whole number between 
 and �m � � by

cm��a�b� � �a� b� �� f
� � � � � �m � �g

x ���
j
��m � �� � x
a

b
a

k
�

���	�

which can then be encoded into a binary string by a transformation to its
dual representation� The corresponding decoding can be done by computing
the decimal representation K of the string� which ranges� of course� between

 and �m � �� and by applying the following transformation to K�

�cm��a�b� � f
� � � � � �m � �g �� �a� b�

K ��� a�K � b
a
�m
� �

�����

It is easy to see that �c is injective and that �c � �c� � id���m
��

In the following we will assume implicitely� if not indicated otherwise�
that real values are encoded this way� Another possibility� if the values
should not be bounded� is to use the binary �oating point representation of
a real number�

Coding Fuzzy Subsets of a Real Interval �a� b�

In this section some important classes of fuzzy subsets of a �nite real interval�
which can easily be encoded� are discussed� The case of real intervals as
universes of discourse is very important� especially in control applications�

Starting points of the �rst class of fuzzy subsets of a real interval� which
we want to discuss here� are a given discretization �a � x�� x�� � � � � xn
�� xn �
b�� which is� in the simpliest case� a partition with equally sized parts� and
an interpolation technique� linear interpolation in one of the simpliest cases�
Then all the fuzzy subsets� which are given as interpolation of the mem�
bership degrees in the grid points xi� are uniquely determined by these
membership values� Figure ��� shows a typical fuzzy set of this kind� By
the way� this is the method how fuzzy sets are represented in popular fuzzy
control tools� such as fuzzyTECH or TILShell�

Analogously to the coding of fuzzy subsets of �nite sets� the membership
values at the grid points can be encoded into a binary string� e�g� with the
method proposed in example ����

The next two classes are� in some sense� a subset of the previous one�
They are special kinds of piecewise linear membership functions� Figure ��	
shows a so�called triangular membership function� It can be seen easily that
its shape depends on three parameters � the value r where its modus is
lying� a left o�set u� and a right o�set v� A membership functions of this
kind can then easily be encoded by
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Figure ���� A fuzzy subset which is given by the membership values in a
�nite number of grid points
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Figure ��	� A triangular fuzzy set

cm��a�b��r� cm����
��u� cm����
��v� �

where � is an upper boundary for the size of the o�sets� for example � ��
�b � a���� Codings of this kind can be found in the ���� papers of M� A�
Lee and H� Takagi ��Lee and Takagi� ����a�� �Lee and Takagi� ����b�� �Lee
and Takagi� ����c�� and �Takagi and Lee� �������

A more general case� which is also widely used� are the so�called trapezoid
fuzzy sets� As apparent from �gure ���� the shape of a trapezoid membership
function depends on four values� a value r� where the interval of maximal
membership � starts� a value q� the length of this interval� and again a left
o�set u and a right o�set v� Analogously� a coding can be de�ned as

cm��a�b��r� cm����
��q� cm����
��u� cm����
��v� �

In some control applications� where the smoothness of the control surface
plays an important role� fuzzy sets of higher di�erentiability must be used�
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Figure ���� A trapezoid fuzzy set
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Figure ���� Typical bell�shaped fuzzy set

The most prominent representative of such a fuzzy set is the bell�shaped
fuzzy set whose membership function is given by a Gaussian bell function�

x ��� e

�x�r��

�u� �����

Figure ��� shows a typical membership function of this kind� Obviously�

cm��a�b��r� cm��	�
��u�

is an appropriate coding for the two parameters r and u which describe the
shape of a bell�shaped fuzzy set� where � is a lower boundary for the o�set�
Sometimes� the membership function is additionally scaled with a height
factor h � �
� �� whose coding must be appended to the string above �cf�
�Furuhashi et al�� ���
���

The �bell�shaped analogon� to trapezoid fuzzy sets are the so�called
radial basis functions �see �Shimojima et al�� ���
���

x ���

�
e


�jx�rj�q��

�u� if jx� rj � q
� if jx� rj � q

���
�

��
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Figure ��
� Fuzzy set with radial basis membership function

From �gure ��
� which shows a typical representative� it can be seen that
r is the middle of the fuzzy set� q is the radius of the interval of maximal
degree of membership � �the �basis��� and u is again the o�set� the width
of the bell� An appropriate coding would be the following�

cm��a�b��r� cm����
��q� cm��	�
��u�

����� Coding Whole Fuzzy Partitions

In many applications there is some a priori knowledge about the approximate
con�guration� for instance� something like an ordering of the fuzzy sets� In
this case a general coding of each fuzzy subset of one linguistic variable would
neglect this knowledge and� consequently� yield an unnecessarily large search
space� which could be considerably smaller if some degrees of freedom were
removed�

Example ��� A typical situation� not only in control applications� is that
we have a certain number of fuzzy sets with labels� such as �negative big��
�negative medium�� �negative small�� �approximately zero�� �positive small��
�positive medium�� and �positive big�� In such a case we have a natural
ordering of the fuzzy sets� Obviously� an arbitrary con�guration of the
fuzzy sets would be senseless�

An often�used construct for representing fuzzy sets of linguistic variable
of such a type are the so�called fuzzy partitions�

De�nition ��� A �nite family �A�� � � � � An� of fuzzy subsets of a domain
X is called a fuzzy partition if and only if

�x � X �

nX
i��

�Ai�x� � �� �����

��
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Figure ���� A typical fuzzy partition with n � � triangular parts

This de�nition goes back to E� H� Ruspini �cf� �Ruspini� ������ and is the
notion of a fuzzy partition which is mostly used in practical applications�
Of course� other generalizations of classical crisp partitions are reasonable�
For these aspects we refer to �Moser� ������ where also investigations of
theoretical properties of fuzzy partitions� such as redundancy� are provided�

For the case of a real interval �a� b� one simple example is a fuzzy partition
which consists of a chain of triangular fuzzy sets� where only two consecutive
neighbors intersect with a maximal degree of 
��� Such a fuzzy partition is
uniquely determined by a �strictly� increasing sequence of K � n � � grid
points �a � x�� x�� � � � � xn
� � b� in the following way�

�A��x� ��

�
x�
x
x�
x�

if x � �x�� x��


 otherwise

�Ai�x� ��

���
��

x
xi��
xi��
xi��

if x � �xi
�� xi
��
xi
x

xi
xi��
if x � �xi
�� xi�


 otherwise

for i � �� n� �

�An�x� ��

�
x
xn��

xn��
xn��
if x � �xn
�� xn
��


 otherwise

�����

Figure ��� shows a typical example�

If we coded the values x�� � � � � xn
� directly� there would be a lot of
invalid strings which represent non�increasing sequences� It can be shown�
although it is intuitively clear� that the percentage of invalid strings grows
with the number of values� An alternative way to encode such a partition is
to encode the o�sets xi � xi
� �see also �Yubazaki et al�� ���
��

cm��	�
��x� � x�� � � � cm��	�
��xn
� � xn
�� �

�	
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Figure ���� A fuzzy partition with n � � trapezoid parts

which yields a string of length m � �n � ��� Again � is a parameter greater
than 
 which is chosen such that all the interesting cases are covered by
the coding� One may argue that� after decoding� some values xi can be
greater than b� This problem can be overcome by enlarging the universe of
discourse� concretely by enlarging b such that it is larger than a��n� �� � �
and by rede�ning

�An�x� ��

��
�


 if x � �x�� xn
��
x
xn��

xn��
xn��
if x � �xn
�� xn
��

� otherwise�
���
�

with additionally removing the restriction that xn
� � b� Of course� this
does not e�ect the input�output function of the fuzzy system�

The parameter � is a lower bound for the o�sets� If one also wants to
model crisp transitions� � has to be set to 
� Then we have to take special
care of the degenerated case� where some o�sets are 
 consecutively� Then
one or more sets of the partition disappear at all� a problem whose solution
depends on the needs of the concrete application�

This concept can also be generalized to trapezoid fuzzy sets� In this case
the fuzzy partition is uniquely determined by a �strictly� increasing sequence

��



of K � �n points� The mathematical formulation is �compare with �������

�A��x� ��

��
�

� if x � �x�� x��
x�
x
x�
x�

if x � �x�� x��


 otherwise

�Ai�x� ��

�����
����

x
x�i�	
x�i��
x�i�	

if x � �x�i
�� x�i
��

� if x � �x�i
�� x�i
��
x�i
x

x�i
x�i��
if x � �x�i� x�i
��


 otherwise

for i � �� n� �

�An�x� ��

��
�

x
x�n�	
x�n��
x�n�	

if x � �x�n
�� x�n
��

� if x � �x�n
�� x�n
��

 otherwise

�����
Figure ��� shows a typical example with n � �� The method of coding the
o�sets as discussed above can be applied without any modi�cations�

����� Standard Fitness Functions

Although it is not possible to formulate a general recipe� which �ts for all
kinds of applications� there are some standard cases for which we can give
standard �tness functions� which judge the performance of a fuzzy system�
These cases have in common that they measure the discrepancy between
actually obtained output with respect to a �xed con�guration of the param�
eters and the desired output� under the assumption that it is known� We
assume implicitely in the following that f��v� is the �tness function which
measures the performance of the fuzzy system depending on the parameter
vector �v which represents the con�guration of the fuzzy sets� Without loss
of generality� we restrict to fuzzy systems with one output� If there are more
output variables� the �tness functions� which we discuss in the following� can
be aggregated e�g� by addition�

Fuzzy Output on a Finite Set

Let �p�� � � � � pN � be a family of representative input values for which the
desired output fuzzy sets �O�� � � � � ON � are known and let O��v� p� be the
output fuzzy set which is obtained when the output of the fuzzy system is
evaluated for input p with respect to the con�guration �v� In the case that
the output variable has a �nite universe of discourse fx�� � � � � xn
�g �see also
page 
��� we can formulate the following �tness measure

f��v� ��
NX
i��

d���Oi � ��O	�v�pi
�� ������

��



with
��	�
 �� ��	�
�x��� � � � � �	�
�xn
����

where d��� �� is an arbitrary �pseudo�metric on �
� ��n� This abstract def�
inition may be a little confusing� The following special case� where the
Euclidean norm k�k� is used as measure for the distance� illustrates better
how this �tness can be computed�

f��v� ��

NX
i��

	

n
�X

j��

��Oi�xj�� �O	�v�pi
�xj��
�

�
A

�
�

� ������

Remark ��� A problem of this type is called �classi�cation problem� �see
also �Ishibuchi et al�� ������� The reason is simple� Such a fuzzy system
maps values p to fuzzy subsets of a set of� for instance� linguistic labels
x�� � � � � xn
�� By the way� this is the kind our practical example �cf� ��	� is
of�

Fuzzy Output on an Interval

Analogously� let �p�� � � � � pN � be a family of representative input values for
which the desired output fuzzy sets �O�� � � � � ON � are known �Oi � F��a� b����
Let again O��v� p� be the output fuzzy set which is obtained when the output
of the fuzzy system is evaluated for input p with respect to the con�guration
�v� Then a �tness function could be

f��v� ��

NX
i��

d��Oi � �O	�v�pi
�� ����	�

where d��� �� is a �pseudo�metric on �a� b������ or on a subset of �a� b������� In
this case Lp�norms are commonly used� A typical example would be

f��v� ��

NX
i��

	

 bZ

a

��Oi�x�� �O	�v�pi
�x��
� dx

�
A

�
�

� ������

with the additional assumption that the membership functions of the Oi and
O��v� pi� are integrable for all i� which is not a serious restriction in practice�

Crisp Real�Valued Output

Another important problem� which occurs frequently in the optimization
of fuzzy controllers� is the one of crisp real�valued output� For this case

�




let again �p�� � � � � pN � be a family of representative input values for which
the desired output values �o�� � � � � oN � are known� If we denote the input�
output functionof the controller with ��v�x�� an arbitrary �pseudo�metric on
�a� b�N � where �a� b� is the output domain� can be used as �tness measure� A
commonly used example is the Euclidean distance

f��v� ��

vuut NX
i��

�oi � ��v�pi���� ������

Another task� which di�ers a little bit from the ones we have discussed
until now� is the approximation of given control surfaces by fuzzy controllers�
where a complete description of the input�output surface is given and the
parameters �v should be found such that a certain distance in a function space
is minimal� Although this is not only of theoretical� but also of practical
interest� we refer to the literature here �e�g� �Moser� �������

Remark ��� All the �tness measures� which have been introduced in this
paragraph� are functions which are� of course� to be minimized� This is not so
desirable if we want to apply genetic algorithms with proportional selection�
However� it is rather easy to �nd an upper boundary or even the exact
maximum for each one of these functions� If we denote this upper boundary
with fmax� then �f��v� �� fmax � f��v� is a function whose maximization is
equivalent to the minimization of f � Depending on the concrete situation�
it can also be of advantage to scale or to transform the �tness function�

����� Genetic Operations

The last important ingredients of genetic algorithms� which we must dis�
cuss before we can �nally apply them to the optimization of fuzzy sets�
are the genetic operations� For the case of single� independent fuzzy sets
�see ������ various researchers have reported that the conventional methods�
which we have already discussed in chapter �� perform su�ciently well� An
�incomplete� list of papers� which report that� would be �Karr� ������ �Lee
and Takagi� ����a� and the other ���� papers o M� A� Lee and H� Takagi�
�Mitsubuchi et al�� ������ �Surmann et al�� ������ �Furuhashi et al�� ���
��
�Lin and Chen� ���
�� �Magdalena and Monasterio� ���
�� �Shimojima et al��
���
�� and so on�

Crossing Over

For the case of fuzzy partitions the selection of an appropriate crossing over
operator is a more subtle task� Figure ��
 shows an example� where two fuzzy

��



partitions are crossed with one�point crossing over� Obviously� a change of
one o�set xi�xi
� shifts all the values xi� � � � � xK
�� From this point of view
it might be clear that the existence or the development of building blocks
�cf� ��	 on page 
	� is not so easy to guarantee� because schemata do not
correspond to typicalities of the values xi themselves but to typicalities of
the o�sets�

This problem can deteriorate the convergence behavior� However� exper�
iments have shown �see also ��	� that� if the �tness function is rather smooth
and not very chaotic� some modi�ed crossing over operations can speed up
the convergence� but� on the contrary� if the �tness function is more chaotic�
and this is the case where GAs are typically applied� such operations �one
is demonstrated in example ��� below� speed up the convergence but not
without badly increasing the risk of becoming trapped in a local maximum�

Example ��
 One example of a crossing over technique specialized for
fuzzy partitions could be the following�

�� decode the two parent strings such that the original sequences X� �
�x��� � � � � x

�
K
�� and X� � �x��� � � � � x

�
K
�� are obtained�

	� choose a position l between � and K � � randomly�

�� swap the tails �x�l��� � � � � � x
�
K
�� and �x�l��� � � � � � x

�
K
�� taking into ac�

count that the values must increase�

�� cross the values x�l and x�l in an appropriate way� e�g� �x�l �
�x�l�x

�
l

�

and �x�l �
x�l��x

�
l

� again taking the restriction� that the values must
increase� into account�


� reencode the new sequences �X� and �X��

We can summarize that the crossing over operations must be chosen de�
pending on the given problem� If nothing is known about the �tness function
or if the �tness function is known to be chaotic with many local maxima�
a standard crossing over operation should be used �see also �Yubazaki et
al�� ���
��� If the �tness function is smooth and has not very many local
maxima� a specialized crossing over operation should be used� If� in such a
case� a conventional optimization method is applicable� a genetic algorithm
should not be applied at all�

Mutation

Nearly everything� which has been said about the crossing over operations�
also applies to the mutation operation� As apparent from �gure ���� our
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Figure ��
� Example for one�point crossing over of fuzzy partitions �n � ��
m � ��
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Figure ���� Mutating a fuzzy partition �n � �� m � ��

coding of fuzzy partitions has the property that a modi�cation of a single
bit can change the shape of the phenotype completely� So� in some sense� the
coding does not preserve similarity relations � two similar genotypes can
have completely di�erent phenotypes� This seems to be bad at �rst glance�
Surprisingly� experiments have demonstrated that exactly this property con�
tributes a lot to the robustness of fuzzy GAs� It is intuitively clear that the
risk of becoming trapped in a local maximum is not so critical� if the muta�
tion operation can bring us far away from it�

����� Summary

The last paragraph has completed the list of things which are required for a
genetic algorithm of type ��	� If coding� �tness function� selection method�
crossing over method� and mutation operator are chosen� a traditional ge�

��



netic algorithm� which operates on a �xed number of objects of a �xed size�
can be applied �for a more general view of fuzzy GAs see �Buckley and
Hayashi� �������

In the next section a typical example of a fuzzy GA is introduced� It
shows how a fuzzy GA works in practice and how its convergence can be
improved�

��� An Application 	 Practical Results

This section gives an example which has� in fact� been part of an industrial
project at the FLLL� The algorithm we will discuss within the following
pages can be regarded as the most important result of the development of
an inspection system for a silk�screen printing process� It computes a fuzzy
segmentation of a given image into four di�erent types of areas which are to
be checked by applying di�erent criteria� For us� the most interesting part
is how the resulting fuzzy system is optimized with genetic algorithms�

����� Introduction

As anticipated above� we have to decide for each pixel of an image to which
kind of area it belongs� Formally� this is a classi�cation problem �see remark
��� on page �
� see also �Ishibuchi et al�� ����� for reference��

The following four types were speci�ed by experts of our partner com�
pany� For certain reasons� which can be explained with the special principles
of the silk�screen printing process� it is su�cient to consider only these types�

Homogeneous area� uniformly colored area

Edge area� pixels within or close to visually signi�cant edges

Raster� area which looks rather homogeneous from a certain distance� but
which is actually obtained by printing small raster dots of two or even
more colors

Aquarelle� rastered area with high chaotic deviations �e�g� small high�con�
trasted details in picture prints�

The magni�cations in �gure ���� show how theses areas typically look like�
Of course� transitions between two or more of these areas are possible� hence
a fuzzy model is recommendable�

First of all we should de�ne more precisely what an image is�

��



Homogeneous Edge Raster Aquarelle

Figure ����� Magni�cations of typical representatives of the four types

De�nition ��� An N �M matrix of the form

��ur�i� j�� ug�i� j�� ub�i� j���
j�������M
i�������N ����
�

with ��dimensional entries �ur�i� j�� ug�i� j�� ub�i� j�� � f
� � � � � ���g� is called
a 	��bit color image of size N �M � A coordinate pair �i� j� is called a pixel
and the values �ur�i� j�� ug�i� j�� ub�i� j�� are called the gray�values of pixel
�i� j��

It is near at hand to use something like the variance or another measure
for deviations to distinguish between areas which show only low deviations�
such as homogeneous areas and rasters� and areas with high deviations� such
as edge areas or aquarelles� On the contrary� it is intuitively clear that such a
measure can never be used to separate edge areas from aquarelles� because
any geometrical information is neglected� Experiments have shown that
well�known standard edge detectors� such as the Laplacian or the Mexican
Hat �lter mask� cannot distinguish su�ciently if deviations are chaotic or
anisotropic� Another possibility we also took into consideration was to use
wavelet transforms �see �Daubechies� ��
�� or �Stark� ������� Since the size
of the image is approximately � Megabyte and the segmentation has to
be done in at most three seconds� it is obvious that such highly advanced
methods would require too much time� Finally� we found a fairly good
alternative which is based on the discrepancy norm� This approach uses only�
as �lter masks like the Laplacian or the Mexican Hat also do� the closest
neighborhood of a pixel� The following sketch shows how the neighbors of a
�xed pixel �i� j� are enumerated� We can de�ne the enumeration mapping l
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Figure ����� Typical gray�value curves of the form �ux�l�k��k�f�������g

with the table besides�

u

u

u

u

u
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�i� j��

	 � �





 � �

k l�k�

� � i � j � � �
� � i� � � j � � �
� � i� � � j �
� � i� � � j � � �
� � i � j � � �
� � i� � � j � � �
	 � i� � � j �
� � i� � � j � � �

������

If we plot one color extraction with respect to this enumeration� concretely
ux�l�k��k�f�������g� where x � fr� g� bg� we typically get curves like those ones
shown in �gure ����� From these sketches it can be seen easily that a mea�
sure for the deviations can be used to distinguish between homogeneous
areas� rasters� and the other two types� On the contrary� the most eyecatch�
ing di�erence between aquarelles and edge areas is that edge areas show
long connected peaks while aquarelles typically show chaotic� mostly nar�
row peaks� So� a method which judges the shape of the peaks should be
used in order to separate edge areas from aquarelles� A simple but e�ective
method for this purpose is the so�called discrepancy norm�

De�nition ��	

k�kD � R
n �� R

�

�x�� � � � � xn� �� max
�
�
�
n

�����
�P
i��

xi

����� ������

Lemma ��� k�kD is a norm�

�	



Proof�

�� �x � �
�� k�xkD � 
� trivial

	� k��xkD � j�jk�xkD� trivial

�� k�x� �ykD � k�xkD � k�ykD�

k�x� �ykD � max
�
�
�
n

�����
�P
i��

�xi � yi�

����� � max
�
�
�
n

�����
�P
i��

xi �
�P
i��

yi

�����
� max

�
�
�
n

������
�P
i��

xi

������
�����
�P
i��

yi

�����
�

� max
�
�
�
n

�����
�P
i��

xi

������ max
�
�
�
n

�����
�P
i��

yi

����� � k�xkD � k�ykD

In measure theory the discrepancy between two measures � and � on R
is de�ned as D��� �� �� maxa
b j� ��a� b�� � � ��a� b��j� If we have two discrete
measures � and � on the set f�� � � � � ng� where ��i� �� xi and ��i� �� yi� then
D��� �� and k�x� �ykD are equal �see �Weyl� ����� or �Neunzert and Wetton�
��
���� Thus� we will call k�kD discrepancy norm on Rn �

Obviously� the computation of k�kD by using the de�nition requires
O�n�� operations� The following theorem allows us to compute k�kD with
linear speed�

Theorem ����

k�xkD � max
�
�
n

X� � min
�
�
n

X�� ����
�

where the values

Xj ��

jX
i��

xi

denote the partial sums�

Proof� If we assign 
 to x� and xn�� we can conclude that

k�xkD � max
�
�
�
n��

�����
�P
i��

xi

����� � max
�
�
n��

max
�
�
n��

�����
�P
i��

xi �
�
�P
i��

xi

�����
� max

�
�
n
max
�
�
n

�����
�P
i��

xi �
�P
i��

xi

����� � max
�
�
n

max
�
�
n

jX� �X�j

� max
�
�
n

X� � min
�
�
n

X��

From ������ it can be seen easily that the more entries xi with equal sign
appear successively� the higher the value k�xkD is� This is exactly the reason
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why the discrepancy norm can be used for our purpose of detecting visually
signi�cant edges�

����� The Fuzzy System

For each pixel �i� j� we consider the nearest eight neighbors enumerated as
described above� Then we can use

v�i� j� ��
�P

k��

�ur�l�k�� � r�� �
�P

k��

�ug�l�k�� � g��

�
�P

k��

�
ub�l�k�� � b

�� ������

as a measure for the size of the deviations in the neighborhood of �i� j� and

e�i� j� ��kur�l���� � �r� � � � � r�kD � kug�l����� �g� � � � � g�kD
�kub�l����� �b� � � � � b� kD

���	��

as a measure whether the pixel is part of or lying adjacent to a visually
signi�cant edge� where r� g and b denote the mean values

r ��
�

�

�X
k��

ur�l�k��� g ��
�

�

�X
k��

ug�l�k��� b ��
�

�

�X
k��

ub�l�k���

Of course� e itself can be used as an edge detector� Figure ���	 shows how
good it works compared with the commonly used Mexican Hat �lter mask�

The fuzzy decision is then done in a rather simple way� We have to
compute the degrees of membership to which the pixel belongs to the four
types of areas� Hence� the output of the fuzzy system is a vector

t�i� j� � �tH�i� j�� tE�i� j�� tR�i� j�� tA�i� j��� ���	��

with tH� tE� tR� tA � �
� ��� Since the parameterization of the fuzzy systems
is independent from the coordinates in our case� we just write v and e for
the two inputs v�i� j� and e�i� j� which are treated as linguistic variables in
the following� Experiments have shown that �
� �

� and �
� �

� are appro�
priate universes of discourse for v and e� respectively� We used simple fuzzy
partitions for the fuzzy decomposition of the input space �see ����	 on page
���� Their typical shape can be seen in �gure �����

Five rules� which cover all the possible cases� complete the fuzzy system�

IF v is low THEN t � H

IF v is med AND e is high THEN t � E

IF v is high AND e is high THEN t � E

IF v is med AND e is low THEN t � R

IF v is high AND e is low THEN t � A
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Figure ���	� Comparison between e and a standard �� � �lter mask

����� Optimization of the Fuzzy Partitions

As apparent from �gure ����� the partitions depend on the six parameters
v�� v�� v�� v�� e�� and e�� An interesting question is� of course� how to
choose these values properly� In order to optimize them we need an ob�
jective criterion for judging the quality of the decision� Unfortunately� the
speci�cation of the four types is given in a verbal� imprecise form� which can
hardly be formalized mathematically� However� it can be decided by a hu�
man whether the result of the segmentation algorithm for given parameters
matches his�her own understanding of the four areas� So� we implemented
a little painting program with pencils� rubbers� edge detection� and �lling
algorithms which can be used to prepare a segmentation by hand� This
handmade segmentation can then be used as a reference�

Now assume that we have N sample pixels for which the pairs of input
values ��vk� �ek�k�f������Ng are already computed and that we have a reference
classi�cation of these pixels �t�k� � ��tH�k�� �tE�k�� �tR�k�� �tA�k��� where k �
f�� � � � � Ng�� Then one possibility to de�ne the performance ��tness� of the

�Since the geometry plays no role if the values �v and �e are already computed� we can

switch to one dimensional indices here� what simpli�es the formulas a little bit�
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Figure ����� The linguistic variables v and e

fuzzy systems would be

�

N

NX
k��

d�t�k�� �t�k��� ���		�

where t�k� � �tH�k�� tE�k�� tR�k�� tA�k�� are the classi�cations actually ob�
tained by the fuzzy system for the input pairs ��vk� �ek� with respect to the
parameters v�� v�� v�� v�� e�� and e�� d��� �� is an arbitrary metric on �
� ����
The problem of this brute force approach is that the output of the fuzzy sys�
tem has to be evaluated for each pair �vk� ek�� even if many of these values
are similar� In order to keep the amount of computation low� we �simpli�
�ed� the procedure by a �clustering process� as follows� Choose a partition
�P�� � � � � PK� of the input space and count the number �n�� � � � � nK� of sam�
ple points fpj�� � � � � p

j
njg each part contains� Then the desired classi�cation

of a certain part can be de�ned as

�tX�Pi� ��
�

ni

niX
j��

�tX�p
i
j� with X � fH�E�R�Ag� ���	��

If � is a function� which maps each part to a representative value �e�g� its
center of gravity�� we can de�ne the �tness as

f�v�� � � � � v�� e�� e�� ��
�


N

KX
i��

ni � ��� ���� � ���	��

with
��� ��

X
X�fH�E�R�Ag

�
�tX�Pi�� tX���Pi��

��
�

If the number of parts is chosen moderately �e�g� a rectangular �� � ��
net which yields K � �
��� the evaluation of the �tness function takes
considerably less time than it would take if we used ���		��

��



0 50 100 150 200

83

83.1

83.2

83.3

83.4

83.5

0 20 40 60 80 100 120 140

82

83

84

85

86

v� �� e� ��

Figure ����� Cross sections of functions of type ���	��

Remark ���� Note that in ���	�� the �tness is already transformed such
that it can be regarded as a degree of matching between the desired and the
actually obtained classi�cation measured in percent� This value has then to
be maximized�

Figure ���� shows cross sections of such a �tness function� where� in
each case� �ve parameters are kept constant and one is varied� It can be
seen easily that f is continuous but not necessarily di�erentiable and that
there can be a lot of local maxima� Hence� it is not recommendable to use
a conventional continous optimization method� such as gradient descent or
a Newton�like method� Seemingly� the one and only way out of this trap
was to use a probabilistic method� This requires� �rst of all� a coding of the
parameters� We decided to use a coding� like the one proposed in ����	 on
page ��� which maps the parameters v�� v�� v�� v�� e� and e� to a string of
six 
�bit integers s�� � � � � s� which range from 
 to ���� The following table
shows how the encoding and decoding is done�

s� � v� v� � s�
s� � v� � v� v� � s� � s�
s� � v� � v� v� � s� � s� � s�
s� � v� � v� v� � s� � s� � s� � s�
s� � e� e� � s�
s� � e� � e� e� � s� � s�

In order to compare the performance of various approaches� we consid�
ered the following methods�

��



Random Selection

Algorithm ����

choose a string G� randomly�
f� �� f�G���

WHILE stopping condition not ful�lled DO

BEGIN

choose a string G� randomly�
f� �� f�G���

IF f� � f� THEN
BEGIN

f� �� f��
G� �� G�

END

END

The results have shown that for a binary string length of �� this is not a
reasonable method at all�

Hill Climbing

In the strict sense� this method is a deterministic one� Since the initial point
is chosen randomly� we also count it here�

Algorithm ����

choose a string G� randomly�
f� �� f�G���
f� ����

WHILE f� 
 f� DO
BEGIN

determine that neighbor string G� of G� with highest �tness f��

IF f� � f� THEN
BEGIN

f� �� f��
G� �� G�

END

END

�




Simulated Annealing

The simulated annealing algorithm is a powerful probabilistic optimization
technique which has been widely used during the last years� It imitates the
solidi�cation of crystals under slowly decreasing temperature� The main idea
is that every atom tends to reach a state of thermic equilibrium� Thermic
equilibrium on a certain temperature level is reached if the temperature of a
randomly chosen neighbor atom is Boltzmann distributed �for more details
see �van Laarhoven and Aarts� ��
�� or �Otten and van Ginneken� ��
����
This approach goes back to N� Metropolis who proposed an algorithm for
the e�cient simulation of the evolution of a solid�to�thermal equilibrium
�cf� �Metropolis et al�� ��
��� and was later discovered to be an appropriate
method for solving combinatorial optimization problems �early publications
were �Kirkpatrick et al�� ��
�� and �%erny� ��

���

Algorithm ����

k �� 
�
set initial temperature T �
choose a G� randomly�
f� �� f�G���

WHILE stopping condition not ful�lled DO

BEGIN

REPEAT

choose neighbor string G� randomly�
f� �� f�G���

IF f� � f� THEN
BEGIN

G� �� G��
f� �� f�

END

ELSE IF Random�
� �� 
 e
f��f�
T THEN

BEGIN

G� �� G��
f� �� f�

END

UNTIL state of equilibrium is reached su�ciently closely �

T �� ��T� k��
k �� k � �

END

��
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Figure ���
� The performance graph of a fuzzy GA

The Raw GA

First of all� we took a GA as proposed in algorithm ��� with the coding
presented above� a population size of �
� one�point crossing over with prob�
ability 
���� and standard mutation� where each bit is modi�ed with equal
probability pM �
�

� in this case�� Figure ���
 shows a typical performance
graph of a genetic algorithm of this kind�

Hybrid Genetic Algorithm

Genetic algorithms are methods which are more or less �blind� in their
search for the optimal solution� So� it may be of interest what happens
if a GA is additionally supported by another method� We tried out some
combinations of the raw GA and the hill climbing method�

Results

All these algorithms are probabilistic methods� therefore� their results are
not well�determined� they can di�er randomly within certain boundaries�
So� we tried out each one of them �
 times for one certain problem in order
to obtain more information about their average behavior� For the given
problem we found out that the maximal degree of matching between the
reference classi�cation and the classi�cation actually obtained by the fuzzy
system was �������& � The table in �gure ���� shows the results in detail�


�



fmax fmin
�f �f It

Hill Climbing ���	
�� ���


� �	���	
 ����
 �



Simulated Annealing ���	
�� ���


� �	��
	� ��	�� ����

Improved Simulated
Annealing

���	��	 �	����
 ���

�� ��

� 
��
�

GA ���	�
� �	���
� ���
��� ��
�� ����

Hybrid GA �elite� ���	�
� �	�

�� ���
��� ��
�� ��
�

Hybrid GA �random� ���	��
 ���		

 ���	
�	 ����� ��
	�

Figure ����� Some results

The hill climbing method with a random selection of the initial string
converged rather quickly� Unfortunately� it was always trapped in a local
maximum� but never reached the global solution �at least in these �
 trials��

The simulated annealing algorithm showed similar behavior at the very
beginning� when we used ��T� k� �� T �
�

��� T was set to � initially� After
some experiments with the parameters the performance could be improved
remarkably �with ��T� k� �� T �
�

�� but more iterations in the inner loop��

The raw genetic algorithm looked pretty good from the beginning� but
it seemed inferior to the improved simulated annealing�

Next� we tried a hybrid GA� where we kept the genetic operations and
parameters of the raw GA� but every 
��th generation the best��tted indi�
vidual was taken as initial string for a hill climbing method� Although the
performance increased� the hybrid method still seemed to be worse than the
improved simulated annealing algorithm� The reason that the e�ects of the
modi�cation were not so dramatical might be that the probability is rather
high that the best individual is already a local maximum� So we modi�ed
the procedure again� This time a randomly chosen individual of every 	
�th
generation was used as initial string of the hill climbing method� The result
exceeded the expectations by far� The algorithm was� in all cases� nearer
to the global solution than the improved simulated annealing was �compare
with the table in �gure ������ but� surprisingly� su�ced with less invocations
of the �tness function�

Figure ���� shows a graphical representation of the results� Each curve
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Figure ����� A graphical representation of the results


	



in this graph corresponds to one algorithm� Such a curve shows� for a given
�tness value x� how many of the 	� solutions had a �tness higher or equal
to x� It can be seen easily from this graph that the hybrid GA with random
selection brought the best results� The x axis is not a linear scale in this
�gure� It was transformed in order to make small di�erences visible�

��� Conclusion

From the examples above� we have seen that genetic algorithms are costly
but e�ective� The reason for the robustness and the stable convergence be�
havior is that GAs always have a wider perspective of the problem� because
they keep a whole population of points in mind instead of only single points�
as the conventional methods do�

We have seen further that intelligent combinations of conventional meth�
ods and genetic algorithms can yield signi�cant improvements in terms of
speed and the quality of the solutions�


�



Chapter �

Acquiring Rulebases with

Genetic Algorithms

There are two concepts within fuzzy logic which play a central role
in its applications� The �rst is that of a linguistic variable� that
is� a variable whose values are words or sentences in a natural
or synthetic language� The other is that of a fuzzy if�then rule in
which the antecedent and consequent are propositions containing
linguistic variables� The essential function served by linguistic
variables is that of granulation of variables and their dependen�
cies� In e�ect� the use of linguistic variables and fuzzy if�then
rules results � through granulation � in soft data compression
which exploits the tolerance for imprecision and uncertainty� In
this respect� fuzzy logic mimics the crucial ability of the human
mind to summarize data and focus on decision�relevant informa�
tion�

Lot� Asker Zadeh in �Zadeh� �����

This quotation by L� A� Zadeh expresses brilliantly what the core of fuzzy
logic is� As we have already seen �more often than once�� he recalls that the
power of fuzzy logic lies in the separation of rules and their concrete meaning
�see also page 
��� In the previous chapter we have dealt with the optimiza�
tion of the latter component� Now we give an introduction to methods for
the acquisation of rulebases with genetic algorithms� We assume that the
linguistic variables are completely speci�ed� The simultaneous optimization
of rules and their meaning will be discussed in ����

While we have only discussed methods for o�ine optimization until now�
the optimization of rulebases can be done in two ways� Besides techniques�
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which are applied o�ine� methods for learning rules continuously have come
into fashion� One prominent approach is the fuzzi�cation of a Holland clas�
si�er system which bases upon the application of genetic operations to gen�
erate rules� Such methods will be discussed in 
�	� Before that we take a
look at o�ine techniques�

��� O
ine Optimization of Rulebases

First of all� let us recall the de�nition of a fuzzy GA �see page 
��� A fuzzy
genetic algorithm is a genetic algorithm which is applied to the optimiza�
tion of some parameters of a fuzzy system� Of course� this de�nition also
includes the o�ine optimization of rulebases� However� other names have
become commonly used� O�ine optimization of rulebases is often nicknamed
the �Pitt Approach� after Pittsburgh� the town where the �rst decision sys�
tem� whose parameters were tuned with genetic algorithms� was written
�S� F� Smith�s poker player� see �Goldberg� ��
���� According to that� a
fuzzy system� which employs genetic o�ine learning� is often called a fuzzy
classi�er system of the Pittsburgh type� Generally� a classi�er system is a
machine learning system which learns rules in order to guide its own per�
formance in an arbitrary environment �see �Holland� ��
�� or �Geyer�Schulz�
���
��� Classi�ers are nothing else but ordinary if�then rules� The name
classi�er comes from the capability of rules to classify inputs into message
sets �compare with the sets Rj in �	�	�� on page ����

����� Fixed�Length Representations

If we �nd a method for encoding rulebases into a string of a �xed length�
all the genetic methods we have previously dealt with are applicable with
only little modi�cations� Of course� we have to assume in this case that the
numbers of verbal values of the linguistic variables� which are involved� are
�nite� For simplicity� without much loss of generality� we only deal with the
case that the set of verbal values just contains adjectives�

The simpliest case is that of coding a complete rulebase� which covers
all the possible cases� into a matrix �a tensor in the case of more than two
input variables�� For this purpose� consider a rulebase of the following form
�the generalization to more than two input variable is straightforward��

IF x� is Ai AND x� is Bj THEN y is �Cij �
���

Ai and Bj are verbal values of the variables x� and x�� respectively� All the
values Ai are pairwise di�erent� analogously for the values Bj � i ranges from
� to N�� the total number of verbal values of variable x�� j ranges from �







to N�� the total number of verbal values of variable x�� The values �Cij are
arbitrary elements of the set of pairwise di�erent verbal values fC�� � � � � CNyg
of linguistic variable y� Obviously� such a rulebase is uniquely represented
by a matrix� a decision table� where the position of a consequent value
determines to which premise it belongs�

B� � � � BN�

A�
�C�� � � � �C�N�

���
���

� � �
���

AN�
�CN�� � � � �CN�N� �

If we associate that number kij between � and Ny� for which �Cij equals Ckij �

with each �Cij � we can easily encode such a rulebase by putting all the binary
representations of the values kij � � into a string of length N� �N� �K with
K �� log�Ny�

For the method above� genetic algorithms as presented in algorithms ��	
or ��� are suitable� We only have to take care that mutation and crossing
over can yield values higher than Ny��� if Ny is not a power of �� Of course�
the �tness functions� which we have introduced in ������ can also be used
without any modi�cations� Such a method is for example applied in �Thrift�
������ A related approach is that of Lee and Takagi which we will disucss
in ������

It is easy to see that the approach above works consequent�oriented�
what means� that the premises are �xed� and� therefore� the consequent
values must be acquired� Such an idea can only be applied to optimization
of complete rulebases which are� in more complex applications� not so easy
to interpret� Moreover� complete rulebases can have the disadvantages that
they require a lot of storage for� in many cases� rules which are not necessary�
On the contrary� in many applications� especially in control applications� it
is enough to have an incomplete rulebase which consists of a certain number
of rules which cover the input space su�ciently well�

The acquisation of incomplete rulebases is a task� which is not so easy
to solve with representations of �xed length� We will come to that later
in 
���	 and 
�	� Nevertheless� there is at least one method� which can be
applied with �xed�length representations� It can be found in �Gonzalez et
al�� ������ where a genetic algorithm is applied to the problem of learning
structures of single rules�

Typically� incomplete rulebases consist of a comparatively small num�
ber of rules of a more general shape� rules which do not necessarily specify
restrictions for all input variables �as in �
����� so�called generalizing rules�
rules which do not only employ AND as connective� but also OR� or unary
operators� such as NOT� It is intuitively clear that such a variety of ex�
pressions cannot be represented su�ciently well by binary strings of a �xed
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length� However� in �Gonzalez et al�� ����� a subset of such rules� which
might be su�cient for many applications� is considered�

For this purpose we consider an atomic fuzzy system with n input vari�
ables x�� � � � � xn and one output variable y� For each input variable xi we
have a �nite setDi of verbal valuesDi �� fAi�� � � � � Aikig with which we asso�
ciate fuzzy sets� Analogously� we have a �nite set of verbal labelsB�� � � � � Bky

for output variable y� Then we consider a rulebase of the form

IF Ant�� THEN y is B�
���

���
���

���
IF Ant�m� THEN y is B�
���

���
���

���
���

���
���

���
IF Antny� THEN y is Bny
���

���
���

���
IF Antnymny

THEN y is Bny �

�
�	�

Apparently� we have �xed a number of rules
Pny

i��mi in advance� where mi

premises �antecedents� Antij yield the consequent Bi�

In this approach� antecedents of the shape

x� is �A� AND � � � AND xn is �An� �
���

are considered� where �Ai are lists of labels contained in Di� The semantic
interpretation of such a list is the fuzzy union of the fuzzy sets which are
associated with the labels in the list� Concretely� if �Ai � fAij� � � � � � AijKg�
the expression xi is �Ai can be read as

xi is Aij� OR � � � OR xi is AijK �

For encoding a rulebase of type �
�	�� we must� �rst of all� �nd a coding
for the lists �Ai� This can easily be done by associating a binary string of
length ni with each �Ai� Position j is then �� if Aj is contained in �Ai� 

otherwise� If the string� which represents �Ai� only contains zero entries� this
part of the premise is not evaluated� Hence� it is also possible to represent
generalizing rules�

An antecedent as proposed in �
��� can then be encoded by concatenating
the strings which represent the lists �Ai� Finally� the rulebase �
�	� is encoded
by concatenating the codings of all the antecedents Antij�

Example ��� Suppose we have three inputs x�� x�� and x� with D� ��
fA��� A��� A��g� D� �� fA��� A��� A��� A��g� and D� �� fA��� A��g� Then
the antecedent

x� is fA��� A��g AND x� is fA��� A��g AND x� is fA��g
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is encoded as

A��A��A��A��

�
�

�
�

A�� A�� A�� A��A��

�
�

����� �

�
�

�
�

�
�

�
�

�
�

� � �

�
�

Obviously� all the conventional genetic operations� including selection�
crossing over� mutation� are applicable� Although the standard �tness func�
tions can also be used� it can be of advantage to additionally incorporate
terms� which judge the simplicity of the rulebase� into the �tness function�

This approach has� compared with the representation of complete rule�
bases� the advantage that it allows generalizing rules which contribute much
to the compactness and interpretability of rulebases� Nevertheless� we can
state the following disadvantages�

� The number of rules must be �xed in advance�

� The application of the connective OR is limited to the union of sets
which belong to the same input variable�

� More advanced constructs� such as unary operators like NOT or ad�
verbs cannot be allowed�

The next section is going to deal with a paradigm which overcomes these
disadvantages�

����� Fuzzy Genetic Programming

Not surprisingly� all kinds of fuzzy GAs� which incorporate genetic pro�
gramming techniques� are subsumed under the term �Fuzzy Genetic Pro�
gramming� �fuzzy GP�� This �eld is a comparatively new one� Most of the
theory goes back to A� Geyer�Schulz �see �Geyer�Schulz� ���
�� who also im�
plemented the �rst application� where he tried to improve stock management
strategies with fuzzy GP ��Geyer�Schulz� �������

Within this promising approach� all kinds of constructs for representing
fuzzy knowledge� such as adverbs� connectives� and so on� can be used� The
�rst thing we need is a rule language� Typically� a rule language for a fuzzy
system with n inputs x��� � � �xn in Backus�Naur form looks as follows�








rule� �� �IF� 
premise� �THEN� 
conclusion��

premise� �� 
conditional� j

��� 
unary� 
premise� ��� j
��� 
premise� 
connective� 
premise� ��� �


conditional� �� �x�� �is� 
expr�� j � � � j �xn� �is� 
exprn� �

unary� �� �NOT� �


connective� �� �AND� j �OR� �

conclusion� �� �y� �is� 
expry� �

where the expressions 
expr�� � � � 
exprn� and 
expry� are verbal values
of the linguistic variables x� � � � xn and y� respectively� The syntax of these
expressions is speci�ed by the grammars which produce the verbal values of
the linguistic variables �compare with de�nition 	��
 and page 		�� Since
these grammars are also given in BNF� they can easily be implanted in the
grammar above� It is easy to see that the grammar above provides a higher
generality than all the approaches we have considered previously�

Before we can apply the universal genetic programming techniques� which
we have introduced in 
���	� we have to �nd a representation for a whole
rulebase� Of course it is again possible to �x a certain number m of rules in
advance� Then an appropriate syntax for a rulebase would be

'rulebase( �� ��� 
rule� ��� � � � ��� 
rule�� �z �
m times

��� �

The more general way to represent a rulebase� which does not su�er from
the problem that the size must be �xed in advance� is to allow an arbitrary
number of rules in the rulebase�


rulebase� �� ��� 
rulelist� ��� �

rulelist� �� 
rule� j ��� 
rulelist� �

Furthermore� if the set of verbal values of the linguistic variable y is a
�nite set of adjectives� it is� under some additional assumptions� possible to
su�ce with a �nite number of rules�

Lemma ��� Consider an atomic fuzzy system with the notations as above�
Suppose that its output is computed with the Mamdani inference� where T� �
T� � TM and S� � S� � SM� If the set of verbal values of the output variable
y is a �nite set of ny labels Dy �� fB�� � � � � Bnyg� an arbitrary rulebase with
a �nite number m of rules of the form

IF Expr j THEN y is �Bj � �
���

where �Bj � Dy� can be rewritten as a rulebase with at most ny rules with
pairwise di�erent consequent values without changing the input�output func�
tion�
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Proof� With the setting

D�
y �� fA � Dj j�j � ��m A � �Bjg 	 Dy� n�y �� jD�

yj � jDyj � ny

and if we denote the elements of D�
y with B�

��� � � �B
�
n�y
� the rulebase �
��� can

be rewritten as

IF Expr �k THEN y is B�
k k � �� n�y� �
�
�

where Expr �k is the fuzzy disjunction of all expressions Expr j which have B�
k

as consequent value� More precisely

Expr �k � Expr ik� OR � � � OR Expr iklk
�

where fi�� � � � � ikg � fjj �Bj � B�
kg and lk �� jfi�� � � � � ikgj� Obviously� the

rulebase above has at most ny rules with pairwise di�erent consequent val�
ues�

Now� let �x be an arbitrary input vector and let z be an arbitrary element
of Y � the universe of discourse of the output variable y� Then the output
fuzzy set of rulebase �
��� with respect to input �x is

�C�	�x
�z� � SM
�
TM�� �B�

�z��Expr ���x��� � � � TM�� �Bm
�z��Exprm��x��

�
�

The output fuzzy set of rulebase �
�
� is given as

�C�	�x
�z� � SM
�
TM��B�

�
�z��Expr ����x��� � � � TM��B�

n�y

�z��Expr �n�y��x��
�

� SM
�
TM��B�

�
�z�� SM�Expr i����x�� � � � �Expr i�l�

��x���� � � �

TM��B�
n�y

�z�� SM�Expr in�y�
��x�� � � � �Expr in�yln�y

��x���
�

Together with

min�x�max�y� z�� � max�min�x� y��min�x� z��

and
max�max�x�� x���max�x�� x��� � max�x�� x�� x�� x���

the assertion follows�

Example ��� In order to illustrate the transformation process described
in the proof of lemma 
�	� consider the following rulebase with two inputs
�D� � D� � f�neg�� �zero�� �pos�g and Dy � f�low�� �medium�� �high�g��

IF x� is �neg� THEN y is �low�

IF x� is �zero� AND x� is �pos� THEN y is �low�

IF x� is �pos� THEN y is �medium�

IF x� is �zero� AND x� is �neg� THEN y is �medium�

IF x� is �zero� AND x� is �zero� THEN y is �high�
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The transformed variant is then

IF x� is �neg� OR �x� is �zero� AND x� is �pos�� THEN y is �low�

IF x� is �pos� OR �x� is �zero� AND x� is �neg�� THEN y is �medium�

IF x� is �zero� AND x� is �zero� THEN y is �high��

If the assumptions of lemma 
�	 are ful�lled� we can su�ce with a repre�
sentation with a �xed number of rules� ny concretely� In this case� as already
shown in the previous section� we have to �nd the antecedent expressions
for a �xed set of consequences�

To all the representations� which we have shown here� the genetic op�
erations can be applied as usual� It can be of advantage to incorporate
mechanisms into the �tness function which additionally take the complexity
and the number of the rules into account� Moreover� it is useful to simplify
the expressions after each generation in order to avoid wild growth of the
derivation trees� If simpli�cation is desired� the operations �t�norms and
t�conorms� should be chosen such that some derivation laws� such as the
De�Morgan law� are ful�lled�

More� especially theoretical details on fuzzy genetic programming can
be found in �Geyer�Schulz� ���
�� where also a global convergence proof is
provided�

��� Online Learning of Fuzzy Rules

The ideas in the previous section have in common that ��� the genetic al�
gorithms operate on whole rulebases� they work with populations of rule�
bases� and �	� rulebases are judged globally� i�e� the performance of whole
rulebases is evaluated by the �tness function� If the systems are judged
globally� no complicated examination which rules are responsible for success
or failure� what requires profound knowledge about the environment� has to
be done� This seems to be an advantage at �rst glance� but� in fact� the
convergence of such methods can be weak� because single obstructive rules
can deteriorate the �tness of the whole rulebase� which could contain very
useful� well�performing rules� Furthermore� we have mentioned that genetic
algorithms are capable of �nding fairly good solutions� but local re�nement
can take a lot of time� Another aspect is that it can be di�cult to de�ne a
global quality measure which provides enough information to guide a genetic
algorithm to the solution�

Therefore� it is� of course� of interest to consider methods which observe
the behavior of the system throughout a certain period of time adjusting
the rules according to local payo� from the system� Consider for example
the game of chess in order to demonstrate the di�erence between the two
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approaches� A global quality measure could be the percentage of successes
in a large number of games or� more speci�cally� the number of moves it
took to be successful in the case of success and the number of moves it had
been possible to postpone the winning of the opponent in the case of failure�
It is easy to see that such information provides only a scarce foundation
for learning chess� even if more detailed information� such as the number
of pieces captured� is involved� On the contrary� it is easier to learn the
principles of chess� when the direct e�ect of the application of a certain rule
can be observed immediately� The problem� not only in the case of chess� is
that early moves can also contribute much to a �nal success� We will come
to that later�

In general� machine learning systems� which employ a genetic algorithm
for the manipulation of single rules� in a way as described above are called
classi�er systems of the Michigan type� Figure 
�� shows the typical archi�
tecture of such a system� The main components are�

�� A production system containing a rulebase which processes incoming
messages from the environment and sends output messages to the en�
vironment

	� An apportionment of credit system which receives payo� from the
environment and determines which rules had been responsible for that
feedback� this component assigns strength values to the single rules in
the rulebase� These values represent the performance and usefulness
of the rules�

�� A genetic algorithm which combines well�performing rules to new ones
with respect to their strength values�

Obviously� the learning task is divided into two subtasks � the judgment
of already existing and the discovery of new rules�

Before we turn to classi�er systems� which actually learn fuzzy rules
in such an online process� just to sharpen our understanding� we discuss
a simple crisp variant which has been examined very well � the so�called
Holland classi�er system�

����� The Holland Classi�er System

A Holland classi�er system is a classi�er system of the Michigan type which
processes binary messages of a �xed length through a rulebase whose rules
are adapted according to the response of the environment� There are a lot
of di�erent notations in the literature �e�g� �Holland� ��
��� �Holland� ���	��
�Holland et al�� ��
��� �Holland et al�� ��
��� or �Geyer�Schulz� ���
��� we
have developed our own view which� in some sense� merges the di�erently
occurring approaches�
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Figure 
��� A classi�er system of the Michigan type

The Production System

First of all� the communication of the production system with the environ�
ment is done via an arbitrarily long list of messages� The detectors translate
responses from the environment into binary messages and place them on the
message list which is then scanned and changed by the rulebase� Finally� the
e�ectors translate output messages into actions on the environment� such as
forces or movements�

Messages are binary strings of the same length k� More formally� a
message belongs to f
� �gk � The rulebase consists of a �xed number m of
rules �classi�ers� which consist of a �xed number r of conditions and an
action� where both conditions and actions are strings of length k over the
alphabet f
� �� �g� The asterisk plays again the role of a wildcard� a �don�t
care� symbol�

A condition is matched� if and only if there is a message in the list
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which matches the condition in all the non�wildcard positions� Moreover�
conditions� except the �rst one� may be negated by adding a ��� pre�x�
Such a pre�xed condition is satis�ed� if and only if there is no message in
the list which matches the string associated with the condition� Finally� a
rule �res� if and only if all the conditions are satis�ed� i�e� the conditions
are connected with AND� Such ��ring� rules compete to put their action
messages on the message list� This competition will soon be discussed in
connection with the apportionment of credit problem�

In the action parts� the wildcard symbols have a di�erent meaning� They
take the role of �pass through� element� The output message of a �ring rule�
whose action part contains a wildcard� is composed from the non�wildcard
positions of the action and the message which satis�es the �rst condition of
the classi�er �this is actually the reason why negations of the �rst conditions
are not allowed�� More formally� the outgoing message �m is de�ned as

�m�i� ��

�
a�i� if a�i� �� �
m�i� if a�i� � �

i � �� k� �
���

where a is the action part of the classi�er and m is the message which
matches the �rst condition� Formally� a classi�er is a string of the form

Cond�� �����Cond�� � � � � �����Condr�Action� �
���

where the brackets should express the optionality of the ��� pre�xes�

Moreover� it can be of advantage to supply the messages with pre�xes�
so�called tags� which identify the origin of the message� Consequently� these
pre�xes must also be appended to the conditions and actions of the classi�
�ers� In this case we must take special care that no action speci�es the pre�x
reserved for the input interface� This process of tagging o�ers new oppor�
tunities to transfer information about the current step into the next step�
This can be accomplished by placing tagged messages on the list which are
not interpreted by the output interface� These messages� which� obviously�
contain information about the previous step� can support the decisions in
the next step� So� appropriate use of tags permits rules to be coupled to act
sequentially� In some sense� such messages are the memory of the system�

To summarize this� a single execution cycle of the production system
consists of the following steps�

�� Messages from the environment are appended to the message list�

	� All the conditions of all classi�ers are checked against the message list
to obtain the set of �ring rules�

�� The message list is erased�

��



�� The �ring classi�ers participate in a competition to place their mes�
sages on the list �see below��


� The winning classi�ers place their actions on the list�

�� The messages directed to the e�ectors are executed�

This procedure is repeated iteratively�

Remark ��� How �� is done� if these messages are deleted or not� and so on�
depends on the concrete implementation� It is� on the one hand� possible to
choose a representation such that each output message can be interpreted by
the e�ectors� On the other hand� it is possible to direct messages explicitely
to the e�ectors with a special tag� In this case� if no messages are directed
to the e�ectors� the system is in a thinking phase�

If a classi�er R� produces a message m�� which is not directed to the
e�ectors� but tagged as an internal message� and m� satis�es a condition of
a classi�er R� in the next timestep� R� is called a consumer of R�� Reversly�
R� is called a supplier of R��

Credit Assignment � The Bucket Brigade Algorithm

As already mentioned� in each timestep t we assign a strength value ui�t
to each classi�er Ri� This strength value represents the correctness and
importance of a classi�er� On the one hand� the strength value in�uences
the chance of a classi�er to place its action on the output list� On the other
hand� the strength values are used by the rule discovery system which we
will soon discuss�

The competition for having the right to post the action together with the
adaptation of the strength values depending on the feedback �payo�� from
the environment is called the bucket brigade algorithm� It can be regarded
as a simulated economic system in which various agents� in our case the
classi�ers� participate in an auction� where the chance to buy the right to
post the action depends on the strength of the agents�

In one of the simpliest forms� the bid of a classi�er is de�ned as

bi�t �� cL � ui�t � si� �
�
�

where cL � �
� �� is a learning parameter� similar to learning rates in arti�cial
neural nets� and si is the speci�ty� the number of non�wildcard symbols in
the condition part of the classi�er� If cL is chosen small� the system adapts
slowly� If it is chosen too high� the strengths tend to oscillate chaotically�
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Then� depending on the bids� the rules� which are allowed to place their
output messages on the list� the so�called winning agents� are selected� In the
simpliest case this can be done by a random experiment� For each bidding
classi�er it is decided randomly� if it wins or not� where the probability that
it wins is proportional to its bid�

P�ri wins� ��
bi�tP

j�Satt

bj�t
� �
���

where Satt is the set of indices which belong to satis�ed classi�ers at time t�

Obviously� in this approach more than one winning classi�ers are allowed�
Of course� other selection schemes are reasonable� for instance the highest
bidding agent wins alone� This can be necessary to avoid that two winning
classi�ers direct mutually exclusive actions to the e�ectors�

Now let us discuss how payment from the environment is distributed and
how the strengths are adapted� For this purpose� let us denote the set of
classi�ers� which have supplied a winning agent ri in step t� with Si�t� Then
the new strength of a winning agent is reduced by its bid and increased by
its portion of the payo� Pt received from the environment�

ui�t�� �� ui�t �
Pt
wt

� bi�t� �
����

where wt is the number of winning agents in the actual time step� A winning
agent pays its bid to its suppliers� which share the bid among each other�
equally in the simpliest case�

ul�t�� �� ul�t �
bi�t
jSi�tj

�rl � Si�t �
����

If a winning agent has also been active in the previous step and supplies an�
other winning agent� the value above is additionally increased by one portion
of the bid the consumer o�ers� In the extreme case� that two winning agents
have supplied each other mutually� the portions of the bids are exchanged
in the manner as presented above� The strengths of all other classi�ers
rn� which are neither winning agents nor suppliers of winning agents� are
reduced by a certain factor �they pay a tax��

un�t�� �� un�t � ��� T �� �
��	�

where T � �
� �� is a small value� The intention of taxation is to punish
classi�ers which never contribute anything to the output of the system�
With this concept redundant classi�ers� which never become active� can be
�ltered out�

The idea behind credit assignment in general and bucket brigade in par�
ticular is to increase the strengths of rules which have set the stage for later
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Figure 
�	� The bucket brigade principle

successful actions� The problem of determining such classi�ers� which were
responsible for conditions under which it was later on possible to receive a
high payo�� can be very di�cult� Consider for instance the game of chess
again� in which very early moves can be signi�cant for a late success or
failure� However� the bucket brigade algorithm can solve this problem� al�
though� obviously� strength is only transferred to the suppliers which were
active in the previous step� Each time the same sequence is activated� a
little bit of the payo� is transferred one step back in the sequence� It is
easy to see� that repeated successful execution of a sequence can increase
the strengths of all coupled classi�ers involved�

Example ��� Figure 
�	 shows a simple example how the bucket brigade
algorithm works� For simplicity� we consider a sequence of �ve classi�ers
which always bid �
 percents of their strength� Only after the �fth step�
after the activation of the �fth classi�er� a payo� of �� is received� The
further future of this sequence would be the one shown in �gure 
��� It is
easy to see from this example that the reinforcement of the strengths is slow
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Figure 
��� Repeated bucket brigade

at the beginning but it accelerates later� Exactly this property contributes
much to the robustness of classi�er system � they tend to be cautious at
the beginning� trying not to rush conclusions� but� after a certain number of
similar situations� the system adopts the rules more and more� Figure 
��
shows a graphical visualization of this fact interpreting the table shown in
�gure 
�� as a two�dimensional surface�

From example 
�
 and the considerations above it might be clear� that
the bucket brigade algorithm fails if the number of environmental states is
so large that the system never observes the same sequence more than once�

Rule Generation

While the apportionment of credit system just judges the rules� the purpose
of the rule discovery system is to eliminate low��tted rules and to replace
them by hopefully better performing ones� The �tness of a rule is given by
its strength� Since the classi�ers of a Holland classi�er system themselves
are strings� the adaptation of a genetic algorithm to the problem of rule
induction is straightforward� though many variants are reasonable� Almost
all variants have in common that the GA is not invoked in each time step�
but only every n�th step� where n has to be set such that enough information
about the performance of new classi�ers can be obtained in the meantime�

A� Geyer�Schulz� for instance� suggests the following procedure �see �Geyer�
Schulz� ���
���

�




0

10

20

100

150

200

250

300

0

0

0

0

0

Figure 
��� A graphical representation of the table shown in �gure 
��

�� select a subpopulation of a certain size at random�

	� take this subpopulation as actual generation and compute a new gen�
eration by applying the genetic operations selection� crossing over� and
mutation as described in ����	�

�� merge the new subpopulation with the rulebase omitting duplicates
and replacing the worst classi�ers�

However� this process of acquiring new rules has an interesting side e�ect�
It is more than only the exchange of parts of conditions and actions� Since
we have not stated restrictions for manipulating tags� the genetic algorithm
can recombine parts of established tags to invent new tags� In the following�
tags spawn related tags establishing new couplings� These new tags survive
if they contribute to useful interactions� In this sense� the GA additionally
creates experience�based internal structures�

Since we have discussed all the important components of a classi�er
system of the Michigan type in detail� we can now turn to the application
of such techniques to the acquisation of fuzzy rules�

����� Fuzzy Classi�er Systems of the Michigan Type

The previous considerations about classi�er systems have been made with
just the objective in mind to generalize them to the case of online fuzzy�
rule�acquisation� While crisp classi�er systems of the type discussed above
had been introduced by J� H� Holland in ����� their fuzzi�cation awaited
discovery many years� The �rst papers dealing with that interesting topic
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were by M� Valenzuela�Rend)n �Valenzuela�Rend)n� ����a� and �Valenzuela�
Rend)n� ����b�� Since then not very much has happened� There is at least
one other paper by A� Bonarini ��Bonarini� ������ dealing with the online
learning of incomplete fuzzy rule sets for an autonomous robot� It is not
obvious why this �eld is treated like a stepchild� although the results seem
to be encouraging� However� these ideas are really worth being discussed�

We concentrate on M� Valenzuela�Rend)n�s ideas here� He has intro�
duced a fuzzy classi�er system which is� more or less� with little modi�ca�
tions� a generalization of an ordinary Holland classi�er system�

The Production System

Here we consider� as M� Valenzuela�Rend)n did� a system with real�valued
input and output� such as a fuzzy controller� The system has� unlike ordinary
fuzzy controllers� three di�erent types of variables � input�� output�� and
internal variables� As we will see later� internal variables are for the purpose
of storing information about the near past� They correspond to the specially
tagged messages in the crisp case� For the sake of generality and simplicity�
all the universes of discourse� which are intervals in this case� are linearly
transformed to the unit interval �
� ��� For each variable the same number of
membership functions n is assumed� These membership functions are �xed
at the beginning� They are not changed throughout the learning process�
M� Valenzuela�Rend)n took bell�shaped function which divided the interval
rather equally� Of course� other types can be used� what actually has no
e�ect on our considerations here�

A message is then a binary string of length l�n� where n is the number
of membership functions de�ned above and l is the length of the pre�x �tag��
which identi�es the variable to which the message belongs� A good choice
for l would be log�K� where K is the total number of variables we want to
consider� To each message an activity level� which represents a truth value�
is assigned� Consider for instance the following message �l � �� n � ���


�
��z�
��

� 


�
� 
��

Its meaning is �Input no� 	 belongs to fuzzy set no� � with a degree of 
����
On the message list only so�called minimal messages are used� i�e� messages
with only one � in the part which identi�es the numbers of the fuzzy sets�

Classi�ers again consist of a �xed number r of conditions and an action
part� Note that� in this approach� no wildcards and no ��� pre�xes are
used� Both condition and action part are also binary strings of length l�n�
where the tag and the identi�ers of the fuzzy sets are separated by an colon�
The degree to which such a condition is matched is then� of course� a fuzzy
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�
� Matching a fuzzy condition

truth value between 
 and �� The degree of matching is computed as the
maximal activity of messages on the list� which have the same tag and whose
�s are a subset of those of the condition� Figure 
�
 shows a simple example
how this matching is done� The degree of satisfaction of the whole classi�er
is then computed as the minimum of matching degrees of the conditions�
This is then also the activity level which is assigned to the output message
�i�e� Mamdani inference with T� � TM�� This is exactly the same inference
method as we have discussed in 
���� �see �
�	� and �
��� on page 
���

The whole rulebase consists of a �xed numberm of such classi�ers� Sim�
ilarly to Holland classi�er systems� one execution step of the production
system is done as follows�

�� The detectors receive crisp input values from the environment and
translate them into minimal messages which are then added to the
message list�

	� The degrees of matching are computed for all classi�ers�

�� The message list is erased�

�� The output messages of some matched classi�ers �see later� are placed
on the message list�


� The output messages are translated into minimal messages� For in�
stance� the message 
�
 � 

��
 � 
�
 is split into the two messages

�
 � 


�
 � 
�
 and 
�
 � 

�

 � 
�
�

�� The e�ectors discard the output messages �referring to output vari�
ables� from the list and translate them into instructions to the envi�
ronment�
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From point 	 it can be seen easily that it is of advantage to use fuzzy sets
with local support instead of bell�shaped ones� because� if bell�shaped fuzzy
sets are used� each rule �res in each time step�

Step � is done by a modi�ed Mamdani inference� The sum �instead of
the maximum or another t�conorm� of activity levels of messages� which
refer to the same fuzzy set of a variable� is computed� The membership
functions are then scaled with these sums� Finally� the center of gravity of
the �union� �i�e� maximum� of these functions� which belong to one variable�
is computed�

Credit Assignment

Since fuzzy systems have been designed to model transitions� a probabilistic
auction process as discussed in connection with Holland classi�er systems�
where only a small number of rules is allowed to �re� is not desirable� Of
course� we again assign strength values to the classi�ers�

If we are dealing with a one�stage system� in which payo� for a cer�
tain action is received immediately� where no long�term strategies must be
evolved� we can su�ce with allowing all matched rules to post their outputs
and sharing the payo� among the rules� which were active in the last step�
according to their activity levels in this step� For example� if Rt is the set
of classi�ers� which have been active at time t� and Pt is the payo� received
after the t�th step� the modi�cation of the strengths of �ring rules can be
de�ned as

ui�t�� �� ui�t � Pt �
ai�tP

ri�Rt

ai�t
�ri � Rt� �
����

where ai�t denotes the activity level of the classi�er ri at time t� It is again
possible to reduce the strength of inactive classi�ers by a certain tax�

In the case� that the problem is so complex that long�term strategies
are indispensable� a fuzzi�cation of the bucket brigade mechanism must
be found� While Valenzuela�Rend)n only provides a few vague ideas� we
state one possible variant� where the �ring rules pay a certain value to their
suppliers which depends on the activity level� The strength of a classi�er�
which has recently been active in time step t is then increased by a portion
of the payo� as de�ned in �
����� but it is additionally decreased by a value

bi�t �� cL � ui�t � ai�t� �
����

where cL � �
� �� is again the learning rate� Of course� it is again possible to
incorporate terms which depend on the speci�ty of the classi�er�

This �bid� is then shared among the suppliers of such a �ring classi�er
according to the amount they have contributed to the matching of the con�
sumer� If we consider an arbitrary but �xed classi�er rj which has been
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active in step t and if we denote the set of classi�ers supplying rj � which
have been active in step t� �� with Sj�t� the change of the strengths of these
suppliers can be de�ned as

uk�t�� �� uk�t � bj�t �
ak�t
�P

r�Sj�t

ar�t
�
�rk � Sj�t� �
��
�

It is easy to see� that this can be an appropriate generalization of the bucket
brigade algorithm as described in 
�	���

Rule Discovery

The adaptation of a genetic algorithm to the problem of manipulating clas�
si�ers in our system is again straightforward� We only have to take special
care that tags in conditional parts must not refer to output variables and
that tags in the action parts of the classi�ers must not refer to input variables
of the system�

Analogously to the considerations in 
�	��� if we allow a certain number
of internal variables� the system tends to build internal chains� coupled se�
quences� autonomously� If we allow internal variables� a classi�er system of
this type not only learns stupid input�output actions� it also tries to discover
causal interrelations�

Bonarini�s Modi�cations

A� Bonarini�s paper �Bonarini� ����� is more application�oriented� Not so
much about the details inside is revealed� However� he concentrates on �nd�
ing a small rulebase which only contains important rules� In this approach
the number of rules is allowed to vary between certain boundaries�

The number of rules can be varied in each time step depending on the
number of rules which match the actual situation� This is done by two dual
operations�

�� If the rules� which match the actual situation� are too many� the worst
of them is deleted�

	� If there are too few rules matching the current inputs� a new rule�
whose antecents cover the current state� with randomly chosen conse�
quent value� is added to the rulebase�

The genetic operations are only applied to the consequent values of the rules�
Since the antecedents are generated on demand in the di�erent timesteps�
no taxation is necessary� Bonarini has called this mechanism �cover�detector
algorithm��
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��� Conclusion

While the acquisation of decision tables as brie�y discussed in 
���� is� at
least from the mathematical point of view� a rather boring task� fuzzy genetic
programming and the theory of fuzzy classi�er systems of the Michigan type
are very challenging �elds which are both still in their infancy�

The slowly increasing number of publications� which deal with these
topics� might indicate that they are continuously approaching a promising
future� The �rst challenge is to apply them to more complex problems� All
practical results� which have been published until now� concern with the
applications to comparatively simple examples� Furthermore� the combi�
nation of these two paradigms to design systems� which learn program�like
structures in an online process� could open a completely new� revolutionary
area�
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Chapter �

More about the Combination

of Evolutionary and Fuzzy

Methods

As long as algebra and geometry proceeded along separate paths�
their advance was slow and their applications limited� But when
these sciences joined company they drew from each other fresh
vitality and thenceforward marched on at a rapid pace towards
perfection�

Joseph Louis Lagrange

Of course� one can be of di�erent opinion about the synergism of algebra and
geometry� but� on the contrary� it is undoubted that� whenever two theories
are joined together� both can pro�t from the other� In some sense� this
also applies to the combination of two distinct groups of practical methods
which can� although they are applied in completely di�erent �elds� support
the usefulness and applicability of the respective other one�

In the last two chapters we have discussed two main streams of combining
fuzzy logic and genetic algorithms� Now it is time to conclude this thesis
with a view to other approaches to the combination of these two paradigms�
First� we give a brief overview of methods for optimizing whole controllers�
where� in some sense� fuzzy sets and �rules� are optimized simultaneously�
The second section will deal with a completely di�erent aspect which we
have disregarded until now � the optimization of the hierarchical structure
of a fuzzy system�
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��� Optimizing Whole Controllers

	���� The Ideas of Lee and Takagi

The �rst approach has been introduced by M� A� Lee and H� Takagi and can
be found in �Lee and Takagi� ����c� and �Takagi and Lee� ������ Takagi and
Lee have applied a genetic algorithm to the optimization of a Takagi�Sugeno
controller �note� di�erent Takagi*� which consists of a �nite number of rules
of the form

IF x is Aj THEN y is fj�x�� �����

where fj is an a�ne linear mapping �see 	�
�	��

If the universe of discourse is two�dimensional and if we assume that the
rulebase is consistent and complete� what actually means that each premise
occurs exactly once in the rulebase� ����� can be rewritten as

IF x� is Ai AND x� is Bj THEN y is �ij � x� � �ij � x� � �ij � ���	�

where Ai and Bj are fuzzy subsets of �a�� b�� and �a�� b��� the universes of
discourse of the fuzzy variables x� and x�� respectively� The index i ranges
between � and N�� the number of fuzzy subsets speci�ed for the fuzzy vari�
able x� �see 	��� for comparison�� Analogously� j ranges between � and N��
the number of fuzzy subsets of the fuzzy variable x�� Such a rulebase can
be expressed uniquely with a matrix of the form �compare with the decision
table in 
�����

B� � � � BN�

A�

	

 b��

c��
d��

�
A � � �

	

 b�N�

c�N�

d�N�

�
A

���
���

� � �
���

AN�

	

 bN��

cN��

dN��

�
A � � �

	

 bN�N�

cN�N�

dN�N�

�
A �

In this approach triangular fuzzy sets were used� For the fuzzy subsets
A�� � � � � AN� and B�� � � � � BN� fuzzy partitions as shown in ����	 could be
reasonable� Here we have more degrees of freedom� but without allowing
arbitrary con�gurations which violate a natural ordering of the fuzzy sets�
First of all� the triangular set A� �we only demonstrate that for the �rst
variable� is encoded as already discussed on page 
��

c
m���a���b��

�r�� cm����
��u�� cm����
��v��� �z �
��c	A�


���



The other sets Ai� whose medians must appear in increasing order� are
encoded as

cm����
��ri � ri
�� cm����
��ui� cm����
��vi�� �z �
��c	Ai


�

The consequent parameters are encoded as

cm��a��b����ij� cm��a� �b����ij� cm��a� �b� ���ij�� �z �
��c	Rij


�

where the intervals �a�� b��� �a� � b��� and �a
 � b
 � must be chosen depending
on the needs of the concrete application�

The whole controller can then be encoded by putting the codings of the
fuzzy sets and the codings of the consequent parameters into one string�

c�A�� � � � c�AN�� c�B�� � � � c�BN�� c�R��� � � � � � � c�RN�N��

Obviously� it is determined uniquely by the positions in the string which
consequent parameters belong to which premises�

Takagi and Lee applied their ideas� which have been discussed in a more
general form here� to the problem of balancing an inverted pendulum� a well�
known example in the world of fuzzy control� They used two�point crossing
over with a probability of 
�� and standard mutation with a probability of

�
���� The size of the population was �
� They have reported su�ciently
good results� They also tried out various methods to incorporate a priori
knowledge� such as symmetries� with the intention to reduce the size of the
search space or to support the GA in its search for the optimum� The �tness
measure they used was the number of steps it took to ful�ll a certain balance
criterion� In the case that the pendulum fell over a certain high value was
taken as payo��

The generalization of the techniques presented above to the case of con�
trollers with more than two inputs is� apparently� straightforward� It is easy
to see that the length of the strings depends exponentially on the dimension�

	���� The Nagoya Approach

The second idea goes back to T� Furuhashi� K� Nakaoka� and Y� Uchikawa
from the university of Nagoya� Japan� In their approach a modi�ed kind of
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genetic algorithm is used� Pretentiously� they have called their idea �Nagoya
Approach�� It can be found in �Furuhashi et al�� ���
��

The three authors applied a genetic algorithm to the optimization of a
Mamdani controller for guiding a robot to a certain goal through a room
which contains a moving obstacle� This controller had �ve inputs �compare
with �gure ����

D � � � actual distance from the obstacle�
� � � � angle between the robot and the relative velocity

vR between the robot and the obstacle�
� � � � angle between the actual path of the robot and

the obstacle�
� � � � angle between the actual path and the goal�
� � � � angular velocity of the robot�

and two outputs

u � � � steering angle of the robot�
�v � � � change of the absolute value of the speed of the

robot�

For the input variables they used bell�shaped fuzzy sets� the sets were
additionally scaled with a factor h � �
� �� �see also page ����

x ��� h � e

�x�r��

�u� �����

It is near at hand to use the following coding for sets of this shape�

cm��	����hv� cm��a�b��rv� cm��	�
��uv�

For the output variables ordinary triangular membership functions were used
with the modi�cation that only one o�set was used for both left and right�
Of course� an appropriate coding is �see also ������

cm��a�b��rv� cm��	�
��uv� �

In this approach it was assumed that the whole system is controllable
with a certain �xed number N �concretely �� in this application� of rules of
the shape

IF �Ti�D is AD�i� � is A��i� � is A
�i� � is A��i� � is A��i� THEN
u is Au�i AND �v is A�v�i�

��
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Figure ���� Sketch of the obstacle avoidance problem

where �Ti is an operator which lies between product and the sum� i�e�

�Ti�x� y� �� ti � x � y � ��� ti� � �x� y� with ti � �
� ��� �����

The output of such a rule is computed by deriving the �truth� values� which
need not be lower or equal than �� of the premises using the operator �Ti and
by applying a modi�ed Mamdani inference �actually the same as in 
�	�	 on
page ��	� for both output variables independently� A rule of this kind can
be encoded as

AD�iz �� �
h r u

A
�iz �� �
h r u

A��iz �� �
h r u

A��iz �� �
h r u

A	�iz �� �
h r u ti

Au�iz �� �
r u

A�v�iz �� �
r u

Apparently� in this approach all three sets of parameters are tried to be
optimized� the fuzzy sets� the rules� and the operations as well�

The most interesting novelty of this paper is that a new modi�cation
of an ordinary genetic algorithm is introduced� It provides a better local
improvement of single rules� The idea is the following� The whole individ�
ual is divided into Np parts which can be judged independently� For each
individual of the actual population a certain number M of clones of each
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part are produced� M � � of them are mutated� The best clone of each part
is then implanted into the new individual� After this step� normal selection
and crossing over are performed� Normally� mutation yields bad individuals
very often� because one modi�cation can deteriorate the �tness of the whole
individual� In this approach various local phenomena are judged indepen�
dently� The positive e�ect is a better local improvement of the individuals�
The following algorithm gives a more detailed view of this procedure�

Algorithm 
�� Let fi denote the local �tness function which judges the
local �tness of part no� i� g�i� denotes the i�th part of an individual g�

t �� ��
Compute initial population B� � �b���� � � � � bm����

WHILE stopping condition not ful�lled DO

BEGIN

FOR i �� � TO m DO

BEGIN

FOR j �� � TO Np DO

BEGIN

�� produce M clones and mutate them ��

Clone� �� bi�t�j	�
FOR k �� 
 TO M DO

BEGIN

Clonek �� bi�t�j	�
mutate Clonek

END

�� implant the best��tted one into the individual ��

determine Clonel with highest �tness fi�Clonek��
bi�t�j	 �� Clonel

END

END

�� perform selection and crossing over as usual ��

FOR i �� � TO m DO

BEGIN

select an individual g from Bt�

IF Random��� �	 � pC THEN
cross g with a randomly chosen individual of Bt�

bi�t�� �� g
END t �� t� �

END

The �� rules were encoded by putting the coding presented above into
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one long string � three parts with �ve rules in each case� Each part was
evaluated under �ve di�erent simulation conditions� In the case of success�
it received the payo�

� �
�



No� of steps
�

In the case of failure� the payo� was

�


Distance to the goal
�

The simulation space was a rectangular room with size ��
�	�
� The �tness
of the whole individual was computed as the sum of the local payo�s of the
three parts� The technique shown above was applied with a population size
of �
� proportional selection� and one�point crossing over� The mutation of
the clones of the parts was done by selecting a parameter randomly and by
replacing this parameter by a uniform random number�

The authors have reported that the best controller of the �
�th genera�
tion was able to guide the robot successfully to the goal under all the �ve
simulation conditions� They compared that with a certain Pitt approach�
It was not even able to yield a set of rules� which was able to perform that
well� after 	�
 generations and an amount of computations� which was two
times larger�

	���� An Approach with Variable Size of the Rulebase

Now we brie�y discuss an approach in which not only the parameters of
a �xed number of rules� but also the size and complexity of the rulebase
are tuned� These ideas were published by T� Fukuda� Y� Hasegawa� and K�
Shimojima in �Fukuda et al�� ���
� and �Shimojima et al�� ���
��

In their approach a Sugeno controller with n inputs consisting of a certain
number of rules of the kind

IF x� is A�i AND � � � AND xn is Ani THEN y is bi ���
�

is considered� where Aj�i are radial basis fuzzy sets and bi are real values�
One such rule is encoded as

e�i c�A�i� � � � eni c�Ani� cm��ay�by��bi� �

The codings c�Aji� are the same as proposed in ����� on page ��� The
values eji are single bits� the so�called �enable��bits� If such a bit is ��
the membership function which follows the bit is taken into account in the
evaluation of the premise� otherwise this position is considered as a wildcard�

���



what actually means� that the rule does not care about the value of this
variable� If all the enable�bits of a rule are �� the rule is not evaluated�
Obviously� these enable�bits determine the number of rules and the number
of di�erent membership functions� The input�output function of such a
controller is given by �compare with de�nition 	����

Y � R
n �� R

�x � �x�� � � � � xn� ��� Y ��x� ��

NP
i��

�i	�x
�bi

NP
i��

�i	�x


�
�����

where the values

�i��x� ��

��
�


 if all e�i� � � � � eni are 

nQ
j��

�
�� eji �

�
�� �Aji�xj�

��
otherwise

denote the truth values of the premises and N is the total number of rules�
It is easy to see that this function is well�de�ned� whenever at least one rule
is active� otherwise� the output of the system is set fo 
 in advance�

The enable�bits are intended to allow generalizing rules which can de�
crease the size of a rulebase remarkably� Moreover� since we have a clever
coding for such a controller� which contains generalizing rules� it is possible
to incorporate the number of rules and membership functions in the �tness
function� Then the process of �nding an optimal rulebase� which has� in ad�
dition� a low complexity� can be carried out by a genetic algorithm� Indeed�
the authors have proposed

F �� � � Eavg � � � Emax� � �NR � � �NM �����

as appropriate �tness measure� where

Eavg ��
�

K

KX
k��

�Y ��xk�� yk�
�

is the average square distance between actually obtained outputs Y ��xk� and
desired output yk for the input values �xk�

Emax ��
K

max
k��

�Y ��xk�� yk�
�

is the maximal square distance� NR is the number of active rules and NM is
the number of active membership functions� �� �� �� and � are coe�cients�
which control the priority of the four quality measures� For example� if � was
very high� the genetic algorithm would tend to �nd small rulebases rather
than to take much care of the correctness of the output�

��	



If we �x a crossing over method and a mutation operation� we can apply
an ordinary genetic algorithm to the optimization problem above� Hasegawa�
Fukuda� and Shimojima used two�point crossing over and standard muta�
tion� However� they have additionally introduced a gradient method in order
to support the genetic algorithm�

It is easy to see that the membership functions are di�erentiable� Since
the input�output function ����� is just the composition of di�erentiable func�
tions� it is di�erentiable too� Furthermore� the output for a �xed �x depends
di�erentiably on the parameters� which determine the shape of the radial
basis sets� and on the consequent parameters bi� Thus� the error measure

E ��
�

�

KX
k��

�Y ��xk�� yk�
� � ���
�

where �xk and yk are de�ned as above� depends di�erentiably upon these
parameters� So� it is possible to formulate a conventional gradient method
for minimizing ���
�� One step of such a gradient method �without line
search� is given as

r�Aij ��rAij � kr �
�E
�rAij

q�Aij ��qAij � kq �
�E
�qAij

u�Aij ��uAij � ku �
�E

�uAij

����
���

for all i � �� � � � � N and
for all j � �� � � � � n

b�i��bi � kb �
�E
�bi

for all i � �� � � � � N�

�����

where the values rAij � qAij � uAij � and bi denote the previous iterations and
the values r�Aij � q

�
Aij

� u�Aij � and b�i denote the new iterations� kr� kq� ku� and
kb are again learning parameters� Fukuda� Hasegawa� and Shimojima have
proposed a hybrid method in which the GA is additionally supported by the
gradient method above�

Summarized� the optimization of the whole controller is done by

Algorithm 
��

Compute initial population�

WHILE stopping condition not ful�lled DO

BEGIN

perform one step ����� for each individual�
compute new generation as usual�

END

���
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Figure ��	� Di�cultly interpretable con�gurations of fuzzy sets

This method can be used for the optimization of any Sugeno controller
of the type presented above� In the case of this approach the method was
incorporated in an algorithm which additionally optimizes the hierarchical
structure of a fuzzy system� This approach merits being discussed in its own
right� which will be done in ��	�

	���� Critique

One of the most important advantages of fuzzy systems is that the func�
tions are parameterized in a way which can be interpreted linguistically�
More precisely� it is possible to translate human knowledge into fuzzy rules
and fuzzy sets� but� on the contrary� not every reasonable fuzzy system is
easily interpretable for humans� Consider for instance the con�gurations
shown in �gure ��	� In none of the approaches� which we have discussed
above� cases like these are excluded� Moreover� the probability� that such
di�cultly interpretable con�gurations are obtained� is rather high� An alter�
native� which can help to overcome this problem� is to use fuzzy partitions as
presented in ����	� Obviously� this approach allows less degrees of freedom�
what can reduce the size of the search space and� therefore� speed up the
convergence�

We have seen that the methods for encoding fuzzy controllers are� more
or less� straightforward� Not so surprisingly� a lot of similar ideas have been

���



published� An incomplete list of such papers would be �Castro et al�� ������
�Mitsubuchi et al�� ������ �Surmann et al�� ������ �Kacprzyk� ���
�� �Lin and
Chen� ���
�� �Magdalena and Monasterio� ���
�� and �Yubazaki et al�� ���
��

��� Optimizing Hierarchical Structures of Fuzzy

Systems

Consider for instance a fuzzy system with �� inputs� each with three verbal
values with which we associate fuzzy sets� and one output with �ve verbal
values� Then the total number of di�erent premises� which specify each
variable in the premise� is ��� � �	��
�
 and the total number of rules
with premises of such a kind is � � �	��
�
 � ��
������ Obviously� this is
a size which is not so easy to survey� This complexity entails the necessity
to use either generalizing rules or to prepare a hierarchical structure� which
bundles the information such that the decisions are divided up into a certain
number of subdecisions�

In all our previous considerations we have either dealt with fuzzy con�
trollers without a hierarchical structure or we have assumed that the struc�
ture of a fuzzy system is �xed� In many applications� where the relationships
between the di�erent sets of data are unknown� the preparation of an ap�
propriate hierarchy is a very di�cult task� Of course� it is desireable to have
methods which can help to �nd such a hierarchy� However� there is at least
one paper ��Shimojima et al�� ���
�� by T� Fukuda� Y� Hasegawa� and K�
Shimojima� which we have already discussed in a di�erent context� dealing
with the acquisation of an optimal hierarchical structure applying genetic
algorithms� By the way� the same results have been published in �Fukuda et
al�� ���
��

These four authors have presented a coding for hierarchies which can
then be incorporated in a genetic optimization process which tunes the struc�
ture too� This coding only applies to tree�like structures� Starting point is
a binary tree which consists of a certain number of units �i�e� rulebases��
Fukuda� Hasegawa� and Shimojima have recommended �n
�� where n is the
number of input variables of the whole fuzzy system� Then the numbers of
the units� to which the input variables are connected� are encoded� We only
consider units which are connected to input variables and the units above�
All the others are removed� If there are still units� which have exactly one
input variable as the one and only input� these units are also removed� The
afore said input variables are then connected to the unit above� Figure ���
shows an example for six inputs which illustrates the coding and how the
structure is simpli�ed� Not that the decoding function is not injective in
this case� di�erent genotypes can have the same phenotypes�

��
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Figure ���� Example for coding a hierarchical structure

To this coding all the conventional crossing over and mutation techniques
can be applied without modi�cations� Fukuda� Hasegawa� and Shimojima
have used elementwise two�point crossing over� where one element is a binary
string of length n � �� The value of the i�th element refers to the unit to
which input variable no� i is connected� For mutating such a hierarchy they
have selected one element randomly and replaced the number by a randomly
chosen one� Figure ��� shows an example how two hierarchies are crossed
with elementwise two�point crossing over�

The concept of coding a hierarchy can now be incorporated in a opti�
mization process� One possibility� where the hierarchy is tuned before the
rulebases� can be found in �Shimojima et al�� ���
�� The process of tuning
the hierarchical structure can be outlined as follows�

Algorithm 
��

Initialize variables� �

Choose initial generation� �

WHILE stopping condition not ful�lled DO
BEGIN

tune consequent values� �

compute next generation� �

END

� The complete tree is prepared� For each variable �both input variables
and intermediate ones which transmit information from one unit to the next
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Figure ���� Example for crossing two hierarchical structures
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one�� a certain number of membership functions �e�g� �� is assumed� Ini�
tially� they are set equal for all variables� such that they divide the input
space rather equally�
� Hierarchies are chosen randomly� The consequent parameters of the rules
are initially set to 
�
� The consequent values are tuned for all units from the top to the bot�
tom with the method shown in ������ For this purpose it is necessary to
know the desired output values of all the intermediate units� which is nearly
impossible� In this approach the desired outputs of intermediate units are
computed with the back�propagation method �BP�� The desired output Y�
of a unit U�� which is the k�th input of a unit U�� whose desired output Y�
is known� is approximated by

Y� � Y� �
�E�

�xk
� ������

where E� is the square error between the desired output and the output
actually obtained by the evaluation of U�� By the way� this methods comes
from the theory of arti�cial neural nets �see �Rumelhart and McClelland�
��
�� or �Zurada� ���	� for reference��
	 In this step� normal selection� crossing over� and mutation are applied to
the population of hierarchies� The function ����� is used as �tness function�
The numbers of rules and membership functions are computed as the sums
over all units�

Apparently� this is only a raw search for the optimal fuzzy system� be�
cause the fuzzy sets are �xed� but it is a pretty good method for acquiring
a fairly good hierarchical structure� In order to optimize all the parameters�
when a good hierachy had been found already� the authors have applied the
methods presented in ����� to the hierarchy found by the algorithm above�

Of course� other methods for incorporating the search for an optimal
hierarchical structure in a process of automatically modeling a fuzzy system
are reasonable� For instance� it could be of advantage to tune all the pa�
rameters� including the structure� simultaneously� Obviously� this is a very
new �eld of research with a lot of open questions�

��� Conclusion

This chapter has demonstrated that the �eld of combining genetic algorithms
with fuzzy systems is a very broad one� the possibilities of which are not yet
exhausted� On the other hand� section ��� has shown how hetergeneous this
�eld is and how the approaches� which have been published within the last
years� di�er�
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Appendix A

Mathematical Preliminaries

A�� Symbols and Notations Used in This Text

This section provides de�nitions of commonly used symbols and notations
which every reader should know� Since there are still a lot of di�erent
notations for exactly the same things going around� the purpose of these
lines is to de�ne them exactly in order to avoid misunderstandings�

A���� Sets
 Functions

CA complement of set A
P �A� powerset �set of all subsets� of A
�a� b� closed interval
�a� b� open interval
�a� b�� �a� b� half�open intervals
�� n compact notation for the set f�� � � � � ng
XY set of all functions from X to Y
jAj cardinality �number of elements� of set A

f�A� image �range� of set A 	 X with respect to function
f � X � Y � f�A� �� fy � Y j�x � A � f�x� � yg

f
��B� inverse image of subset B 	 Y with respect to function
f � X � Y � f
��B� �� fx � Xjf�x� � Bg

Im�f� image �range� of function f � X � Y � Im�f� �� f�X�
�M characteristic function of set M 	 X� see chapter 	

for the exact de�nition�

���



A���� Metrics
 Norms

De�nition A�� A function

d � �� � �� R
�

�x� y� ��� d�x� y�

is called a pseudometric on � if and only if it ful�lls the following three
conditions�

�� �x� y � � � x � y �� d�x� y� � 
�

	� �x� y � � � d�x� y� � d�y� x��

�� �x� y� z � � � d�x� z� � d�x� y� � d�y� z��

If �� is replaced by the stronger condition

�x� y � � � x � y �� d�x� y� � 
�

it is called a metric on ��

De�nition A�� Let � be an arbitrary linear vector�space over R� Then a
mapping k�k � �� R

� is called a norm on � if and only if

�� �x � � � x � 
�� kxk � 
�

	� �� � R �x � � � k�xk � j�jkxk�

�� �x� y � � � kx� yk � kxk� kyk�

De�nition A�� For a given function f � � 	 R � R the Lp�norm �if the
integral exists� is de�ned by

kfkp ��

����
���
�R
�

jf�x�jp dx

� �
p

if p � �����

ess sup
x��

jf�x�j if p ���
�A���

For a given sequence �xn�n�N the lp�norm �under the assumption that the
sum exists� is de�ned by

k�xn�n�Nkp ��

����
���
�

�P
n��

jxnj
p

� �
p

if p � �����

sup
n�N

jxnj if p ���
�A�	�

This de�nition can also be applied to real vectors �x � �x�� � � � � xn� � R
n

with obvious modi�cations�
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A�� Basic Elements of Probability Theory

This section describes the basic elements of probability theory as they are
used� in particular� in chapter �� Also some important results� which are
used in proofs of certain theorems in this thesis� are cited� This is not
intended to be a full introduction to probability theory� Further details and
proofs are provided e�g� in �Feller� ���
�� �Feller� ������ and �Parzen� ������

De�nition A�� Let the set � be the sample description space of a ran�
dom phenomenon� Then subsets A 	 � are called events� One�elementary
subsets f�g are called elementary events�

De�nition A�� A system A of subsets of � is called ��algebra over � if
and only if

�� � � A

	� For every A�B � A also AnB � A

�� Every countable union of subsets� which are contained in A� is also in
A�

Remark A�
 For � � R the so�called system B of Borel�measurable sets
is commonly used� It is de�ned as the smallest ��algebra which contains all
intervals� It can be regarded as the ��algebraic closure of the set of intervals�

De�nition A�� Assume that A is a ��algebra over �� Then a mapping
P � A � �
� �� is called a probability measure over A if and only if P��� � �
and the equation

P�

��
n��

An� �

�X
n��

P�An� �A���

holds for pairwise disjoint subsets �An�n�N of A� We denote P�A� with
�probability of event A�� Events A�B with A 
 B � � are called mutually
exclusive events� A triple ���A�P�� where � is the sample description
space� A is a ��algebra over �� and P is a probability measure on A� is
called a probability space�

The following theorem is essential for the probability calculus we discuss
in the following�

Theorem A�	 Let P be a probability measure on A�

	� P��� � 


�	�



�� P�A �B� � P�A� � P�B� for mutually exclusive A�B � A


� P�A �B� � P�A� � P�B�� P�A 
B� for arbitrary A�B � A

�� if A 	 B then P�A� � P�B�

�� if A 	 B then P�BnA� � P�B�� P�A�

�� P�CA� � �� P�A� for every A � A

De�nition A�� Let ���A�P� be a probability space as de�ned in A���
Then a mapping Z � �� R is called a random variable if and only if

�B � B � Z

��B� �� f� � �jZ��� � Bg � A �A���

It can be easily seen that PZ is a probability measure on B with the de�nition
PZ�B� �� P�Z
��B��� This probability measure is called the distribution of
Z�

PZ is a set function and� therefore� hard to handle� It is� of course�
desireable to have a simplies description of the distribution�

De�nition A��� Let Z be a random variable over the probability space
���A�P�� Then the mapping

FZ � R �� �
� ��
x ��� FZ�x� �� P�Z
������ x���

�A�
�

is called the distribution function of Z�

De�nition A���

�� If Im�Z� is a �nite or countable set� the random variable Z is called
discrete� If this is the case� the mapping

fZ � R �� R
�

x ��� fZ�x� �� P�Z
��fxg��
�A���

is called the �probability� density function of Z�

	� If the probability function FZ can be represented by

FZ�x� �

xZ

�

fZ�x�dx� �A���

where fZ � R � R
� is a piecewise continuous function� the random

variable Z is called continuous� Again the mapping fZ is called proba�
bility density function of Z�

�		



De�nition A��� Two arbitrary random variables X� Y over a probability
space ���A�P� are called independent if and only if

�A�B � B � P�Z
��A� 
 Z
��B�� � P�Z
��A�� � P�Z
��B��� �A�
�

De�nition A���

�� A discrete random variable is called integrable if and only ifX
fZ	x
��

jxj � fZ�x� 
��

In this case
E�Z� ��

X
fZ	x
��

x � fZ�x� �A���

is called expectation of random variable Z�

	� A continuous random variable is called integrable if and only if

�Z

�

jxj � fZ�x�dx 
��

In this case

E�Z� ��

�Z

�

x � fZ�x�dx �A����

is called expectation of random variable Z�

The following theorem provides some fundamental identities�

Theorem A��� Let X and Y be arbitrary random variables over a proba�
bility space ���A�P��

	� If X and Y are integrable� then also �X � �Y is integrable� where �
and � are arbitrary real numbers� In addition� the following equation
holds�

E��X� �Y� � �E�X� � �E�Y� �A����

�� If X and Y are independent and X � Y is integrable� the equation

E�X � Y� � E�X� � E�Y� �A��	�

holds�
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