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Abstract

This contribution, �rstly, motivates the need for a new, indistin-
guishability-based approach to fuzzy orderings [1]. The main part is
devoted to the basic theory, especially constructions, representations,
and properties of hulls. Moreover, a general approach to orderings of
fuzzy sets is presented. The current work, however, already concen-
trates on applications in fuzzy control and decision making.

1 Introduction

Orderings play a fundamental role in the design of fuzzy systems�there
might be only a small minority of fuzzy systems in which expressions, such
as `small', `medium', `large', etc. do not occur. At least in the case of real
numbers, the basis for de�ning the semantics of such expressions is, naturally,
the ordering of the real numbers. In general, it is a common way in the design
of fuzzy systems to divide the domains of the system variables into a certain
number of fuzzy sets with respect to the ordering of the domains.

Beyond this low-level use of orderings, relatively few attention has been
paid to the integration of orderings in fuzzy control or related �elds at a
higher level, although there are some interesting points where the use of
orderings could be promising:

• Linguistic approximation

• De�nition of ordering-related hedges, such as `at least', `at most', `be-
tween', for reducing the size of rulebases

• Rule interpolation

Since we are dealing with vague environments, one would naturally ex-
pect fuzzy orderings to be appropriate tools for bridging the gap between
orderings and fuzzy sets. First of all, let us recall the well-known fuzzi�ca-
tions of the classical ordering axioms [2, 3, 7, 9].
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1.1 De�nition Let T be a t-norm and let S be a t-conorm. A binary fuzzy
relation R on a crisp set X is called

1. re�exive if and only if, for all x ∈ X,

R(x, x) = 1,

2. T -antisymmetric if and only if, for all x, y ∈ X, x 6= y implies

T (R(x, y), R(y, x)) = 0,

3. T -transitive if and only if, for all x, y, z ∈ X,

T (R(x, y), R(y, z)) ≤ R(x, z)

4. S-complete if and only if, for all x, y ∈ X, x 6= y implies

S(R(x, y), R(y, x)) = 1,

5. strongly S-complete if and only if, for all x, y ∈ X,

S(R(x, y), R(y, x)) = 1.

6. linear (Zadeh [9]) if and only if, for all x, y ∈ X, either R(x, y) > 0 or
R(y, x) > 0 holds.

It seems to be near at hand to de�ne fuzzy orderings in analogy to the
crisp case (i.e., Zadeh's de�nition [9] but for arbitrary t-norms instead the
minimum t-norm).

1.2 De�nition A re�exive, T -antisymmetric, and T -transitive binary fuzzy
relation is called fuzzy (partial) ordering.

Beside that, there are considerably many other de�nitions [3, 5, 7], most of
them omitting some of the classical axioms. Let us examine in more detail
why this could be desirable.

Consider, for example, the problem how to de�ne a linear/complete fuzzy
ordering of the real numbers which should be a fuzzi�cation of the linear
ordering. A natural requirement on such an ordering would be the following
monotonicity:

∀x, y, z ∈ R : y ≤ z =⇒ R(x, y) ≤ R(x, z) (1)

This is, more or less, a formulation of compatibility between R and ≤, stating
that, for a �xed x, the degree of being greater than x is an increasing function.
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Let us see what happens if we assume such an R to ful�ll the axioms of
De�nition 1.2. First of all, for any x,

R(x, x) = 1.

Then, by taking (1) into account, we obtain that

R(x, y) = 1 ∀y ≥ x.

Now, antisymmetry yields that

R(x, y) = 0 ∀y ≤ x,

and we have shown that only crisp orderings can ful�ll both the axioms of
De�nition 1.2 and (1). Note that linearity/completeness has not even been
taken into acount. Even if re�exivity is omitted, which is not so unusual
[3], linearity/completeness and antisymmetry together imply that R must
be discontinuous on the main diagonal, which could be undesirable in many
applications.

The author is deeply convinced that simply omitting axioms does not
solve the problem su�ciently, since the axioms of classical orderings proved
to be good for centuries; every single one has its own justi�cation�omitting
just opens the �eld for arbitrariness.

The above de�nition of T -antisymmetry is equivalent to

T (R(x, y), R(y, x)) ≤ E=(x, y), (2)

where E= is the crisp equality

E=(x, y) =
{

1 if x = y,
0 otherwise.

One immediately sees that this is indeed a sound fuzzi�cation of the classical
axiom of antisymmetry

(x ≤ y ∧ y ≤ x) =⇒ x = y,

where ≤ is replaced by a fuzzy ordering. The crisp equality on the right
hand side, however, remains unfuzzi�ed. In fact, this seems to contradict to
the nature of vague environments. Thinking of fuzzy orderings as models for
expressions like �approximately smaller/greater or equal�, one immediately
observes that requiring crisp equality is too strong.

The key idea for overcoming all the above di�culties is to replace the
crisp equality in (2) by a fuzzy concept of equality. A rather common tool
for that are fuzzy equivalence relations (other terms are similarity relation
[9], indistinguishability relation [8], and fuzzy equality [4, 6]; we will use
fuzzy equivalence relation since the de�nition is, more or less, a fuzzi�cation
of equivalence relations).
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1.3 De�nition Let T be a t-norm. Then a mapping E : X2 → [0, 1], where
X is an arbitrary crisp set, is called fuzzy equivalence relation with respect
to T , if and only if it sati�es the following three properties:

∀x ∈ X : E(x, x) = 1 (Re�exivity)
∀x, y ∈ X : E(x, y) = E(y, x) (Symmetry)
∀x, y, z ∈ X : T (E(x, y), E(y, z)) ≤ E(x, z) (T -Transitivity)

A fuzzy equivalence relation is called separated if and only if the stricter
re�exivity holds:

∀x, y ∈ X : E(x, y) = 1 ⇐⇒ x = y

1.4 De�nition Let T be a t-norm and let E be a fuzzy equivalence relation
on a set X with respect to T . Then a mapping L : X2 → [0, 1] is called a
fuzzy ordering with respect to T and E, if and only if it sati�es the following
three properties:

∀x, y ∈ X : L(x, y) ≥ E(x, y) (E-Re�exivity)
∀x, y ∈ X : T (L(x, y), L(y, x) ≤ E(x, y) (T,E-Antisymmetry)
∀x, y, z ∈ X : T (L(x, y), L(y, z)) ≤ L(x, z) (T -Transitivity)

L is called a linear fuzzy ordering if for every pair (x, y) either L(x, y) = 1
or L(y, x) = 1 holds.

Obviously, not only the de�nition of antisymmetry, also re�exivity and lin-
earity have been modi�ed. The reasons are the following:

1. Since, in the crisp and in the fuzzy case (cf. De�nition 1.1), the mean-
ing of re�exivity is that equality implies being in relation, there is no
reason to violate this relationship here. The only exception is that the
crisp equality has to be replaced by the fuzzy equivalence as in the
modi�ed de�nition of antisymmetry.

2. If one thinks of fuzzy orderings as fuzzi�cations of crisp orderings,
it seems to be justi�ed to require a degree of 1 where it is known
with certainty that the two values are in relation already in the crisp
sense. Taking re�exivity and the condition (1) into account, it may be
clear that this condition is, although stronger than linearity or (strong)
completeness, still not too strong.

1.5 Lemma Some basic properties:

1. Every fuzzy equivalence relation E with respect to a t-norm T is a fuzzy
ordering with respect to T and itself.

2. Every crisp ordering is a fuzzy ordering with respect to any t-norm and
the crisp equality.
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3. If L is a fuzzy ordering, then the inverse G(x, y) = L(y, x) is also a
fuzzy ordering with respect to the same t-norm and fuzzy equivalence
relation.

4. Every fuzzy ordering is a fuzzy ordering with respect to any weaker
t-norm and the same fuzzy equivalence relation.

5. Every fuzzy ordering in the sense of De�nition 1.2 is a fuzzy ordering
in the new sense with respect to T and the crisp equality.

The last point illustrates in which way the new approach generalizes the
previous one of De�nition 1.2.

2 Constructions and Representations

It is easy to prove that, for every crisp relation E, which is re�exive and
transitive (often called preordering), the symmetric kernel

x M y ⇐⇒ (x E y ∧ x D y)

is an equivalence relation. The fuzzy analogon has been proven by Valverde
[8]. Moreover, there is a strong connection to fuzzy orderings.

2.1 Theorem Let T be an arbitrary t-norm and let L be a re�exive and
T -transitive fuzzy relation (often called a fuzzy preorder). Then L is a fuzzy
ordering with respect to T and the fuzzy equivalence relation

E(x, y) = T (L(x, y), L(y, x)).

From this point of view, the new approach seems to be the hidden removal
of the antisymmetry axiom. One should, however, not neglect that there
is auxiliary information�the fuzzy equivalence relation�which allows to
control the behavior and in�uence of antisymmetry. The problem is rather
the generality of fuzzy equivalence relations than the generality of fuzzy
orderings.

The next theorem shows how to de�ne a fuzzy ordering on a product
space provided that there are fuzzy orderings of each component.

2.2 Theorem Let X1, . . . , Xn be crisp sets and let T be an arbitrary t-norm.
If (L1, . . . , Ln) and (E1, . . . , En) are families of fuzzy relations such that, for
all i ∈ {1, . . . , n},

1. Li and Ei are binary fuzzy relations de�ned on Xi,

2. Ei is a fuzzy equivalence relation on Xi with respect to T ,
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3. Li is a fuzzy ordering on Xi with respect to Ei and T ,

then the fuzzy relation

L̃ : (X1 × · · · ×Xn)2 −→ [0, 1]

((x1, . . . , xn), (y1, . . . , yn)) 7−→
n

T
i=1

Li(xi, yi)

is a fuzzy ordering with respect to T and the fuzzy equivalence relation

Ẽ((x1, . . . , xn), (y1, . . . , yn)) =
n

T
i=1

Ei(xi, yi).

As already promised, the new model is able to fuzzify crisp linear order-
ings in a way, such that condition (1) is ful�lled. After one prerequisite, we
can show how.

2.3 De�nition Let . be a crisp ordering on X and let E be a fuzzy equiva-
lence relation on X. E is called compatible with ., if and only if the following
implication holds for all x, y, z ∈ X:

x . y . z =⇒ (E(x, z) ≤ E(y, z) ∧ E(x, z) ≤ E(x, y)). (3)

For an arbitrary x ∈ X, the property (3) can be interpreted as follows: The
mapping f(y) := E(x, y) is increasing for y . x and decreasing for y & x.

2.4 Theorem Let L be a binary fuzzy relation on X and let E be a fuzzy
equivalence relation E with respect to an arbitrary t-norm T . Then the fol-
lowing two statements are equivalent:

1. L is a linear fuzzy ordering on X with respect to T and E.

2. There exists a linear ordering . the relation E is compatible with such
that L can be represented as follows:

L(x, y) =
{

1 if x . y
E(x, y) otherwise

(4)

Theorem 2.4 states that linear fuzzy orderings are uniquely characterized as
unions of crisp linear orderings and fuzzy equivalence relations. In this sense,
linear fuzzy orderings are straightforward fuzzi�cations of crisp linear order-
ings, where the fuzzy component can be attributed to a fuzzy equivalence
relation.
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3 Hulls and Hedges

3.1 De�nition Let R be an arbitrary fuzzy relation on a domain X and
let A be a fuzzy subset of X. Then the hull of A with respect to R and a
t-norm T is de�ned as

HR(A)(x) = sup{T (A(y), R(y, x) | y ∈ X}.

If R is a fuzzy equivalence relation on X with respect to T , the hull is often
called extensional hull, which we will denote with the symbol EXT(A). If
R is a fuzzy ordering, the symbol ATL(A) (`at least A') will be used for
the hull. Moreover, for the hull with respect to the inverse fuzzy ordering
G(x, y) = L(y, x), the symbol ATM(A) (`at most A') will be used.

3.2 De�nition For a fuzzy subset A of a domain X, which is equipped with
an ordering ., we de�ne the following operators (left-to-right and right-to-
left continuations, convex hull):

LTR(A)(x) = sup{µA(y)|y . x}
RTL(A)(x) = sup{µA(y)|x . y}
CVX(A)(x) = min(LTR(A)(x),RTL(A)(x))

It is not di�cult to prove that LTR and RTL are hull operators with respect
to the following crisp orderings:

LTR(A) = HR1(A) where R1(x, y) =
{

1 if x . y
0 otherwise

RTL(A) = HR2(A) where R2(x, y) =
{

1 if x & y
0 otherwise

3.3 Theorem Provided that L is a linear fuzzy ordering of a domain X
with respect to a fuzzy equivalence relation E and a t-norm T , for every
fuzzy subset A in X, the equalities

ATL(A) = LTR(EXT(A)) = EXT(LTR(A))
ATM(A) = RTL(EXT(A)) = EXT(RTL(A))
ECX(A) = CVX(EXT(A)) = EXT(CVX(A))

hold, where ECX(A) (extensional convex hull) is de�ned in the following way:

ECX(A)(x) = min(ATL(A)(x),ATM(A)(x))

We have seen that the ordering-related hedges �at least� and �at most� can
be de�ned as hulls. Moreover, these de�nitions can be used to de�ne other
hedges. Some examples, where { is the complement with respect to some
generalized negation n and S is a t-conorm such (T, S, n) is a De-Morgan
triple [3]:
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1. Strictly greater than A:

SGT(A) = ATL(A) ∩T {(ATM(A))

2. Strictly less than A:

SLS(A) = ATM(A) ∩T {(ATL(A))

3. Within A:
WIT(A) = ECX(A) ∩T {(EXT(A))

4. Between A and B:

BTW(A,B) = (ATL(A) ∩T ATM(B)) ∪S (ATM(A) ∩T ATL(B))

5. Strictly between A and B:

SBT(A,B) = (SGT(A) ∩T SLS(B)) ∪S (SLS(A) ∩T SGT(B))

4 Ordering Fuzzy Sets

One of the most important o�springs of the new theory is a general way how
to de�ne (pre)orderings of fuzzy sets of an arbitrary linearly ordered set with
the possibility to incorparate indistinguishability.

4.1 Theorem If L is a linear fuzzy ordering on a domain X, then the fol-
lowing binary relation, which is de�ned on F(X), the set of fuzzy subsets of
X,

A . B ⇐⇒ ATL(A) ⊃ ATL(B) ∧ATM(A) ⊂ ATM(B)

is re�exive and transitive, where the symmetric kernel of . is uniquely char-
acterized as

A ∼ B ⇐⇒ ECX(A) = ECX(B).

We have found a preordering of fuzzy sets, which allows us to compare
two arbitrary fuzzy sets. Unlike other approaches, where the restriction to
a special class of fuzzy sets is made at the beginning, this approach can be
applied to any di�erent kind of fuzzy subsets of a linearly ordered domain.
In particular, no other assumptions about the structure of the space X (e.g.,
completeness, restriction to real numbers or intervals, etc.) are made. The
only restriction is that this �ordering� cannot distinguish between fuzzy sets
with equal extensional convex hulls.

For many problems, it can be su�cient to treat fuzzy sets with the same
extensional convex hull as equivalent. If, for what reasons ever, one is in-
terested in a fully antisymmetric ordering in the crisp sense, it is su�cient
to �nd orderings of all equivalence classes. Then, by applying lexicographic
composition, an ordering of fuzzy sets is obtained, where the coarse compar-
ison is carried out by the above preordering.
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