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Abstract

Ordering-based modifiers can be particularly useful in fuzzy control and other fields
related to fuzzy systems. This paper deals with the construction of such modifiers by means
of hull operators with respect to fuzzy orderings.
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1 Introduction

Already in their beginning, fuzzy systems were considered as appropriate tools for controlling
complex systems and for carrying out complicated decision processes [12]. It is well-known
and easy to see that, if rule bases are represented as complete tables, the number of rules grows
exponentially with the number of variables—a fact which can be regarded as a serious limitation
in terms of surveyability and interpretability.

Almost all fuzzy systems make implicit use of orderings. More specifically, it is quite
common to decompose the universe of a system variable into a certain number of fuzzy subsets
by means of the ordering of the universe—an approach which is often reflected in labels like
`small', `medium', or `large'. We will now demonstrate by means of a simple example how such
information can be used to reduce the size of a rule base while improving expressiveness and
interpretability. Consider a typical PD-style fuzzy controller with two inputs e, ė and one output
variable f , where the universes of all these variables are covered by five fuzzy sets labeled `NB',
`NS', `Z', `PS', and `PB':

e\ė NB NS Z PS PB

NB NB NB NB NS Z
NS NB NB NS Z PS
Z NB NS Z PS PB

PS NS Z PS PB PB
PB Z PS PB PB PB�
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One possibility to reduce the size of this rule base is to take neighboring rules with the same
consequents, such as,

IF e is `NB' AND ė is `NB' THEN f is `NB'
IF e is `NS' AND ė is `NB' THEN f is `NB'
IF e is `Z' AND ė is `NB' THEN f is `NB'

and to replace them by a single rule like the following one:

IF e is `at most Z' AND ė is `NB' THEN f is `NB'

Of course, there is actually no need to do so in such a simple case. Anyway, grouping neigh-
boring rules by means of expressions, such as, `at least', `at most', or `between', could help to
reduce the size of larger rule bases considerably.

In addition, such elements can be useful in rule interpolation. Sometimes, when experts or
automatic tuning procedures only provide an incomplete description of a fuzzy rule base, it can
still be necessary to obtain a conclusion even if an observation does not match any antecedent
in the rule base [5]. Moreover, it is considered as another opportunity for reducing the size of
a rule base to store only some representative rules and to interpolate between them [6]. In any
case, it is indispensable to have criteria for determining between which rules the interpolation
should take place. Beside distance, orderings play a fundamental role in this selection. As an
alternative to distance-based methods [6], it is possible to fill the gap between the antecedents
of two rules using a fuzzy concept of `between', which leads us to the ordering-based modifiers
mentioned above.

The fact remains that we are still lacking a way how to compute such expressions in the
presence of fuzziness. In order to have a universal approach, which is applicable in a wide
variety of practical problems, at least the following two properties should be satisfied:

(i) If there is a predefined notion of fuzzy similarity in the given environment, the above
operators should take it into account. Considering the example of the height of people,
this means that `at least 180' should not exclude 179.9 completely, because the two values
are almost indistinguishable.

(ii) For using these expressions as modifiers in the language of a rule-based fuzzy system,
they should be applicable to fuzzy sets, because the atomic expressions are usually repre-
sented by fuzzy sets instead of crisp values.

Let us consider the case of a crisp ordering � first. For a single crisp value x, the set `at
least x' can be defined as � y � x � y  . This notion can be generalized to crisp sets, where, for an
arbitrary crisp set M, `at least M' can be defined as follows:� y �"! x # M : x � y  (1)

We will discuss a way how to generalize the definition in Equation (1) such that, firstly, it can
be applied to fuzzy sets and, secondly, the crisp ordering � can be replaced by a fuzzy concept
of ordering which also takes indistinguishability into account.

In the following, assume that all t-norms we deal with are at least left-continuous and that
the symbols $ , % , and & , as usual, denote minimum intersection, maximum union, and the fuzzy
complement with respect to the standard negation NS ' x (*) 1 + x, respectively.



2 Fuzzy Orderings and their Hull Operators

We have mentioned already that it can be desirable to consider gradual similarity, too. Hence,
before going into more detail, we briefly recall the common concept of fuzzy similarity or
indistinguishability—fuzzy equivalence relations [4, 9, 11].

Definition 1. A mapping E : X 2 , - 0 . 1 / is called a fuzzy equivalence relation on the domain X
with respect to a t-norm T , short T -equivalence, if and only if it satisfies the following axioms:0

x # X : E ' x . x (1) 1 (reflexivity)0
x . y # X : E ' x . y (1) E ' y . x ( (symmetry)0
x . y . z # X : T ' E ' x . y (2. E ' y . z (3(*4 E ' x . z ( (T -transitivity)

Now we turn to the definition of a gradual concept of ordering which also takes the strong
connection between similarity and ordering into account [1].

Definition 2. A function L : X 2 ,5- 0 . 1 / is called a fuzzy ordering on X with respect to a t-norm
T and a T -equivalence E, for brevity T -E-ordering, if and only if it satisfies the following three
axioms: 0

x . y # X : E ' x . y (64 L ' x . y ( (E-reflexivity)0
x . y # X : T ' L ' x . y (2. L ' y . x (3(74 E ' x . y ( (T -E-antisymmetry)0
x . y . z # X : T ' L ' x . y (2. L ' y . z (8(*4 L ' x . z ( (T -transitivity)

L is called strongly linear if and only if , for every pair ' x . y ( , either L ' x . y (7) 1 or L ' y . x (9) 1
holds.

For more details on fuzzy orderings, their properties and applications, the reader is referred
to [1]. We just mention that, by replacing the fuzzy equivalence relation E by the crisp equality,
the well-known definition of fuzzy partial orderings [11] is obtained. Moreover, one easily
verifies that this still includes crisp orderings as well.

After providing these basics, we can now turn back to the problem of generalizing (1).
Rewriting this definition a little, we obtain

x # `at least M' :<; =>! y # X : y # M ? y � x @�A
If we replace M by a fuzzy set A and � by a fuzzy ordering L, it just remains to define proper
fuzzifications of the existential quantifier and the Boolean conjunction ? . Closely related to
fuzzy predicate logic [3], we will take the supremum and the underlying t-norm T , respectively,
which results in the following generalization:

µ`at least A' ' x (1) sup � T ' µA ' y (2. L ' y . x (8(B� y # X  (2)

Actually, this is nothing else than the hull of A with respect to L [7], alternatively called (full)
image of A under L [2]. For simplicity, we will abbreviate this operator with ATL.

Analogously, it is possible to define a fuzzy concept of `at most' just by taking the inverse
ordering G ' x . y (1) L ' y . x (

µ`at most A' ' x (1) sup � T ' µA ' y (2. L ' x . y (8(B� y # X  (3)

which will be denoted ATM in the following.



3 Basic Properties of Ordering-Based Modifiers

The question arises whether there is a correspondence between the modifiers ATL and ATM
and the so-called extensional hull—the hull with respect to the underlying fuzzy equivalence
relation E. We will show that, if a fuzzy ordering can be represented as the union of a crisp
ordering and a fuzzy equivalence relation, this representation carries over to the operators ATL
and ATM as well. For proof details, the reader is referred to [1].

In the following, assume that L is a given T -E-ordering, where the t-norm T and the fuzzy
equivalence relation E are supposed to be fixed.

Definition 3. A fuzzy set A is called extensional (with respect to E) if and only if0
x . y # X : T ' µA ' x (2. E ' x . y (8(64 µA ' y (CA

The smallest extensional superset of A is called extensional hull of A and denoted with EXT ' A ( .
It is rather easy to show [7] that—in analogy to (2) and (3)—the following representation holds:

µEXT D A E ' x (1) sup � T ' µA ' y (2. E ' y . x (8(B� y # X  
Definition 4. Provided that the domain X is equipped with some crisp ordering � (not neces-
sarily linear), a fuzzy subset A of X is called convex (compare with [8, 10]) if and only if0

x . y . z # X : x � y � z )*; µA ' y (7F min ' µA ' x (C. µA ' z (8(CA
Proposition 5. For any fuzzy set A, the sets ATL ' A ( and ATM ' A ( are extensional. Moreover,
if a crisp ordering � is a subrelation of L, i.e.,0

x . y # X : x � y )*; L ' x . y (*) 1 .
then ATL ' A ( and ATM ' A ( are convex.

Definition 6. The T -E-ordering L is called a direct fuzzification of a crisp ordering � if and
only if it admits the following resolution:

L ' x . y (*)HG 1 if x � y
E ' x . y ( otherwise

It is worth to mention that strongly linear fuzzy orderings are uniquely characterized as
direct fuzzifications of linear orderings.

Theorem 7. Let L be a direct fuzzification of a crisp ordering � . Then the following holds:

ATL ' A (*) EXT ' LTR ' A (8(I) LTR ' EXT ' A (8(I) EXT ' A (�% LTR ' A ( (4)

ATM ' A (*) EXT ' RTL ' A (8(I) RTL ' EXT ' A (8(I) EXT ' A (�% RTL ' A ( (5)

The operator LTR denotes the hull with respect to � while RTL stands for the hull operator
with respect to the inverse relation of � :

µLTR D A E ' x (*) sup � µA ' y (J� y � x  
µRTL D A E ' x (*) sup � µA ' y (J� x � y  

Moreover, ATL ' A ( is the smallest superset of A which is extensional and has a non-decreasing
membership function. Analogously, ATM ' A ( is the smallest superset of A which is extensional
and has a non-increasing membership function.



A
EXTKIK�L EXT M A N

LTR OOP LTR OOP
LTR M A N EXTKIK�L ATL M A N

Figure 1: A commutative diagram depicting the relationship (4) for a given fuzzy set A.

The correspondences (4) and (5) can be interpreted as a commutative diagram which is
visualized in Figure 1.

In Proposition 5, we have already clarified the convexity of ATL ' A ( and ATM ' A ( . Now let
us turn to a deeper investigation of convexity in this context.

Lemma 8. Assume that � is an arbitrary, not necessarily linear ordering. Then the fuzzy set

CVX ' A (I) LTR ' A (�$ RTL ' A (
is the smallest convex superset of A.

Theorem 9. With the assumptions of Theorem 7 and the definition

ECX ' A (I) ATL ' A (�$ ATM ' A (2.
the following representation holds:

ECX ' A (I) EXT ' CVX ' A (8(I) CVX ' EXT ' A (8(I) EXT ' A (�% CVX ' A (
Furthermore, ECX ' A ( is the smallest superset of A which is extensional and convex.

Figure 2 shows an simple example demonstrating the actual meaning of the operators ATL
and ATM as well as the correspondences of Theorem 7:

E ' x . y (1) max ' 1 +Q� x + y �R. 0 (
L ' x . y (*)SG 1 if x 4 y

max ' 1 + x T y . 0 ( otherwise

One easily verifies that E is, indeed, a TL-equivalence on the real numbers and that L is a TL-E-
ordering, which directly fuzzifies the natural ordering of real numbers 4 , where TL stands for
the Łukasiewicz t-norm

max ' x T y + 1 . 0 (2A
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Figure 2: A fuzzy set A # F 'VU ( and the results which are obtained when applying various
ordering-based hull operators.

4 More Ordering-Based Operators

The previous discussions enable us to define some other ordering-based operators which could
be useful in applications. In the following, assume that L is a T -E-ordering on the domain X .

Definition 10. Let A be an arbitrary fuzzy subset of X . Then we can define the following unary
modifiers:

1. `Strictly greater than A' (SGT ' A ( ):
SGT ' A (1) ATL ' A (�$W& ECX ' A (

2. `Strictly less than A' (SLS ' A ( ):
SLS ' A (1) ATM ' A (�$W& ECX ' A (

3. `Within A' (WIT ' A ( ):
WIT ' A (I) ECX ' A (�$W& EXT ' A (



Note that SGT ' A ( does not necessarily coincide with the hull of A with respect to the dual
relation of L. The same applies to SLS ' A ( and the complement relation of L. The operator WIT
provides a method for extracting “holes” in non-convex fuzzy sets, where, obviously, WIT ' A (
is empty if A is convex.

Definition 11. For two fuzzy subsets A . B # F ' X ( , we can define the following two binary
modifiers:

1. `Extensional convex closure of A and B' (ECL ' A . B ( ):
ECL ' A . B (I) ECX ' A % B (

2. `Between A and B' (BTW ' A . B ( ):
BTW ' A . B (I) WIT ' A % B (

5 Conclusion

This paper shows a constructive and intuitive way to define general concepts of fuzzy `at least'
and `at most'. These two basic operations can be used easily to define other ordering-based
modifiers and connectives, such as, `between'.

We have seen in which areas these modifiers and connectives can be useful. It remains to
clarify the properties of these operators in connection with fuzzy inference. In particular, one
may argue that a substitution of rules, as in the example in Section 1, does not necessarily result
in the same input-output behavior. Hence, it is desirable, on the one hand, to study sufficient
conditions under which the substitution of rules results in the same input-output behavior and,
on the other hand, to study how drastic these changes really are in analytical terms.
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