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Abstract— The aim of this contribution is to point
out the importance of interpretability of fuzzy rule-based
systems. We try to approach this key property axiomati-
cally, as a starting point, restricting to interpretability of
linguistic variables (in Zadeh’s sense). The proposed ap-
proach is underlined with an intuitive example. Finally,
the benefits of considering interpretability in design and
tuning of fuzzy systems are discussed.

1 Introduction

The brilliant idea of L. A. Zadeh’s early work was to uti-
lize what he called “fuzzy sets” as mathematical models
of linguistic expressions which cannot be represented in
the framework of classical binary logic and set theory in
a natural way. In the introduction of his epoch-making
article on fuzzy sets [17], he writes:

“More often than not, the classes of objects en-
countered in the real physical world do not have
precisely defined criteria of membership. [... ]
Yet, the fact remains that such tmprecisely de-
fined “classes” play an important role in hu-
man thinking, particularly in the domains of
pattern recognition, communication of informa-
tion, and abstraction.”

Fuzzy systems, which take advantage of this concept,
became a tremendously successful paradigm—a remark-
able triumph which started with well-selling applications
in consumer goods implemented by Japanese engineers.
The reasons for this development are manifold; however,
one is usually confronted with the following “classical”
arguments:

(1) The main difference between fuzzy systems and
other control or decision support systems is that
they are parametrized in an interpretable way—by
means of rules consisting of linguistic expressions.
Fuzzy systems, therefore, allow rapid prototyping
as well as easy maintenance and adaptation.

(2) Fuzzy systems offer completely new opportunities
to deal with processes for which only a linguistic
description is available. They allow to achieve a
robust, secure, and reproducible automation of such
tasks.

(3) Even if conventional strategies can be employed, re-
formulating a system’s actions by means of linguis-
tic rules can lead to a deeper understanding of its
behavior.

We would like to raise the question whether fuzzy
systems, as they appear in daily practice, really reflect
these—undoubtedly nice—advantages. One may observe
that the possibility to estimate the system’s behavior by
reading and understanding the rule base only is a ba-
sic requirement for the validity of the above points. If
we adopt the usual wide understanding of fuzzy systems
(rule-based systems incorporating vague linguistic ex-
pressions), we can see, however, that this property—let
us call it interpretability—is not guaranteed by defini-
tion.

In our opinion, interpretability should be the key prop-
erty of fuzzy systems. If it is neglected, one ends up in
nothing else than black-box descriptions of input-output
relationships for which, without any doubt, other meth-
ods which are computationally less expensive could be
employed (e.g. neural networks, classical interpolation,
statistical methods, etc.).

To summarize the above arguments, we state that
fuzzy systems do not offer “white-box” descriptions of
input-output relationships by definition. Beside this key
statement, it is the purpose of this paper to give a con-
structive answer how interpretability can be defined in a
way which is intuitive and mathematically exact. As a
first approach, we leave aspects of fuzzy inference aside
and concentrate on the interpretability of verbal values
of a linguistic variable. Finally, the practical relevance
of these considerations for design and tuning procedures
will be explained.
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2 Formal Definition

Since it has more or less become standard and offers
much freedom, in particular with respect to integra-
tion of linguistic modifiers and connectives, we start
from Zadeh’s original definition of linguistic variables
[18, 19, 20].

Definition 1. A linguistic variable is a quintuple of the
form

(A, T(A),U,G, M),
where A, T(A), U, G, and M are defined as follows:

(1) A is the name of the linguistic variable.

(2) T(A) is the set of verbal (linguistic) values of A (the
so-called term set).

(3) U is the universe of discourse of variable A.

(4) G is the definition of the underlying grammar of the
term set.

(5) MisaT(A) — F(U) mapping which assigns a fuzzy
subset of U to each verbal value from T'(A).

In the following, unless indicated otherwise, let us as-
sume that the symbols A, T(A), U, G, and M have the
meaning as defined above.

In our point of view, the ability to interpret the mean-
ing of a rule base qualitatively relies deeply upon the
reader’s intuitive understanding of the involved linguistic
expressions which, of course, requires knowledge about
inherent relationships between the involved linguistic ex-
pressions. Therefore, if qualitative estimations are de-
sired, these relationships need to transfer to the under-
lying semantics, i.e. the fuzzy sets modeling the labels.

In other words, interpretability is strongly connected
to the preservation of inherent relationships by the map-
ping M (according to Definition 1).

The following definition gives an exact mathematical
formulation of this property.

Definition 2. Consider a linguistic variable A. Let R =
(R;)ier be a family of relations on the set of verbal values
T(A). Provided that every relation R; has finite arity a;
and a counterpart @); on the fuzzy powerset F(U) with
the same arity, the linguistic variable A is called R-Q-
interpretable if and only if the following holds:

Vi€ IVry, ... ,xq € T(A):
Ri(l’h... ,Iaj) — QZ(M(Il), ,M(IEQI)) (1)

For convenience, let us denote the family (Q;);es simply
with Q.

Remark 3. In case that this is necessary, the general-
ization of Definition 2 to fuzzy relations is straightfor-
ward. If we admit fuzziness of the relations R; and @,
the implication in Eq. (1) has to be replaced by

Ri(xl,... ,xai) < Qi<M(x1)7... ,M(mai)).

Table 1: Grammar G of linguistic variable D.

S = (exp) ;

(exp) := (adjective) | (adverb) (adjective) ;
(adjective) = “small” | “medium” | “large” ;
(adverb) = “at least” | “at most” ;

3 A Detailed Study by Means of
a Practical Example

In almost all fuzzy control applications, the domains of
the system variables are divided into a certain number of
fuzzy sets by means of the underlying ordering—a fact
which is typically reflected in expressions like “small”,
“medium”, or “large”. We will now discuss a simple
example involving orderings to illustrate the concrete
meaning of Definition 2.

Let us consider a linguistic variable named D (e.g.
distance) with a universe of discourse U = [0,100]. The
BNF grammar definition [11] shown in Table 1 deter-
mines the term set of D as follows:

T(D) _ {“small”, “medium”, “large”,

“at least small”, “at least medium”,

bR

“at least large”, “at most small”,

Y

“at most medium”, “at most large” }

Taking the “background” or “context” (in this exam-
ple, distance) of the variable into account, almost every
human has an intuitive understanding of the qualitative
meaning of each of the above linguistic expressions, even
if absolutely nothing about the quanititative meaning,
i.e. the corresponding fuzzy sets, is known. This under-
standing, to a major part, can be attributed to elemen-
tary relationships between the linguistic values. Accord-
ing to Definition 2, these inherent relationships corre-
spond to the family of relations R = (R;);e;.

In our opinion, the most obvious relationships in the
example term set T'(D) are orderings and inclusions, so
let us consider the following two binary relations (for con-
venience, since both relations are binary, we can switch
to infix notations here):

R=(x,E) (2)

As an example, a human would intuitively expect an
ordering of the adjectives like

“small” < “medium” < “large”.

Moreover, the following monoticities seem obvious for all
adjectives A, B € {“small”, “medium”, “large” }:

A C “at least” A
B C “at most” B



atl. small atl. med. atl. large
o med. Tz ]
atm. small atm. med. atm. large

Figure 1: Hasse diagram of ordering relation <.

atm. large

atl. small

Figure 2: Hasse diagram of inclusion relation C.

A < B = “at least” A < “at least” B
A < B = “at most” A < “at most” B

A < B = “at least” A J “at least” B
A < B = “at most” A C “at most” B

Figures 1 and 2 show Hasse diagrams which fully describe
the two relations < and C (for the sake of simplicity,
reflexivity is not explicitly indicated there).

Now we have to fix meaningful fuzzy counterparts of
the relations in R on F(U). We start with the usual
inclusion of fuzzy sets according to Zadeh [17].

Definition 4. Consider two fuzzy subsets of X denoted
A and B. A is called subset of B, short A C B, if and
only if, for all z € X,

pa(x) < pp(r).

Consequently, B is called superset of A.

Concerning orderings, we adopt a simple variant of
Bodenhofer’s general framework for ordering fuzzy sets
[2, 3], which includes well-known orderings of fuzzy num-
bers based on the extension principle [6, 7].

Definition 5. Suppose that a universe X is equipped
with a crisp linear ordering <. Then a preordering < of
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Figure 3: A fuzzy set A € F(R) and the results which are
obtained when applying the operators LTR and RTL.

fuzzy sets can be defined by

A< B <= (LTR(A) D LTR(B) A
RTL(A) C RTL(B)),

where the operators LTR and RTL are defined as follows:

prrr(a)(®) = sup{pa(y) |y < o}
prrL(a) () = sup{pa(y) [y >}

Figure 3 shows an example what the operators LTR
and RTL give for a non-trivial fuzzy set. It may be easy
to see that LTR always yields the smallest superset with
non-decreasing membership function, while RTL yields
the smallest superset with non-increasing membership
function [1, 2].

Finally, we can write down the set of counterpart re-
lations ) according to Definition 2:

Q=(59) (3)

The only remaining component of the linguistic vari-
able D is the mapping M which provides the semantics
of the expressions in T(D), i.e. which assigns a fuzzy
set to each linguistic value. Concerning interpretability,
this mapping plays the crucial role—R-Q-interpretability
now exactly means that the obvious orderings and inclu-
sions of linguistic terms (as shown in Figures 1 and 2)
must not be violated by the corresponding fuzzy sets.

The first basic requirement which must be fulfilled by
the mapping M is that the fuzzy sets associated with the
three adjectives must be in proper order, i.e.

M(“small”) < M(“medium”) < M(“large”).  (4)



M (“medium”) M (“small”) M (“large”)
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Figure 4: A non-interpretable setting.
M (“small”) M (“medium”) M (“large”)
1
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0.6
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0.2

Figure 5: An example of an interpretable setting.

It is easy to observe that this basic ordering is violated
in Figure 4, while it is fulfilled by the fuzzy sets in Figure
5 (for more details on the preordering <, see [2, 3]).

Before we can check R-Q-interpretability of D, the se-
mantics of linguistic expressions containing an adverb
(“at least” or “at most”) have to be defined. Two dif-
ferent ways are possible: One variant is to define a sep-
arate fuzzy set for each expression, the second variant
uses fuzzy modifiers to define the semantics of such ex-
pressions, i.e. the semantics of an adverb is modeled by
a F(U) — F(U) function. Since it is, by far, simpler
and easier to handle with respect to interpretability, we
strongly suggest the second variant. In this example, it
is straightforward to use the fuzzy modifiers introduced
in Definition 5:

M (“at least” A) = LTR (M (A))
M (“at most” A) = RTL(M(A))

Proposition 6. Let us consider the linguistic variable
D as defined above. If the relation families R and @ are
defined as in Eq. (2) and (3), respectively, and the fuzzy
sets associated with the adjectives “small”, “medium”,
and “large” are normalized and fulfill the ordering con-
dition (4), then D is R-Q-interpretable.

Proof. The following basic properties hold for all nor-

malized fuzzy sets A, B € F(U) [2]:

A C LTR(A) (5)

A C RTL(A) (6)
LTR(LTR(A)) = LTR(A) (7)
RTL(RTL(A)) = RTL(A) (8)
LTR(RTL(A)) = RTL(LTR(A)) = U (9)
ACB = LTR(A) CLTR(4) (10)
ACB = RTL(A) CRTL(A) (11)

Since the relations C and < are reflexive and transitive
[2], it is sufficient to prove the relations indicated by
arrows in the two Hasse diagrams (see Figures 1 and 2).

Let us start with the ordering relation. The validity of
the relations in the middle row is an assumption which
we need not prove. The relations in the two other rows
follow directly from the following two relationships which
can be proved using Eq. (7), (8), and (9):

A< B = LTR(A) < LTR(B)
A< B = RTL(A) < RTL(B)

The three vertical relationships in Figure 1 follow di-
rectly from

RTL(A) < A < LTR(A)

which can be shown using (5), (6), (10), and (11).
The relations in the Hasse diagram in Figure 2 follow

from Eq. (5), (6), and the definition of the preordering
< (cf. Definition 5). O

Obviously, the notion of interpretability of D (with re-
spect to the families R and @) does not necessarily corre-
spond to human intuition. It is a rather weak necessary
condition which is by far not sufficient for interpretability
in a stricter sense. The intention of this example was to
illustrate the concrete meaning and practical relevance
of Definition 2. However, if more advanced relationships
are desired, these have to be included in the relation fam-
ilies R and @Q. In order to illustrate the richness of the
proposed concept, we briefly mention a few examples of
fundamental relationships which can be expressed in this
framework:

e [t is possible to make elementary assumptions about
properties of the fuzzy sets by including unary rela-
tions, i.e. predicates (e.g. convexity, normality, etc.).

e If we add symbols for conjunction, disjunction, the
whole universe, and the empty set, it is even possible
to force partition constraints (disjointness and cov-
erage properties) by means of the inclusion relation.
Table 2 shows an example of a grammar containing
such constructs.



Table 2: Grammar G of linguistic variable D’'.

s = (exp) ;

(exp) ;= (adjective) | (adverb) (adjective) |
“(" (exp) )" (binary) “(" (exp) )’

(adjective) := “small” | “medium” | “large” |
“anything” | “undefined” ;

(adverb) = “at least” | “at most” ;

(binary) = “and” | “or” ;

4 Applications

4.1 Tuning

Automatic design and tuning of fuzzy systems has be-
come a central issue in machine learning and data anal-
ysis. In the last years, a vast number of scientific publi-
cations dealt with this problem. Most of them, however,
disregard the importance of interpretability—leading to
results which are, actually, black-box functions (typical
pictures like in Figure 4 can be found in several papers
[9, 14, 15, 16]) that do not provide any meaningful lin-
guistic information. More recent research [12, 13] slowly
starts to take the interpretability aspect into account,
although still lacking a general theoretical foundation.

One may argue that proper input-output behavior is
the central goal of automatic tuning. Recalling Point
(3) from Section 1, however, clearly demonstrates that
considering interpretability is indispensable.

4.2 Design of Complex Fuzzy Systems

As long as the top-down construction of small fuzzy sys-
tems (e.g. two-input single-output fuzzy controllers) is
concerned, interpretability is usually not such an im-
portant issue, since the system is simple enough that
a conscious user will refrain from making settings which
contradict his/her intuition.

However, in the design of complex fuzzy systems with
a large number of variables and rules, interpretability is
a crucial point. Integrating tools which guide the user
through the design of a large fuzzy system by prevent-
ing the him/her from making non-interpretable settings
accidentally could be extremely helpful. As a matter of
fact, debugging of large fuzzy systems becomes a tedious
task if it is not guaranteed that the intuitive meanings
of the labels used in the rule base are reflected in their
corresponding semantics.

To be more precise, the goal is not to bother the user
with additional theoretical aspects. Instead, the idea is
to integrate these aspects into software tools for fuzzy
systems design, but not necessarily transparent for the
user, with the aim that he/she can build interpretable
fuzzy systems in an even easier way than with today’s

software tools.

4.3 Rule Base Simplification

Let us assume that the families R and @) contain equality
relations (implicitly contained in inclusion relations). If
a long linguistic expression is equal to a shorter one, such
an equality relationship can be understood as a simplifi-
cation rule, e.g.

(“at least medium” A “at most medium”) = “medium”.

Then interpretability in the sense of Definition 2 auto-
matically guarantees that these simplification rules also
hold on the semantic level. As a consequence, under
the assumption of R-Q-interpretability, rule simplifica-
tion can be done on the syntactical level (i.e. the linguis-
tic labels) only.

This could be particularly useful for simplifying com-
plex rule bases or for grammar-based rule base optimiza-
tion methods (e.g. decision tree induction [8, 10] and
fuzzy genetic programming [4, 5]).

5 Concluding Remarks

This paper should be understood as a pleading for the
importance of interpretability of fuzzy rule-based sys-
tems. In order to approach this key property in a system-
atic and mathematically exact way, we have proposed to
make implicit relationships between the linguistic labels
explicit by formulating them as (fuzzy) relations. Then
interpretability corresponds to the preservation of this
relationships by the associated meaning. This idea has
been illustrated and demonstrated extensively by means
of a simple example. Moreover, possible applications in
fuzzy systems design and tuning have been discussed.
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