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Ulrich Bodenhofer1, Libor Běhounek2, and Petr Cintula2

1 Software Competence Center Hagenberg
A-4232 Hagenberg, Austria

ulrich.bodenhofer@scch.at
2 Institute of Computer Science, Academy of Sciences of the Czech Republic

182 07 Prague 8, Czech Republic
{behounek, cintula}@cs.cas.cz

This contribution is the third and last of a series of talks on relations in higher-order
fuzzy logic. The first two [5] have introduced the logical framework (see also [3, 4])
along with a set of basic results that, at first glance, look very familiar. These results,
however, have been developed from a much more general basis. Their proofs have been
devised independently and resemble closer to proofs known from classical theory than
to proofs of results existing in fuzzy set theory.

The purpose of this contribution is to establish links between existing results in
fuzzy set theory and the results contained in [5]. Moreover, we provide an interpretation
to which extent this new framework really adds value and an educated guess what its
potential impact on the further development of theory may be.

Links to Existing Concepts and Results

Graded properties of fuzzy relations

In [5, Section 1], the definitions of the five propertiesE-extensionality, reflexivity, sym-
metry, transitivity, andE-antisymmetry (cf. Def. 6) are most crucial. Looking as tradi-
tional definitions at first glance, the expressions ExtE(R), Refl(R), Sym(R), Trans(R),
and AsymE(R) are not crisp, but may be true to some degree. An approach in this direc-
tion has already been introduced by Gottwald [12, 13] and later on picked up by Jacas
and Recasens [16]. These works have in common that they are not based on a general
logical framework, but on triangular norms on the unit interval (note, however, that
Gottwald uses notations that are inspired by formal logic, similar to the terminology
introduced in [5]).

The property of extensionality, to our best knowledge, has only been considered
in a crisp way so far [14, 17, 18]. The three properties Refl(R), Sym(R), and Trans(R)
appear in [12, 13, 16], at least under the restrictions stated above.

The property AsymE(R) is different from the one introduced by Gottwald [12, 13]
who starts from Zadeh’s definition of antisymmetry [19], but with a general t-norm in-
stead of the minimum. The definition of AsymE(R) is inspired by the similarity-based
approach to fuzzy orderings (see, e.g., [1, 15] and other publications) and trivially coin-
cides with Gottwald’s definition ifE = Id. Note that the definition of AsymE(R) appears
in [16], interestingly, without any reference to the similarity-based approach to fuzzy
orderings.



In [5, Section 2], several basic results about relations in higher-order fuzzy logic
are provided. The crisp counterparts of the assertions comprised in Theorems 2 and
3 are well-known and can be found in any textbook that contains an adequately deep
introduction to fuzzy relations (e.g. [11]). Assertions 1.–3. and 6. from Theorem 2 are
also known in the graded framework (see, e.g., [13, Sections 18.4 and 18.6]). The fact
that intersections and unions of extensional fuzzy sets are again extensional is also well-
known [2, 17], its graded generalization in [5, Theorem 4] constitutes a new finding.

Similarities and partitions

In [5, Section 3], a first step towards a graded theory of equivalence relations and parti-
tions is taken. The degree to which a relation is a similarity, denoted Sim(R), is defined
in the same way as in [13] (again note the difference that Gottwald restricts to the unit
interval equipped with a t-norm). The concept of a graded fuzzy partition that is built
up on this basis can be considered an entirely new concept. The degree of disjointness
Disj(X ) is a straightforward generalization of the disjointness criterion that is well-
known from literature [7, 10, 17, 18] (in our notation, being equivalent to Disj(X ) = 1).
The degree Part(X ) to which a class of classesX is a partition is a straightforward gen-
eralization of the concept of aT-partition introduced in [7] (being put in a wider context
in [10]).

Results like the ones from Theorem 5 are available in [13, Section 18.6, p. 466].
Moreover, crisp counterparts of these assertions and the ones from Theorem 6 occur in
literature (see [7, 10, 17, 18] and several others), although the graded framework gives
these theorems a rather different flavor. Theorems 7 and 8 closely resemble to some
results known from literature [7, 10, 17]. In these papers, however, slightly different
ways to construct an equivalence relation from a partition are employed than the relation
∼X which is only guaranteed to be a fuzzy equivalence relation in the traditional sense
(in our framework, being equivalent to Sim(∼X ) = 1) if Part(X ) = 1 [5, Theorem 8].

Fuzzy orderings and lattice operations

Finally, in [5, Section 4], a graded concept of fuzzy orderings is introduced in line
with the similarity-based approach to fuzzy orderings [1, 15]. Gottwald [12, 13] uses the
same techniques to define a graded concept of fuzzy partial ordering, but with respect to
the crisp equality and not with reference to a fuzzy equivalence relation. Theorem 9 lists
results that are well-known in the classical non-graded theory of fuzzy quasiorderings,
but new in a graded framework. Assertion 1. is a graded version of the idempotence of
the full image with respect to a fuzzy quasiordering [2]. Assertion 2. is a well-known
correspondence (see, e.g., [11]). As also known from the classical non-graded theory
[2], Assertion 3. is a graded generalization of the fact that the full image of a fuzzy class
A with respect to a fuzzy quasiorderingR is uniquely represented as the intersection of
all R-extensional super-classes ofA.

Definitions 10 and 11 can be considered as a starting point towards a general graded
theory of fuzzy lattices. The definitions of upper and lower cones, suprema and infima,
respectively, appear in the same way as in [6, 8, 9]. Some of the assertions of Theorem
10 are similarly contained in [6].



Conclusion and Outlook

The question remains what kind of value is added by basing a theory of fuzzy relations
on the fuzzy class theory as introduced in [4, 5]. First of all, the framework discussed
here is well-founded and general. Proofs in this framework are still concise, elegant,
and expressive — which is remarkable in light of the fact that all properties of fuzzy
relations are graded. Note that Gottwald states in [13, Section 18.6, p. 465] that the de-
velopment of a full-fledged graded theory of fuzzy equivalence relations and orderings
is an open issue. Although the results presented in [5] can only be considered as a good
starting point, we strongly believe that this framework has the potential to solve that
open issue. The elegance and conciseness of the approach not only allows to generate
shorter proofs of many known results in a routine manner. Overcoming the technicality
and clumsiness of the classical theory of fuzzy relations may also open the field for
discovering completely new results — that is no serious scientific statement based on
clear evidence, but a strong belief it is indeed.
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