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Abstract. This paper provides a brief overview of OVQS, a framework
for flexible query answering systems based on distance-based fuzzy rela-
tions. The necessary theoretical and methodological background is given.
The concepts are illustrated by means of a practical case study.

1 Introduction

The use of classical binary logic for data retrieval poses severe limitations. Firstly,
real-world data, in particular, numeric data, are often perturbed by noise or
other errors. This may result in unstable behavior in the sense that minimal
variations of the data can change the result of a query dramatically. Secondly,
no structural information is available about how close a rejected record was to the
fulfillment of a query. This loss of information is particularly harmful if the user
would still be interested in potentially close records if the query gives an empty
result. These two demands have created an own discipline that is concerned
with how query interfaces can be extended such that a flexible interpretation of
queries is possible (see e.g. [5, 6, 12] for recent overviews and further references
to literature)—in particular, with the motivation to suggest alternatives which
are close to matching the criteria in case that a query gives an empty result.
This area is often referred to as “flexible querying”.

The given paper provides an overview of OVQS, a framework for flexible
querying based on fuzzy relations. OVQS uses fuzzy equivalence relations to
represent gradual similarity and, consequently, fuzzy orderings to allow flexible
interpretation of ordinal queries. In order to circumvent prohibitive storage re-
quirements for representing fuzzy relations, OVQS adopts the basic approach of
the established Vague Query System (VQS), that is, to model gradual similarity
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by means of distances. The seamless integration of distances in the framework of
fuzzy relations is achieved by means of existing results from the theory of fuzzy
relations. Furthermore, this paper presents a practical case study from a student
project, where the ideas behind OVQS were used to implement a prototype of a
flexible query answering system for a database containing second-hand cars.

2 Theoretical and Methodological Background

The use of fuzzy relations in flexible querying has one significant shortcoming in
terms of practical feasibility: fuzzy relations, in their most general form, need to
be represented by means of tables containing the degrees of relationship between
the records, which requires large amounts of storage. A pragmatic, yet effective,
approach that makes efficient use of the resources available is to use distances for
representing the gradual similarity of records. A well-developed concept that has
been established outside the framework of fuzzy relations is the so-called Vague
Query System (VQS) [11]. The basic idea behind VQS is to transform even non-
numeric data into a numeric representation. This so-called Numeric Coordinate
Representation (NCR) serves as the means to compute the similarity between
records by using ordinary (e.g. Euclidean) distances, thus overcoming the need
for large similarity tables.

As highlighted in [3], VQS has two shortcomings: (1) distances are auto-
matically normalized on the basis of actual data, thus distances are difficult to
compare for different attributes; (2) a flexible interpretation of ordinal queries
like “at least”, “at most”, etc. is not straightforward. The key to enriching VQS
by ordinal constructs and overcoming the comparability issue is to redraft and
extend VQS in the framework of fuzzy relations. We start from the well-known
concept of a fuzzy equivalence relation, which is a straightforward choice for
modeling gradual similarity [4, 14]. In the remaining part of the paper, we make
use of triangular norms (t-norms) as generalized models of conjunction [10].

Definition 1. A binary fuzzy relation E : X2 → [0, 1] is called fuzzy equivalence
relation with respect to a t-norm T , for brevity T -equivalence, if and only if the
following three axioms are fulfilled for all x, y, z ∈ X:

(i) Reflexivity: E(x, x) = 1
(ii) Symmetry: E(x, y) = E(y, x)
(iii) T -transitivity: T

(
E(x, y), E(y, z)

)
≤ E(x, z)

The question arises how to transform distances into a fuzzy equivalence rela-
tion in a meaningful way. For this purpose, a well-established result is available
if the t-norm T under consideration is continuous Archimedean1 [10].

1 simplistically, this means that T is continuous and fulfills T (x, x) < x for all x ∈]0, 1[;
such a t-norm can always be represented by means of a so-called additive generator,
i.e. a continuous and strictly decreasing bijection f : [0, 1] → [0,∞], such that the
representation T (x, y) = f−1(min(f(x) + f(y), f(0))) holds.
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Theorem 1. [8] Consider a continuous Archimedean t-norm T with additive
generator f , a pseudo-metric d : X2 → [0,∞[, and a real constant C > 0. Then
the following mapping is a T -equivalence:

Ed,C(x, y) = f−1
(
min( 1

C · d(x, y), f(0))
)

(1)

By means of Theorem 1, we achieve a perfect synergy: we are able to formu-
late gradual similarity in the framework of fuzzy relations in a well-founded way,
still being able to use distances as the basis for calculating similarity. Thus, we
do not need similarity tables to represent gradual similarity. For non-numeric
attributes, VQS’s NCR approach is still usable.

There is a well-developed theory of fuzzy orderings that integrates seamlessly
with the theory of fuzzy equivalence relations [1, 2, 9]. Thus, this class of fuzzy
relations is a natural choice to achieve a flexible interpretation of ordinal queries.

Definition 2. A fuzzy relation L : X2 → [0, 1] is called fuzzy ordering with
respect to a t-norm T and a T -equivalence E, for brevity T -E-ordering, if and
only if it is T -transitive and fulfills the following two axioms for all x, y ∈ X:

(i) E-Reflexivity: E(x, y) ≤ L(x, y)
(ii) T -E-antisymmetry: T

(
L(x, y), L(y, x)

)
≤ E(x, y)

A T -E-ordering L is called strongly complete if max
(
L(x, y), L(y, x)

)
= 1 for all

x, y ∈ X.

The theorem that follows next will be essential for defining fuzzy orderings
from distance-based fuzzy equivalence relations in the sense of Theorem 1.

Theorem 2. [1] Consider a fuzzy relation L on a linearly ordered domain X
and a T -equivalence E on X. Further assume that the linear ordering and E
are compatible in the sense that E(x, z) ≤ min(E(x, y), E(y, z)) for all linearly
ordered three-element chains x ≤ y ≤ z. Then the following fuzzy relation is a
strongly complete T -E-ordering:

L(x, y) =

{
1 if x ≤ y

E(x, y) otherwise

Theorem 2 particularly implies that the “combination” of a crisp linear or-
dering and a compatible fuzzy equivalence relation has a clear theoretical inter-
pretation as a vague concept of ordering (a “linear ordering with imprecision”)
[2]. The only question remaining is how a fuzzy equivalence relation can be
constructed from a (pseudo-)metric such that compatibility with a given crisp
ordering is fulfilled. It is not difficult to prove that, if

x ≤ y ≤ z ⇒ d(x, z) ≥ max
(
d(x, y), d(y, z)

)
(2)

holds for all x, y, z ∈ X, the fuzzy equivalence relation Ed,C defined as in (1) is
compatible with ≤ such that Theorem 2 can be applied [2].
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3 An Overview of OVQS

Like VQS, OVQS is designed as a proxy between the user and a SQL-capable
relational database. OVQL, the language of OVQS, extends SQL by conditions
that can be interpreted in a flexible way as follows:

VQLExpression := “SELECT FROM” DataSource “WHERE” Conditions
“INTO” destinationTableName;

DataSource := ([ownerName“.”]rootTableName) |
([ownerName“.”]rootViewName) |

“(”sqlSelectStatement“)”;
Conditions := Condition {“AND” Condition};
Condition := NonNumericCond ParameterExpression |

NumericCond ParameterExpression;
NonNumericCond := columnName “IS” alphaNumericValue;
NumericCond := columnName “IS” numericValue |

columnName “IS AT LEAST” numericValue |
columnName “IS AT MOST” numericValue |

columnName “IS WITHIN
(” numericValue “,” numericValue “)”;

ParameterExpression := [“TOLERATE UP TO” numericValue]
[“WEIGHTED BY” numericValue];

As obvious from the syntax, there is an explicit distinction between numeric
and non-numeric attributes. Like in VQS, we may assume that there is an un-
derlying NCR for all non-numeric attributes. We are hence able to compute
Euclidean distances for all attributes. Moreover, assume that there is a default
radius of interest for each attribute that may be overridden with the optional
“TOLERATE UP TO” parameters.

For defining the corresponding semantics, assume that we are given a contin-
uous Archimedean t-norm T with additive generator f (if f(0) < ∞, we assume
without any loss of generality that f(0) = 1). Then, for a given non-numeric
column, a condition “x IS q” is evaluated in the following way: for a concrete
value x0, the degree to which x0 fulfills the condition is computed as

t(“x IS q” | x0) = Ed,C(x0, q) = f−1
(
min( 1

C · d(x0, q), f(0))
)
, (3)

where d is a metric for the column under investigation which is constructed using
an NCR. The parameter C is the radius of interest defined for the respective
column .

For a numeric attribute, we are able to define the semantics of the four atomic
conditions as

t(“x IS q” | x0) = EC(x0, q) (4)
t(“x IS AT LEAST q” | x0) = LC(q, x0) (5)
t(“x IS AT MOST q” | x0) = LC(x0, q) (6)

t(“x IS WITHIN (a, b)” | x0) = min
(
LC(a, x0), LC(x0, b)

)
(7)
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with

EC(x, y) = f−1
(
min( 1

C · |x− y|, f(0))
)

and LC(x, y) =

{
1 if x ≤ y,

EC(x, y) otherwise.

The question remains how the semantics of the “AND” connective is modeled,
i.e. how the degrees of fulfillment of multiple atomic conditions are aggregated.
Assume that a query consists of n atomic conditions and that the degrees to
which a given record fulfills the i-th condition is ti. Further assume that the
default weights for all attributes are equal to 1. Using the optional “WEIGHTED
BY” parameter, the user can assign individual degrees of importance to atomic
conditions. With a weight w̃i > 1, he/she can strengthen the importance of
the i-th condition. With a weight w̃i < 1, he/she weakens the importance of the
condition. Then a pseudo-arithmetic mean with respect to the additive generator
f is used to compute the overall degree of fulfillment (detailed argumentation
why this is justified and advisable can be found in [3, 13])2:

Aw(t1, . . . , tn) = f−1
(
min(f(0),

∑n

i=1
wi ·f(ti))

)
with wi =

w̃i∑n
i=1 w̃i

. (8)

This total degree of fulfillment is computed for each record in the table under
consideration. Finally, the degrees of fulfillment are sorted and the list of records
is presented to the user in descending order (better fitting records first).

One degree of freedom is still open—the choice of the t-norm T . Continuous
Archimedean t-norms are either strict (i.e. f(0) = ∞) or nilpotent (i.e. f(0) < ∞)
[10]. It can be shown that all strict t-norms behave the same [3], i.e. the matching
degrees may differ, but the obtained final ranking lists are the same. Therefore,
TP is the canonical choice if one opts for using a strict t-norm. If a nilpotent
t-norm is chosen, the particular choice does have influence on the result. From a
practical perspective, however, TL is a pragmatic and justifiable choice. Choosing
a nilpotent t-norm has the advantage that, for a given condition, the tolerance
radius C has a clear and unambiguous interpretation. However, any information
outside this radius is lost, which is not the case for strict t-norms.

4 A Practical Case Study

The concepts introduced in this paper have been evaluated with a prototype
implemented by the second and third author. The goal was to develop a flexible
query answering interface to a relational database containing cars for sale.

The most important table in the database is the list of available cars. This
table has 53 columns and a total of approx. 65000 rows/records. Technical data,
features, age, mileage, and the zip code where it is available can be stored for

2 in case T is the  Lukasiewicz t-norm TL(x, y) = max(x + y− 1, 0) (i.e. f(x) = 1− x),
the ordinary weighted arithmetic mean is obtained. In case that T is the product
t-norm TP(x, y) = x ·y (i.e. f(x) = − ln x), the weighted geometric mean is obtained.
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Table 1. Intermediate query result before flexible interpretation; the rightmost column
provides the distance from Linz (zip 4020).

# Location HP Year Mileage (km) Price (EUR) Distance (km)

1 4364 St. Thomas 90 1994 164000 3750 35
2 4232 Münzbach 116 2000 120000 13950 31
3 4871 Zipf 101 2000 17500 18500 64
4 4651 Stadl-Paura 90 1991 187900 2800 39
5 4064 Oftering 107 1991 109000 2900 13
6 5350 Strobl 101 1997 137000 8750 88
7 5222 Munderfing 90 1996 156000 5900 86
8 4905 Thomasroith 90 1994 214500 4590 54
9 4840 Vöcklabruck 110 1998 n.a. 5700 56

10 4656 Kirchham 116 1991 200000 1600 46
11 4141 Pfarrkirchen 90 1995 189000 3950 42

each car. Roughly half of the columns are categorical and half are numerical.
The different models and brands are stored in separate auxiliary tables in a
normalized way. For the zip code, two more tables are available, one that maps
a zip code to a town name and one table that assigns a distance (in km) to each
pair of zip codes.

The prototype in its current version mainly complies with the principles
presented in Section 3, but does not make use of NCRs. For the zip code, a
complete distance table is available anyway, so there is no particular need for
an NCR. All other categorical attributes are treated in a crisp way without any
flexible interpretation. It is possible to choose between two t-norms, TL and TP.
The table contains relatively many missing values. If the respective entry is not
available, a condition is considered to be true (i.e. to a degree of 1).

As one example, we consider the following query:

SELECT FROM CarTable

WHERE Model IS ‘Volkswagen Passat’

AND Layout IS ‘Wagon’

AND Location IS ‘Linz’ TOLERATE UP TO 20

AND HorsePower IS WITHIN (100,110) TOLERATE UP TO 10

AND YearBuilt IS AT LEAST 1998 TOLERATE UP TO 2

AND Mileage IS AT MOST 80000 TOLERATE UP TO 15000

AND Price IS AT MOST 10000 TOLERATE UP TO 1000

INTO ResultSet

The first two conditions are referring to categorical attributes that are not inter-
preted in a flexible way. Hence, we only need to consider records fulfilling those
two conditions. Table 1 shows a list of 11 cars to be considered. Then Table 2
shows the results obtained for TL and TP. In these tables, the columns labeled
t1,. . . ,t5 contain the degrees to which records fulfill the five conditions that are
interpreted as described in Section 3. The final matching degree is shown in the
last columns labeled t. The following rankings are obtained for the query (we
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Table 2. Result sets for TL (left) and TP (right; numbers rounded to three digits)

# t1 t2 t3 t4 t5 t

1 0.00 0.00 0.00 0.00 1.00 0.20
2 0.00 0.40 1.00 0.00 0.00 0.28
3 0.00 1.00 1.00 1.00 0.00 0.60
4 0.00 0.00 0.00 0.00 1.00 0.20
5 0.35 1.00 0.00 0.00 1.00 0.47
6 0.00 1.00 0.50 0.00 1.00 0.50
7 0.00 0.00 0.00 0.00 1.00 0.20
8 0.00 0.00 0.00 0.00 1.00 0.20
9 0.00 1.00 1.00 1.00 1.00 0.80

10 0.00 0.40 0.00 0.00 1.00 0.28
11 0.00 0.00 0.00 0.00 1.00 0.20

# t1 t2 t3 t4 t5 t

1 0.174 0.368 0.135 0.004 1.000 0.126
2 0.212 0.549 1.000 0.069 0.019 0.173
3 0.041 1.000 1.000 1.000 >0.000 0.096
4 0.142 0.368 0.030 0.001 1.000 0.065
5 0.522 1.000 0.030 0.145 1.000 0.296
6 0.012 1.000 0.607 0.022 1.000 0.176
7 0.014 0.368 0.368 0.006 1.000 0.103
8 0.067 0.368 0.135 >0.000 1.000 0.053
9 0.061 1.000 1.000 1.000 1.000 0.571

10 0.100 0.549 0.030 >0.000 1.000 0.056
11 0.122 0.368 0.223 0.001 1.000 0.093

denote the degree of matching for the j-th record/car with tj):

t9 > t3 > t6 > t5 > t2 = t10 > t1 = t4 = t7 = t8 = t11 for T = TL

t9 > t5 > t6 > t2 > t1 > t7 > t3 > t11 > t4 > t10 > t8 for T = TP

Obviously, the rankings do not coincide for the two basic t-norms. For a more
detailed explanation and assessment on the use of different t-norms in flexible
querying, see [3].

Extensive experiments were carried out with the prototype. The goal was to
evaluate the general concept of OVQS and its possible advantages over classical
querying. The following points are worth mentioning:

1. The language of OVQS is easy to use and easy to interpret for humans. Even
non-skilled persons were easily able to interpret the queries and the result
lists.

2. OVQS is computationally efficient, mainly because of its pragmatic ap-
proach, i.e. the use of Euclidean distances.

3. At least for numeric attributes, the degrees to which records fulfill queries
depend on the query values in a continuous way. Therefore, the approach is
robust with respect to noisy data and the choice of a particular query value.

Some issues require further attention. In particular, the negligence of cat-
egorical attribute is severe. For some attributes, an NCR would be straight-
forward. For categorical attributes with a small number of possible instances,
distance/similarity tables seem feasible. For the model, none of the two ways is
feasible, as the database currently contains around 1000 models from 90 manu-
facturers. An idea in this direction would be to derive the similarities from the
data describing the individual cars by PCA, clustering, or machine learning [7].
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