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1 Introduction

Images of fuzzy sets under fuzzy relations have been investigated mainly in two contexts: on
the one hand, mostly under the term “full image” [4], they can be regarded as very general tools
for fuzzy inference, leading to the so-called “compositional rule of inference” [1, 4], which also
contains the famous extension principle as a special case [21, 22, 23]. On the other hand, under
the term “extensional hull”, the image of a fuzzy set under a fuzzy equivalence relation yields the
smallest fuzzy superset which is “closed” under the relation. This closedness property is usually
called “extensionality” [14]. The concepts of extensionality and extensional hulls have turned out
to be extremely useful, in particular when the analysis and interpretation of fuzzy partitions and
controllers is concerned [7, 8, 9, 10].

In the first part of this paper, we would like to generalize the concept of extensionality to
arbitrary reflexive andT-transitive fuzzy relations—so-called fuzzy preorderings. Based on this
general and powerful notion, smallest closed supersets and largest closed fuzzy subsets will be
studied. It will turn out that again two very common concepts of images under fuzzy relations are
obtained.

The second part is devoted to a new view on these images of fuzzy sets under fuzzy relations—
making use of the results on closedness and the corresponding closure operator, we are able to
provide a new framework for defining ordering-based modifiers like “at least”, “at most”, and
“between”.

2 Preliminaries

Throughout the whole paper, we will not explicitly distinguish between fuzzy sets and their cor-
responding membership functions. Consequently, uppercase letters will be used for both synony-
mously. The set of all fuzzy sets on a domainX will be denoted withF (X).

For intersecting and unifying fuzzy sets, we will suffice with minimum and maximum:

(A∩B)(x) = min
(
A(x),B(x)

)
(A∪B)(x) = max

(
A(x),B(x)

)
In general, triangular norms [11] will be considered as our standard models of conjunction.

Definition 1. A triangular norm (t-norm for short) is an associative, commutative, and non-
decreasing binary operation on the unit interval (i.e. a[0,1]2 → [0,1] mapping) which has 1 as
neutral element.

In this paper, unless stated otherwise, assume thatT denotes a left-continuous triangular norm,
i.e. a t-norm whose partial mappingsT(x, .) andT(.,x) are left-continuous.

Correspondingly, so-called residual implications are used as the concepts of logical implica-
tion. In order to provide the reader with the basic properties of residual implications, we will now
briefly recall them. For proofs, the reader is referred to the literature [4, 5].
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Definition 2. A mappingR : [0,1]2 → [0,1] is calledresidual implication (residuum)of T if and
only if the following equivalence is fulfilled for allx,y,z∈ [0,1]:

T(x,y)≤ z ⇐⇒ x≤ R(y,z) (1)

Lemma 1. For any left-continuous t-norm T, there exists a unique residuum T
→

given as

T
→

(x,y) = sup{u∈ [0,1] | T(u,x)≤ y}.

Lemma 2. If T is a left-continuous t-norm, the following holds for all x,y,z∈ [0,1]:

1. x≤ y⇐⇒ T
→

(x,y) = 1

2. T
(
T
→

(x,y),T
→

(y,z)
)
≤ T

→
(x,z)

3. T
→

(1,y) = y

4. T
→ (

T(x,y),z
)
≤ T

→ (
x,T

→
(y,z)

)
5. T

(
x,T

→
(x,y)

)
≤ y

6. y≤ T
→ (

x,T(x,y)
)

Furthermore, T
→

is non-increasing and right-continuous in the first argument and non-decreasing
and left-continuous in the second argument.

The residual implication can be used to define a logical negation which logically fits to the
t-norm and its implication.

Definition 3. Thenegationcorresponding to a left-continuous t-normT is defined as

NT(x) = T
→

(x,0).

Lemma 3. NT is a non-increasing[0,1]→ [0,1] mapping. Moreover, the so-called law of contra-
position holds:

T
→

(x,y)≤ T
→ (

NT(y),NT(x)
)

Note that the reverse inequality does not hold in general (unlike the Boolean case, wherep⇒ q
is equivalent to¬q⇒¬p).

In this paper, we will use the negation mainly for the complement of a fuzzy set.

Definition 4. TheT-complementof a fuzzy setA∈ F (X) is defined as

({TA)(x) = NT
(
A(x)

)
.
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Lemma 4. As long as onlymin-intersections andmax-unions are considered, the so-called De
Morgan laws hold:

{T(A∪B) = {TA∩{TB

{T(A∩B) = {TA∪{TB

Only briefly, we mention the concept of logical equivalence induced by a left-continuous t-
norm.

Definition 5. Thebiimplication T
↔

of T is defined as

T
↔

(x,y) = T
(
T
→

(x,y),T
→

(y,x)
)
.

Lemma 5. The following assertions hold for all x,y,z∈ [0,1]:

1. x = y⇐⇒ T
↔

(x,y) = 1

2. T
↔

(x,y) = min
(
T
→

(x,y),T
→

(y,x)
)

3. T
↔

(x,y) = T
↔

(y,x)

4. T
(
T
↔

(x,y),T
↔

(y,z)
)
≤ T

↔
(x,z)

5. T
↔

(x,y) = T
→ (

max(x,y),min(x,y)
)

In this paper, we will solely considerbinary fuzzy relations, i.e. fuzzy sets on a product space
X2 = X×X, whereX is an arbitrary crisp set. Let us recall some basics of binary fuzzy relations
which will be important in the remaining paper.

Definition 6. A binary fuzzy relationR : X2→ [0,1] is called

1. reflexiveif and only if ∀x∈ X : R(x,x) = 1,

2. symmetricif and only if ∀x,y∈ X : R(x,y) = R(y,x),

3. T-transitiveif and only if ∀x,y,z∈ X : T
(
R(x,y),R(y,z)

)
≤ R(x,z),

4. strongly completeif and only if ∀x,y∈ X : max
(
R(x,y),R(y,x)

)
= 1.

Definition 7. A reflexive andT-transitive fuzzy relation is calledfuzzy preorderingwith respect to
a t-normT, shortT-preordering. A symmetricT-preordering is calledfuzzy equivalence relation
with respect toT, shortT-equivalence.

Definition 8. Consider an arbitrary fuzzy setA ∈ F (X). The full imageof A underR, denoted
R↑A and its dualR↓A are defined as

R↑A(x) = sup{T
(
A(y),R(y,x)

)
| y∈ X},

R↓A(x) = inf{T
→ (

R(x,y),A(y)
)
| y∈ X}.

Note thatR↑A has sometimes also been calleddirect image[6] or conditioned fuzzy set[2],
while the namessuperdirect image[6] and α©-operation[16] have already occurred earlier for
R↓A.
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Lemma 6. The following propositions hold for all A,B ∈ F (X) and all binary fuzzy relations
R,S∈ F (X2):

1. A⊆ B =⇒ R↑A⊆ R↑B

2. A⊆ B =⇒ R↓A⊆ R↓B

3. R⊆ S =⇒ R↑A⊆ S↑A

4. R⊆ S =⇒ R↓A⊇ S↓A

5. R↑(A∪B) = R↑A∪R↑B

6. R↓(A∩B) = R↓A∩R↓B

7. (R∪S)↑A = R↑A∪S↑A

8. (R∪S)↓A = R↓A∩S↓A

Proof. These propositions follow directly from the monotonicity properties of triangular norms
and their residual implications (see [4] and [6] for more detailed proofs of (1–5)).

3 The Basic Concept of Closedness and its Properties

Originally defined for fuzzy equivalence relations under the term “extensionality” [10, 14], we will
now define a generalization which does not assume symmetry. Throughout this section, assume
thatRdenotes a fuzzy preordering with respect to some left-continuous t-normT.

Definition 9. A fuzzy setA∈ F (X) is calledclosedwith respect toR, for brevityR-closed, if and
only if, for all x,y∈ X,

T
(
A(x),R(x,y)

)
≤ A(y).

In words, the meaning of closedness is that, for any elementx of A, also ally are contained in
A which are in relation tox.

Example 1. Let us briefly mention a few simple examples which demonstrate the variety of prop-
erties that can be expressed by means of closedness.

1. The universeX and the empty set/0 are both closed with respect to any fuzzy preordering
onX.

2. A crisp set is closed with respect to a crisp equivalence relation if and only if it can be
represented as the union of equivalence classes.

3. A crisp set is closed with respect to a crisp ordering if and only if it is an up-set.

4. A fuzzy set is closed with respect to a crisp ordering� if and only if its membership function
is non-decreasing with respect to�.



6 3 The Basic Concept of Closedness and its Properties

5. If a fuzzy equivalence relation is considered, closedness is equivalent to extensionality [10,
14].

As immediate consequences of the residuation principle (1), we can derive equivalent formu-
lations ofR-closedness, which will be helpful later.

Lemma 7. For any fuzzy set A∈ F (X), R-closedness is equivalent to each of the following two
propositions:

∀x,y∈ X : R(x,y)≤ T
→ (

A(x),A(y)
)

(2)

∀x,y∈ X : A(x)≤ T
→ (

R(x,y),A(y)
)

(3)

If R is, in addition, symmetric, A is R-closed if and only if the following inequality holds:

∀x,y∈ X : R(x,y)≤ T
↔ (

A(x),A(y)
)

(4)

Proof. The equivalence ofR-closedness to Formulae (2) and (3) follows directly from the defini-
tion of residual implications.

On the other hand, if we swapx andy in the definition ofR-closedness, we obtain

T
(
A(y),R(y,x)

)
≤ A(x)

which is, due to (2), equivalent to

R(y,x)≤ T
→ (

A(y),A(x)
)
. (5)

If we assume thatR is symmetric and taking (2) and (5) into account, we obtain

R(x,y)≤min
(
T
→

(A(x),A(y)),T
→

(A(y),A(x))
)

= T
↔ (

A(x),A(y)
)
.

The opposite direction is, i.e. that (4) impliesR-closedness, is trivial if we consider (2) and the
definition of the biimplication.

In particular, (2) has a trivial consequence we will need very often in the following.

Corollary 1. Let Q be another T-preordering. If a fuzzy set A is R-closed and Q⊆ R, then A is
also Q-closed.

The next result clarifies in which way closedness is preserved for finite and infinite unions and
intersections (with respect to max and min, respectively).

Lemma 8. For any family of R-closed fuzzy sets(Ai)i∈I , the fuzzy sets defined by

sup
i∈I

Ai(x) and inf
i∈I

Ai(x)

are also R-closed. If the index set I is finite, the same holds even if T is not left-continuous.
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Proof. For arbitraryx,y∈ X, we know that

T
(
Ai(x),R(x,y)

)
≤ Ai(y)

holds for all i ∈ I . Due to the monotonicity of t-norms,R-closedness is then preserved for finite
intersections and unions (with respect to minimum and maximum, respectively).The same even
holds for infinite intersections if we take the following into account (basic consequence of the
monotonicity of t-norms):

T(inf
i∈I

ui ,v)≤ inf
i∈I

T(ui ,v)

For infinite unions, left-continuity has to be fulfilled:

T
(

sup
i∈I

Ai(x),R(x,y)
)

= sup
i∈I

T
(
Ai(x),R(x,y)

)
≤ sup

i∈I
Ai(y)

We will now clarify under which conditions closedness is preserved for the complement of a
fuzzy set.

Lemma 9. Consider an R-closed fuzzy set A. Provided that the relation R is additionally symmet-
ric (i.e. a T-equivalence), the complement{TA is also R-closed (extensional).

Proof. We know from Lemma 7 that the following holds:

R(x,y)≤ T
→ (

A(x),A(y)
)

Taking symmetry and the contrapositive law (cf. Lemma 3) into account, we obtain

R(x,y) = R(y,x)≤ T
→ (

A(y),A(x)
)
≤ T

→ (
NT(A(x)),NT(A(y))

)
.

Therefore,{TA must beR-closed as well.

Nonchalantly speaking, Corollary 1 has shown that the smaller a fuzzy preorderingR is, the
easier fuzzy sets areR-closed. The next theorem gives a unique characterization of how large a
relationRmay be such that a given family of fuzzy sets is stillR-closed.

Theorem 1. Consider an arbitrary family of fuzzy setsÃ = (Ai)i∈I . Then

RÃ(x,y) = inf{T
→ (

Ai(x),Ai(y)
)
| i ∈ I}

is a T-preordering which is, in addition, the largest binary fuzzy relation R such that all Ai are
R-closed. Furthermore,

R′Ã(x,y) = inf{T
↔ (

Ai(x),Ai(y)
)
| i ∈ I}

is a T-equivalence and the largest symmetric binary fuzzy relation R such that all Ai are R-closed.

Proof. Reflexivity andT-transitivity of RÃ follow from basic properties of residual implications
(cf. Lemma 2; see [17] for more details). Analogously, reflexivity, symmetry, andT-transitivity of
R′

Ã
follow from Lemma 5. Closedness and maximality of both relations follow immediately from

Lemma 7, Formulae (2) and (4), respectively.
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4 Opening and Closure Operators

Now we can turn to our actual objects of study—opening and closure operators induced by fuzzy
preorderings. We will soon see that the two image operatorsR↑ andR↓ play a central role; so, let
us start to investigate their properties in terms of closedness. Again, we make the convention that
Rdenotes aT-preordering on some fixed domainX.

Proposition 1. All images R↑A and R↓A are R-closed.

Proof. For proving thatR↑A is R-closed, consider the left-continuity ofT and theT-transitivity of
R:

T(R↑A(x),R(x,y)) = T
(

sup{T(A(z),R(z,x)) | z∈ X},R(x,y)
)

= sup{T
(
T(A(z),R(z,x)),R(x,y)

)
| z∈ X}

= sup{T
(
A(z),T(R(z,x),R(x,y))

)
| z∈ X}

≤ sup{T(A(z),R(z,y)) | z∈ X}
= R↑A(y)

If we takeT-transitivity of R, the monotonicity properties ofT
→

and Lemma 2, (4), into account,
we obtain

R↓A(x) = inf{T
→ (

R(x,z),A(z)
)
| z∈ X}

≤ inf{T
→ (

T(R(x,y),R(y,z)),A(z)
)
| z∈ X}

≤ inf{T
→ (

R(x,y),T
→

(R(y,z),A(z))
)
| z∈ X}

≤ T
→ (

R(x,y), inf{T
→ (

R(y,z),A(z)
)
| z∈ X}

)
= T

→ (
R(x,y),R↓A(y)

)
which is, by Lemma 7, (3), a sufficient condition forR-closedness.

Theorem 2. For any A∈ F (X), R↑A is the smallest R-closed fuzzy superset of A and R↓A is the
largest R-closed fuzzy subset.

Proof. From Proposition 1, we know thatR↑A andR↓A are indeedR-closed.

The inclusion properties can be proved as follows:

R↓A(x) = inf{T
→ (

R(x,y),A(y)
)
| y∈ X}

≤ T
→ (

R(x,x),A(x)
)

= T
→ (

1,A(x)
)

= A(x)
= T

(
A(x),1

)
= T

(
A(x),R(x,x)

)
≤ sup{T

(
A(y),R(y,x)

)
| y∈ X}

= R↑A(x).

It remains to show minimality/maximality. SupposeB is an arbitraryR-closed fuzzy superset
of A. Then we obtain, for allx,y∈ X,

B(x)≥ T
(
B(y),R(y,x)

)
≥ T

(
A(y),R(y,x)

)
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Hence, we can even take the supremum over ally on the right-hand side, i.e.

B(x)≥ sup{T
(
A(y),R(y,x)

)
| y∈ X}= R↑A(x),

which shows thatB must be a fuzzy superset ofR↑A. SinceB was chosen arbitrarily,R↑A must be
the smallestR-closed fuzzy superset.

Now let us consider an arbitraryR-closed fuzzy setC, such thatC⊆ A. In a similar way as
above, we obtain the following for eachx,y∈ X:

C(x)≤ T
→ (

R(x,y),C(y)
)
≤ T

→
(R(x,y),A(y))

Since this holds for anyx,y∈ X, we can also take the infimum over ally on the right-hand side
and the proof of maximality is finished:

C(x)≤ inf{T
→ (

R(x,y),A(y)
)
| y∈ X}= R↓A(x)

According to Theorem 2, it is, therefore, justified to callR↑ theclosure operatorof R and to
call R↓ theopening operatorof R.

Corollary 2. The closure and the opening operator of a T-preordering R can be represented in a
dual way:

R↑A(x) = inf{B(x) | B is an R-closed fuzzy superset of A}
R↓A(x) = sup{C(x) |C is an R-closed fuzzy subset of A}

Proof. From Theorem 2, we know that anyR-closed fuzzy superset ofA is a fuzzy superset of
R↑A. SinceR↑A is anR-closed fuzzy superset ofA itself, the representation must hold. The dual
representation ofR↓A can be proved analogously.

Theorem 2 provides us with the mathematical apparatus for proving several basic properties
of closures and openings.

Corollary 3. The following propositions hold for any A∈ F (X):

1. A is R-closed if and only if A= R↑A.

2. A is R-closed if and only if A= R↓A.

3. R↑(R↑A) = R↑A

4. R↓(R↓A) = R↓A

5. R↑(R↓A) = R↓A

6. R↓(R↑A) = R↑A

Proof. The first two propositions follow directly from Theorem 2. The others are immediate
consequences of the first one.
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Items (3) and (4) in Corollary 3 refer to idempotency with respect to composition, i.e. that
R↑◦R↑ ≡R↑ andR↓◦R↓ ≡R↓. In order to investigate such algebraic properties a little further, we
now formulate a sufficient condition under which the applications of closure and opening operators
commute.

Theorem 3. Given two T-preorderings R1 and R2 such that R1∪R2 is T -transitive, the following
propositions hold for any A∈ F (X):

(R1∪R2)↑A = R1↑(R2↑A) = R2↑(R1↑A) = R1↑A∪R2↑A
(R1∪R2)↓A = R1↓(R2↓A) = R2↓(R1↓A) = R1↓A∩R2↓A

Proof. R1∪R2 is supposed to beT-transitive. Then the reflexivity ofR1 andR2 implies thatR1∪R2

is aT-preordering, and all the results achieved so far are applicable toR1∪R2 as well.

First of all,(R1∪R2)↑A is R1∪R2-closed. Therefore, by Corollary 1,(R1∪R2)↑A is R1-closed
and, due to Corollary 3,

R1↑
(
(R1∪R2)↑A

)
= (R1∪R2)↑A.

SinceR2⊆ R1∪R2, monotonicity (cf. (1) and (3) of Lemma 6) entails

R1↑(R2↑A)⊆ R1↑
(
(R1∪R2)↑A

)
= (R1∪R2)↑A. (6)

The inclusion property (see Theorem 2) and monotonicity (cf. Lemma 6) yield

R1↑A⊆ R1↑(R2↑A), (7)

R2↑A⊆ R1↑(R2↑A). (8)

Putting (7) and (8) together, we obtain

R1↑A∪R2↑A⊆ R1↑(R2↑A). (9)

Since
(R1∪R2)↑A = R1↑A∪R2↑A

holds anyway due to Lemma 6, Eq. (9) is equivalent to

(R1∪R2)↑A⊆ R1↑(R2↑A). (10)

Then Eq. (6) and (10) together prove that

(R1∪R2)↑A = R1↑(R2↑A).

The second equality
(R1∪R2)↑A = R2↑(R1↑A)

follows immediately if we swapR1 andR2.

Now let us turn to the second line of equalities. Again, trivially,(R1∪R2)↓A is R1∪R2-closed.
Hence, due to Corollary 1,(R1∪R2)↓A is R1-closed and, again by Corollary 3,

R1↓
(
(R1∪R2)↓A

)
= (R1∪R2)↓A.
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SinceR2⊆ R1∪R2, monotonicity (see (2) and (4) of Lemma 6) implies

R1↓(R2↓A)⊇ R1↓
(
(R1∪R2)↓A

)
= (R1∪R2)↓A. (11)

On the other hand, the inclusion property (see Theorem 2) and monotonicity imply

R1↓A⊇ R1↓(R2↓A),
R2↓A⊇ R1↓(R2↓A).

Joining these two inclusions yields

R1↓A∩R2↓A⊇ R1↓(R2↓A). (12)

Since we know from Prop. (8) of Lemma 6 that

(R1∪R2)↓A = R1↓A∩R2↓A,

the inequalities (11) and (12) imply

(R1∪R2)↓A = R1↓(R2↓A).

The second equality
(R1∪R2)↓A = R2↓(R1↓A)

follows again immediately if we swapR1 andR2.

5 An Application: Ordering-Based Modifiers

Already in their beginning, fuzzy systems were considered as appropriate tools for controlling
complex systems and for carrying out complicated decision processes [20]. It is well-known
and easy to see that, if rule bases are represented as complete tables, the number of rules grows
exponentially with the number of variables—a fact which can be regarded as a serious limitation
in terms of surveyability and interpretability.

Almost all fuzzy systems make implicit use of orderings. More specifically, it is quite common
to decompose the universe of a system variable into a certain number of fuzzy sets by means of the
ordering of the universe—an approach which is often reflected in labels like“small” , “medium”,
or “large” . We will now demonstrate by means of a simple example how such ordering informa-
tion can be used to reduce the size of a rule base while improving expressiveness and interpretabil-
ity. Consider a typical PD-style fuzzy controller with two inputse, ∆e and one output variablef ,
where the universes of all these variables are covered by five fuzzy sets labeled“NB” , “NS” , “Z” ,
“PS” , and“PB” :

e\∆e NB NS Z PS PB

NB NB NB NB NS Z
NS NB NB NS Z PS
Z NB NS Z PS PB
PS NS Z PS PB PB
PB Z PS PB PB PB
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One possibility to reduce the size of this rule base is to take neighboring rules with the same
consequents, such as,

IF e is “NB” AND ∆e is “NB” THEN f is “NB”
IF e is “NS” AND ∆e is “NB” THEN f is “NB”
IF e is “Z” AND ∆e is “NB” THEN f is “NB”

and to replace them by a single rule like the following one1:

IF e is “at most Z” AND ∆e is “NB” THEN f is “NB”

Of course, there is actually no need to do so in such a simple case. Anyway, grouping neighboring
rules by means of expressions, such as,“at least” , “at most” , or “between”, could help to reduce
the size of larger rule bases considerably.

In addition, such elements can be useful in rule interpolation. Sometimes, when experts or
automatic tuning procedures only provide an incomplete description of a fuzzy rule base, it can
still be necessary to obtain a conclusion even if an observation does not match any antecedent
in the rule base [12]. Moreover, it is considered as another opportunity for reducing the size of
a rule base to store only some representative rules and to interpolate between them [13]. In any
case, it is indispensable to have criteria for determining between which rules the interpolation
should take place. Beside distance, orderings play a fundamental role in this selection. As an
alternative to distance-based methods [13], it is possible to fill the gap between the antecedents
of two rules using a fuzzy concept of“strictly between”, which leads us to the ordering-based
modifiers mentioned above.

The fact remains that we are still lacking a way how to represent such expressions under the
presence of fuzziness. In order to have a universal approach which is applicable in a wide variety
of practical problems, at least the following two properties should be satisfied:

1. If there is a kind of inherent context of gradual equality in the given environment, ordering-
based modifiers should take it into account. Stressing the well-known example of the height
of men, this means that a fuzzy set “at least 180cm” should not exclude 179.9cm completely,
since both values are almost indistinguishable.

2. Of course, the operators should be applicable to fuzzy sets, too, in order to be able to model
expressions like “at least medium”.

Usually, an expression like “at least” deeply relies on an underlying concept of ordering. Tak-
ing the first of the two above requirements into account , it is, however, not sufficient to consider
only crisp concepts of ordering. With the aim to have a vague model of ordering based on an
underlying vague concept of equality/equivalence, a generalization of fuzzy orderings has been
proposed in [3].

1It depends on the underlying inference scheme whether the result is actually the same; we leave this aspect aside
for the present paper, since this is not its major concern.
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Definition 10. A T-transitive binary fuzzy relationR∈F (X2) is called afuzzy orderingonX with
respect to a t-normT and aT-equivalenceE, for brevityT-E-ordering, if and only if it additionally
satisfies the following two axioms:

1. E-reflexivity: ∀x,y∈ X : R(x,y)≥ E(x,y)

2. T-E-antisymmetry: ∀x,y∈ X : T
(
R(x,y),R(y,x)

)
≤ E(x,y)

For more details on this concept of fuzzy orderings, its properties and applications, the reader
is referred to [3]. We just mention that, by replacing the fuzzy equivalence relationE by the crisp
equality, the well-known definition of fuzzy partial orderings [19] is obtained. Moreover, one
easily verifies that this still includes crisp orderings as well.

Now let us start with the problem how to define an operator “at least”. If we restrict ourselves
to crisp sets and crisp orderings, the following definition seems intuitively correct:

x∈ “at least M” ⇐⇒
(
∃y∈ X : y∈M∧y� x

)
.

For generalizing this formula to a fuzzy setA and a givenT-E-orderingR, two logical concepts
have to be fuzzified as well—the conjunction and the existential quantifier. For conjunction, the
underlying t-normT seems to be the ready-made choice. If we take, as usual in t-norm-based
predicate logic [5], the supremum as fuzzy substitute for the existential quantifier, the following
generalization is obtained:

“at least A”(x) = sup{T
(
A(y),R(y,x)

)
| y∈ X}

Actually, this is nothing else than the full image or closure ofA with respect toR:

“at least A” = R↑A

In order to make our formulas a little shorter and easier to read, we will denote this operator with
ATL in the following.

Analogously, it is possible to define an operator‘at most’ just by taking the inverse ordering
R−1(x,y) = R(y,x)

“at most A”(x) = sup{T
(
A(y),R(x,y)

)
| y∈ X}

which will be denoted ATM in the following. To make notation consistent, let us denote the closure
of E—the so-calledextensional hull—as EXT(A) = E↑A.

The question arises what the benefits of the results from Section 3, as promised earlier, are.
First of all, and this is neither surprising nor really spectacular, ATL(A) is R-closed and ATM(A)
is R−1-closed. As an immediate consequence of Corollary 1, ATL(A) and ATM(A) are bothex-
tensional, i.e.E-closed. Moreover, we know from Corollary 3 that both operators are idempotent
in the sense that

ATL(ATL(A)) = ATL(A),
ATM(ATM(A)) = ATM(A).

We have mentioned above that theT-equivalence-based approach to fuzzy orderings is very
much inspired by the typical practical situation that there is a given crisp concept of (mostly linear)
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ordering, however, with an additional context of gradual equality (like in the height example). We
will now study this case in more detail. It will turn out that the results from Section 3 enable us
to represent ATL and ATM by closures with respect to the crisp ordering and the fuzzy concept of
equality. Before that, let us formalize this typical case in a mathematically exact way.

Definition 11. A T-E-orderingR is called adirect fuzzificationof a crisp ordering� if and only
if it admits the following resolution:

R(x,y) =
{

1 if x� y
E(x,y) otherwise

(13)

It is important to mention that strongly complete fuzzy orderings are uniquely characterized
as direct fuzzifications of linear orderings [3].

As easy to see from (13), a direct fuzzification of a crisp ordering is the max-union of a crisp
ordering and aT-equivalence, which allows us to apply Theorem 3.

Theorem 4. Let R be a T-E-ordering which is a direct fuzzification of a crisp ordering�. Then
the following equalities hold

ATL(A) = EXT(LTR(A)) = LTR(EXT(A)) = EXT(A)∪LTR(A), (14)

ATM(A) = EXT(RTL(A)) = RTL(EXT(A)) = EXT(A)∪RTL(A), (15)

where the operatorLTR denotes the closure with respect to� while RTL stands for the closure
with respect to the inverse relation of�:

LTR(A)(x) = sup{A(y) | y� x}
RTL(A)(x) = sup{A(y) | x� y}

Moreover,ATL(A) is the smallest fuzzy superset of A which is extensional and has a non-decreasing
membership function. Analogously,ATM(A) is the smallest fuzzy superset of A which is exten-
sional and has a non-increasing membership function.

Proof. Let us start with the closures induced by the relations� and�. For representing� as a
fuzzy relation, we consider itscharacteristic function

χ�(x,y) =
{

1 if x� y,
0 otherwise.

Taking into account thatx� y⇔ χ�(x,y) = 1, Prop. (2) in Lemma 7 implies that a fuzzy setA is
�-closed if and only if, for allx,y∈ X,

χ�(x,y)≤ T
→ (

A(x),A(y)
)
.

In particular this means that, ifx� y, the equalityT
→ (

A(x),A(y)
)

= 1 must hold. Due to (1) in
Lemma 2, we obtain that�-closedness is equivalent to non-decreasingness of the membership
function:

x� y =⇒ A(x)≤ A(y)



15

Analogously, we can show that�-closedness corresponds to the non-increasingness of the mem-
bership function. Since� is a crisp relation, the following holds:

LTR(A)(x) = sup{T
(
A(y),χ�(y,x)

)
| y∈ X}= sup{A(y) | y� x}

The analogous argument applies to prove the corresponding representation of RTL.

Equality (14) follows directly from Theorem 3 if we considerR1 = E andR2 = χ�, while
Equality (15) follows in the same way withR1 = E andR2 = χ�.

Of course, ATL(A) is extensional and has a non-decreasing membership function (by Corollary
1, sinceE and� are both subrelations ofR). For proving maximality, suppose that a superset
B⊇ A is extensional and has a non-decreasing membership function. Hence,B is a superset of
both EXT(A) and LTR(A). Then

B⊇ EXT(A)∪LTR(A) = ATL(A)

must hold, which proves minimality of ATL(A). Analogous arguments can be applied to prove the
minimality of ATM(A).

The representations (14) and (15) can be interpreted as commutative diagrams, one of which
is shown in Figure 1.

There is one operator we have already mentioned, but not yet dealt with—“between”. In order
to introduce such a concept, we have to consider the convexity of fuzzy sets.

Definition 12. Provided that the domainX is equipped with some crisp ordering� (not necessarily
linear), a fuzzy setA ∈ F (X) is calledconvex(compare with [15, 18]) if and only if, for all
x,y,z∈ X,

x� y� z =⇒ A(y)≥min
(
A(x),A(z)

)
.

Lemma 10. Any fuzzy set with non-decreasing or non-increasing membership function is convex.

Proof. Consider a fuzzy setA ∈ F (X) with a non-decreasing membership function. Then the
following holds for allx,y,z∈ X:

x� y� z =⇒ A(x)≤ A(y)≤ A(z)

Therefore,A(y) ≥ A(x) = min
(
A(x),A(z)

)
must always be fulfilled for an ascending sequence

x� y� z, andA is guaranteed to be convex. Analogously, the same can be proved for a fuzzy set
with non-increasing membership function.

Therefore, we can conclude, under the assumption thatR is a direct fuzzification of some crisp
ordering�, that ATL(A), ATM(A), LTR(A), and RTL(A) are convex fuzzy sets for anyA∈F (X).

Lemma 11. Themin-intersection of any two convex fuzzy sets is again convex.

Proof. Assume thatA andB are two convex fuzzy sets, i.e.

x� y� z =⇒ A(y)≥min
(
A(x),A(z)

)
,

x� y� z =⇒ B(y)≥min
(
B(x),B(z)

)
.
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Taking an arbitrary ascending sequencex� y� z, we obtain

min
(
A(y),B(y)

)
≥min

(
min

(
A(x),A(z)

)
,min

(
B(x),B(z)

))
= min

(
A(x),A(z),B(x),B(z)

)
= min

(
A(x),B(x),A(z),B(z)

)
= min

(
min

(
A(x),B(x)

)
,min

(
A(z),B(z)

))
.

Lemma 12. Assume that� is an arbitrary, not necessarily linear ordering on a domain X. Then
the fuzzy set

CVX(A) = LTR(A)∩RTL(A)

is the smallest convex fuzzy superset of A.

Proof. First of all, CVX(A) is for sure a convex superset ofA, since it is the intersection of two
convex fuzzy sets both of which are supersets ofA.

Now assume thatB is a convex fuzzy superset ofA, i.e., for allx,y,z∈ X,

x� y� z =⇒ B(y)≥min
(
B(x),B(z)

)
.

Since this holds for all chainsx� y� z, we can even, for a fixedy, take the suprema over allx� y
andz� y and the following is obtained:

B(y)≥min
(

sup{B(x) | x� y},sup{B(z) | y� z}
)

= min
(
LTR(B)(y),RTL(B)(y)

)
≥min

(
LTR(A)(y),RTL(A)(y)

)
= CVX(A)(y)

The fuzzy setB was supposed to be an arbitrary convex fuzzy superset ofA; therefore, CVX(A)
must be the smallest convex fuzzy superset ofA.

Theorem 5. With the assumptions of Theorem 4 and the definition

ECX(A) = ATL(A)∩ATM(A),

the following representation holds:

ECX(A) = EXT
(
CVX(A)

)
= CVX

(
EXT(A)

)
= EXT(A)∪CVX(A) (16)

Furthermore,ECX(A) is the smallest fuzzy superset of A which is extensional and convex.

Proof. Taking into account that, for min and max, the laws of distributivity hold, we obtain the
following from Theorem 4:

ECX(A)(x) = min
(
ATL(A)(x),ATM(A)(x)

)
= min

(
max(EXT(A)(x),LTR(A)(x)),
max(EXT(A)(x),RTL(A)(x))

)
= max

(
EXT(A)(x),min(LTR(A)(x),RTL(A)(x))

)
= max

(
EXT(A)(x),CVX(A)(x)

)
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Using the representations (14) and (15), we immediately obtain from the definition of CVX(A)
that

ECX(A) = ATL(A)∩ATM(A)
= LTR

(
EXT(A)

)
∩RTL

(
EXT(A)

)
= CVX

(
EXT(A)

)
.

On the other hand, ECX(A) is an intersection of two convex fuzzy sets and, therefore, convex.
Thus, by Lemma 12, ECX(A) is a fuzzy superset of CVX(A). Moreover, ECX(A) is extensional,
since it is the intersection of two extensional fuzzy sets (cf. Lemma 8). All together, ECX(A) is
an extensional fuzzy superset of CVX(A), which implies (cf. Theorem 2)

ECX(A)⊇ EXT
(
CVX(A)

)
. (17)

SinceA⊆ CVX(A) always holds, the following is obtained (see (1) of Lemma 6 and Theorem 2):

EXT(A)⊆ EXT
(
CVX(A)

)
CVX(A)⊆ EXT

(
CVX(A)

)
This immediately implies

ECX(A) = EXT(A)∪CVX(A)⊆ EXT
(
CVX(A)

)
which, together with (17), completes the proof of (16).

Now assume thatB is an extensional and convex fuzzy superset ofA. Since extensionality
impliesB⊇ EXT(A) while convexity impliesB⊇ CVX(A), we see that

B⊇ CVX(A)∪EXT(A) = ECX(A)

and the minimality of ECX(A) is proven as well.

Example 2. Figure 2 shows a simple example of a non-trivial fuzzy setA∈ F (R) and the results
which are obtained by applying various operators we have discussed so far.

The relations used for representing these operators are the natural linear ordering of real num-
bers≤ and the following two fuzzy relations:

E(x,y) = max(1−|x−y|,0)

R(x,y) =
{

1 if x≤ y
max(1−x+y,0) otherwise

One easily verifies thatE is, indeed, aTL -equivalence on the real numbers and thatR is a TL -
E-ordering, which directly fuzzifies the linear ordering of real numbers, whereTL stands for the
so-calledŁukasiewicz t-norm

TL (x,y) = max(x+y−1,0).

In particular, Fig. 2 demonstrates the commutative diagram shown in Fig. 1 and all the other
equalities of (14), (15), and (16).
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A
EXT−−→ EXT(A)

LTR

y LTR

y
LTR(A) EXT−−→ ATL(A)

Figure 1: A commutative diagram depicting the relationships (14) for a given fuzzy setA.
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Figure 2: A fuzzy setA ∈ F (R) and the results which are obtained when applying various
ordering-based operators.



19

Finally, we can now define an operator representing an inclusive version of “between” with
respect to a fuzzy ordering.

Definition 13. Given two fuzzy setsA,B∈ F (X), the binary operator BTW is defined as

BTW(A,B) = ECX(A∪B).

Easily, we can represent the operator BTW by the operations ATL and ATM only (without any
assumptions about specific properties of the underlyingT-E-orderingR).

Proposition 2. The following representation holds for all A,B∈ F (X):

BTW(A,B) =
(
ATL(A)∪ATL(B)

)
∩

(
ATM(A)∪ATM(B)

)
(18)

Proof. Follows immediately by applying Proposition (5) of Lemma 6:

BTW(A,B) = ECX(A∪B)
= ATL(A∪B)∩ATM(A∪B)
=

(
ATL(A)∪ATL(B)

)
∩

(
ATM(A)∪ATM(B)

)
Trivially, BTW(A,B) is in any case extensional. IfR is a direct fuzzification of some crisp

ordering�, we know by Theorem 5 that BTW(A,B) is convex as well, a property one would
naturally demand of a concept of betweenness. Moreover, the operator is symmetric, i.e.

BTW(A,B) = BTW(B,A).

What remains to be clarified is how an operator “strictly between” can be defined. It seems
intuitively clear that “strictly betweenA andB” should be a subset of BTW(A,B) which should
not include any relevant parts ofA andB. The following definition can be considered as the dual
of Eq. (18).

Definition 14. The“strictly between” operatoris a binary connective onF (X) which is defined
as

SBT(A,B) = {T

((
ATL(A)∩ATL(B)

)
∪

(
ATM(A)∩ATM(B)

))
.

Finally, before we conclude this section with an example, let us clarify some basic properties
of the SBT operator.

Proposition 3. The following representation holds:

SBT(A,B) =
(
{TATL(A)∪{TATL(B)

)
∩

(
{TATM(A)∪{TATM(B)

)
(19)

Moreover, theSBToperator is symmetric andSBT(A,B) is in any case extensional. If R is a direct
fuzzification of a crisp ordering�, SBT(A,B) is also convex.

Proof. Eq. (19) follows directly from applying the De Morgan law (Lemma 4) successively.

According to the definition, SBT(A,B) is given as the complement of a union of intersec-
tions of extensional fuzzy sets. Therefore, by Lemmas 8 and 9, SBT(A,B) must be extensional.
Symmetry follows trivially from the symmetry of intersections and unions.



20 References

Now assume thatR is a direct fuzzification of a crisp ordering�. We know that ATL(A) and
ATL(B) both have non-decreasing membership functions. SinceNT is non-increasing,{TATL(A)
and {TATL(B) both have non-increasing membership functions. The maximum of two non-
increasing functions is again non-increasing; therefore,

{TATL(A)∪{TATL(B)

has a non-increasing membership function which implies that it is convex (by Lemma 10). Anal-
ogously, one can prove that

{TATM(A)∪{TATM(B)

has a non-decreasing membership function and is, therefore, convex. By Lemma 11, we finally
get that

SBT(A,B) =
(
{TATL(A)∪{TATL(B)

)
∩

(
{TATM(A)∪{TATM(B)

)
in convex.

Example 3. Figure 3 shows two fuzzy setsA,B∈ F (R) and the results which are obtained when
applying the operators BTW and SBT, where the relations as in Example 2 are used. Figure 4
shows the same, but for the crisp ordering of real numbers (usingTL as underlying t-norm, too).

6 Concluding Remarks

This paper provides a theoretical framework for studying opening and closure operators of fuzzy
preorderings. Based on these considerations, we have seen that the results on closure operators
have fruitful applications in the construction and analysis of ordering-based modifiers.
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