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Abstract

This paper introduces and justifies a similarity-
based concept of strict fuzzy orderings and pro-
vides constructions how fuzzy orderings can be
transformed into strict fuzzy orderings and vice
versa. We demonstrate that there is a meaning-
ful correspondence between fuzzy orderings and
strict fuzzy orderings. Unlike the classical case,
however, we do not obtain a general one-to-one
correspondence. We observe that the strongest
results are achieved if the underlying t-norm in-
duces a strong negation, which, in particular, in-
cludes nilpotent t-norms and the nilpotent mini-
mum.

Keywords: fuzzy equivalence relations, fuzzy or-
derings, strict fuzzy orderings.

1 Introduction

In the classical case, there is a one-to-one corre-
spondence between partial orderings, i.e. reflex-
ive, antisymmetric, and transitive relations, and
strict orderings, i.e. irreflexive and transitive re-
lations. The only trivial component that distin-
guishes these two concepts is equality. From that
point of view, it makes no fundamental difference
whether we consider one or the other [20].

Orderings and strict orderings have been stud-
ied in the theory of fuzzy relations already as
well [11, 17, 18, 23]. Partial fuzzy orderings in the
sense of Zadeh [23], however, have severe short-
comings that were finally resolved by replacing
the crisp equality by a fuzzy equivalence relation,
thereby maintaining the well-known classical fact

that orderings are obtained from preorderings by
factorization [1–3, 10, 13]. Strict fuzzy orderings
based on such a similarity-based setting, however,
have not yet been considered so far. This paper
aims at filling this gap. We introduce similarity-
based strict fuzzy orderings and provide construc-
tions how fuzzy orderings can be transformed into
strict fuzzy orderings and vice versa. We will
see that, unlike the classical case, the two con-
cepts remain independent to some extent in the
sense that there is no general one-to-one corre-
spondence. The reason is for that is twofold:
(1) the underlying fuzzy equivalence relation is
a much richer structure than the classical equal-
ity; (2) the underlying logical operations do not
form a Boolean algebra, thus, we do not have the
guarantee that all constructions are reversible.

2 Preliminaries

All (fuzzy) relations considered in this paper are
binary (fuzzy) relations on a given non-empty do-
main X. For simplicity, we consider the unit in-
terval [0, 1] as our domain of truth values in this
paper. Note that most results, with only minor
and obvious modifications, also hold for more gen-
eral structures [9, 10, 12, 13, 15, 19]. The symbol
T denotes a left-continuous t-norm [16]. Corre-
spondingly, T

→
denotes the unique residual impli-

cation of T . Furthermore, we denote the residual
negation of T with NT (x) = T

→
(x, 0). If the resid-

ual negation NT of T is a strong negation (i.e.
a continuous, strictly decreasing, and involutive
negation), we denote the dual t-conorm (w.r.t.
the residual negation NT ) with

ST (x, y) = NT (T (NT (x), NT (y))).
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In any case, we assume that the reader is familiar
with the basic concepts and properties of triangu-
lar norms and related operations [11,16].

Definition 1. A binary fuzzy relation E is called
fuzzy equivalence relation1 with respect to T , for
brevity T -equivalence, if the following three ax-
ioms are fulfilled for all x, y, z ∈ X:

1. Reflexivity: E(x, x) = 1

2. Symmetry: E(x, y) = E(y, x)

3. T -transitivity: T (E(x, y), E(y, z)) ≤ E(x, z)

Definition 2. A binary fuzzy relation L is
called fuzzy ordering with respect to T and a T -
equivalence E, for brevity T -E-ordering, if it ful-
fills the following three axioms for all x, y ∈ X:

1. E-reflexivity: E(x, y) ≤ L(x, y)

2. T -E-antisymmetry:

T (L(x, y), L(y, x)) ≤ E(x, y)

3. T -transitivity: T (L(x, y), L(y, z)) ≤ L(x, z)

Definition 3. A fuzzy relation R is called
strongly complete if max(L(x, y), L(y, x)) = 1 for
all x, y ∈ X [4, 11, 17]. R is called T -linear if
NT (L(x, y)) ≤ L(y, x) for all x, y ∈ X [4, 13].

Note that strong completeness implies T -linearity,
regardless of the choice of T [4]. If NT is a strong
negation, then a fuzzy relation R is T -linear if
and only if ST (R(x, y), R(y, x)) = 1 holds for all
x, y ∈ X [4].

3 Strict Fuzzy Orderings

In the crisp case, strict orderings are defined as
irreflexive and transitive relations. It is more than
obvious how to translate this definition to a fuzzy
setting [11, 18]. In order to take the underlying
fuzzy equivalence relation into account, we add
extensionality.

1Note that various diverging names for this class of
fuzzy relations appear in literature, like similarity relations,
indistinguishability operators, equality relations, and sev-
eral more [5, 9, 14,15,19,21,23]

Definition 4. A binary fuzzy relation R is called
strict fuzzy ordering with respect to T and a T -
equivalence E, for brevity strict T -E-ordering, if
it fulfills the following axioms for all x, x′, y, y′, z ∈
X:

1. Irreflexivity: R(x, x) = 0

2. T -transitivity: T (R(x, y), R(y, z)) ≤ R(x, z)

3. E-extensionality:

T (E(x, x′), E(y, y′), R(x, y)) ≤ R(x′, y′)

Note that, under the assumption of T -transitivity,
irreflexivity implies T -asymmetry, i.e. that
T (R(x, y), R(y, x)) = 0 for all x, y ∈ X, where
the converse holds only if T does not have zero
divisors. In other words, irreflexivity can be re-
placed equivalently by T -asymmetry if T does not
have zero divisors. Furthermore, we can conclude
that T (E(x, y), R(x, y)) = 0 holds for all x, y ∈ X
and any strict T -E-ordering R.

Example 5. It is a well-known fact that

E(x, y) = max(1− |x− y|, 0)

is a TL-equivalence on R [7, 21], with TL(x, y) =
max(x + y − 1, 0) being the  Lukasiewicz t-norm.
It is easy to show that

L(x, y) = max(min(1− x + y, 1), 0)

is a strongly complete TL-E-ordering [2, 3] and
that

R(x, y) = max(min(y − x, 1), 0)

is a strict TL-E-ordering.

E-extensionality as defined above is nothing else
but a straightforward translation of the trivial
crisp assertion

(x = y ∧ x′ = y′ ∧ x < y) → x′ < y′.

In case that E is the classical crisp equality, E-
extensionality is trivially fulfilled and we end up
in the more traditional concept of a strict fuzzy
ordering [11, 18]. Conversely, given an irreflexive
and T -transitive fuzzy relation, we can make it
E-extensional by the following proposition.
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Proposition 6. Let R be an irreflexive and T -
transitive fuzzy relation. Then the following fuzzy
relation (the extensional interior of R w.r.t. E) is
a strict T -E-ordering:

IntT,E [R](x, y)

= inf
x′,y′∈X

T
→

(T (E(x, x′), E(y, y′)), R(x′, y′))

Note that, as the following example suggests, the
extensional interior as used in Proposition 6 does
not necessarily give a meaningful non-trivial re-
sult.

Example 7. The classical strict linear ordering
of real numbers < is, of course, an irreflexive
and T -transitive fuzzy relation (no matter what
t-norm T we choose). Given E from Example 5,
we obtain IntTL,E [<] = R (with R from Exam-
ple 5). Now let us consider the product t-norm
TP(x, y) = x · y. It is well-known that

E′(x, y) = exp(−|x− y|)

is a TP-equivalence [7]. However, we obtain that
IntTP,E′ [<] is the empty relation, i.e., for all x, y ∈
X,

IntTP,E′ [<](x, y) = 0.

4 From Fuzzy Orderings to Strict
Fuzzy Orderings and Back

In the crisp case, the mutual definability of strict
orderings from partial orderings and vice versa is
a trivial matter: Given a partial ordering ≤, the
corresponding strict ordering can be defined as

x ≤ y ∧ x 6= y

or equivalently

x ≤ y ∧ y 6≤ x.

Conversely, given a strict ordering <, the relation

x < y ∨ x = y

is a partial ordering. These two constructions are
exactly inverse to each other. The question arises
whether and how these simple constructions can
still be preserved in the more general fuzzy case.
The following proposition clarifies the first direc-
tion.

Proposition 8. Consider a T -equivalence E and
a T -E-ordering L. Then the following fuzzy rela-
tion is a strict T -E-ordering:

StrT,E [L](x, y) = min(L(x, y), NT (L(y, x)))

If T does not have zero divisors, the equality
StrT,E [L](x, y) = min(L(x, y), NT (E(y, x))) holds
additionally.

As a first important property, we obtain that a
given T -E-ordering L and the inverse of its in-
duced strict T -E-ordering are disjoint.

Proposition 9. With the assumptions of Propo-
sition 8, the following equality holds for all x, y ∈
X:

T (L(x, y), StrT,E [L](y, x)) = 0

The definition of StrT,E [L] is obviously a straight-
forward translation of the construction x ≤ y ∧
y 6≤ x (being equivalent to x ≤ y ∧ x 6= y in
case that T does not have zero divisors), but it
need not be the only possibility to translate this
construction to the fuzzy case (e.g. one could use
the t-norm T instead of the minimum). There-
fore, let us try to investigate whether StrT,E [L]
has some specific properties and, consequently,
justifications. We could consider all strict T -E-
orderings contained in a T -E-ordering L, but this
is not a reasonable assumption. In the crisp case,
we would at least assume the following obvious
kind of montonicity:

(x ≤ y ∧ y < z) → x < z

(x < y ∧ y ≤ z) → x < z

These properties can be translated into the fuzzy
setting in an obvious way.

Definition 10. A fuzzy relation R is called
monotonic w.r.t. a given T -E-ordering L if and
only if the following holds for all x, y, z ∈ X:

T (L(x, y), R(y, z)) ≤ R(x, z)
T (R(x, y), L(y, z)) ≤ R(x, z)

The next theorem shows that StrT,E [L] is the
greatest strict T -E-ordering contained in a given
T -E-ordering L that fulfills monotonicity with re-
spect to L.
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Theorem 11. Let E be a T -equivalence and let L
be a T -E-ordering. Then StrT,E [L] is the largest
strict T -E-ordering that is monotonic w.r.t. L.

As we are, of course, interested in the most spe-
cific information available, i.e. a minimal loss of
information, we conclude that StrT,E [L] is the
most appropriate choice how to define a strict T -
E-ordering from a given T -E-ordering L. Note
that this loss of information can still be severe, as
the following example demonstrates.

Example 12. Let us reconsider the TL-
equivalence E(x, y) = max(1− |x− y|, 0) and the
TL-E-ordering L(x, y) = max(min(1−x+y, 1), 0).
Then we obtain

StrTL,E [L](x, y) = max(min(y − x, 1), 0),

which is exactly R from Example 5. Now recon-
sider the TP-equivalence E′(x, y) = exp(−|x− y|)
and the TP-E′-ordering L′(x, y) = min(exp(y −
x), 1). Then we obtain StrTP,E′ [L′](x, y) = 0, i.e.
there is no non-trivial strict TP-E′-ordering con-
tained in L′ that is monotonic w.r.t. L. Obvi-
ously, this is due to the fact that L(x, y) > 0 for
all x, y ∈ R while we have

NT (x) =

{
1 if x = 0,

0 otherwise.

In such a case, therefore, we can never obtain a
meaningful strict ordering.

Now let us try to clarify the other direction. The
following proposition provides the necessary foun-
dation.

Proposition 13. Consider a T -equivalence E
and a strict T -E-ordering R. Then the following
fuzzy relation is a T -E-ordering:

RefT,E [R](x, y) = max(R(x, y), E(x, y))

Again the question arises why exactly this choice
is appropriate and how it is justified.

Proposition 14. With the assumptions of Propo-
sition 13, R is monotonic w.r.t. RefT,E [R]. More-
over, RefT,E [R] is the smallest T -E-ordering ex-
tending R.

Now we turn to the question under which condi-
tions the correspondence is one-to-one.

Theorem 15. Consider a T -equivalence E and a
T -E-ordering L. Then the inequality

RefT,E [StrT,E [L]](x, y) ≤ L(x, y)

holds. The equality

RefT,E [StrT,E [L]](x, y) = L(x, y)

holds if and only if, for each pair x, y ∈ X, either
T (L(x, y), L(y, x)) = 0 or L(x, y) = E(x, y) holds.

Theorem 16. Consider a T -equivalence E and a
strict T -E-ordering R. Then the inequality

R(x, y) ≤ StrT,E [RefT,E [R]](x, y)

holds. If T does not have zero divisors, we even
have equality, i.e.

R(x, y) = StrT,E [RefT,E [R]](x, y).

5 Linearity

Finally, let us approach the question whether lin-
earity (completeness) is preserved by the transfor-
mations introduced in the previous section. The
concepts of T -linearity and strong completeness
as mentioned in Definition 3 are designed for T -
E-orderings and are not meaningful for irreflexive
relations. Hence, the next definition proposes a
straightforward generalization of the well-known
property of strict linearity

x 6= y → (x < y ∨ y < x). (1)

Definition 17. A fuzzy relation R is called
strictly T -E-linear (with E being a T -
equivalence) if the following inequality holds
for all x, y ∈ X:

NT (E(x, y)) ≤ max(R(x, y), R(y, x))

Based on this definition, it is possible to prove the
following two theorems:

Theorem 18. Assume we are given a T -
equivalence E and a T -E-ordering L. If L is
T -linear and fulfills min-E-antisymmetry2, then
StrT,E [L] is strictly T -E-linear.

2i.e. L is a fuzzy ordering in the sense of Bělohlávek [1].
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Note that strong completeness is a sufficient con-
dition that T -linearity and min-E-antisymmetry
are fulfilled simultaneously.

For the case of a t-norm inducing a strong nega-
tion we are able to prove the following stronger
results.

Theorem 19. Suppose we are given a T -
equivalence E and a T -E-ordering L and further-
more assume that T induces a strong negation
NT . If L is T -linear, then the following two as-
sertions holds for all x, y ∈ X:

ST (StrT,E [L](x, y), StrT,E [L](y, x)) ≥ NT (E(x, y))
ST (StrT,E [L](x, y), E(x, y), StrT,E [L](y, x)) = 1

The first assertion in Theorem 19 can be under-
stood as a slightly weakened strict T -E-linearity.
The second assertion is an important result which
is a straightforward generalization of the well-
known fact that, in the crisp case, the following
holds for any linear ordering ≤ (with < being the
corresponding strict ordering):

x < y ∨ x = y ∨ y < x

Note that this is, of course, an equivalent formu-
lation of (1).

Finally, let us turn to the converse direction.

Theorem 20. Assume we are given a T -
equivalence E and a strict T -E-ordering R. Sup-
pose further that T does not have zero divisors or
that T induces a strong negation. If R is strictly
T -E-linear, then RefT,E [R] is T -linear.

6 Conclusion

We have introduced and justified a new concept of
similarity-based strict fuzzy orderings. Meaning-
ful correspondences between fuzzy orderings and
strict fuzzy orderings have been established, but
we have not obtained a general one-to-one corre-
spondence. From this point of view, fuzzy order-
ings and strict fuzzy orderings are not fully equiv-
alent concepts. Hence, the study of both concepts
remains interesting and irredundant. Although t-
norms without zero divisors give rise to some re-
sults that look nice at first glance (see Proposition
8, Theorem 16, and Theorem 20), the examples

suggest that this is a rather restrictive and not
very intuitive setting. On the other hand, the ex-
amples as well as results like Theorems 19 and 20
suggest that t-norms inducing strong negations
(in particular, including nilpotent t-norms and
the nilpotent minimum) have nice and intuitive
properties in this context. This once more con-
firms the viewpoint that such t-norms are most
adequate choices in fuzzy relations theory, fuzzy
preference modeling and related fields [4,6,8,22].
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