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Abstrat

Geneti algorithms play a signi�ant role, as searh tehniques for handling omplex

spaes, in many �elds suh as arti�ial intelligene, engineering, robotis, et. Ge-

neti algorithms are based on the underlying geneti proess in biologial organisms

and on the natural evolution priniples of populations. A short desription is given

in this leture, introduing their use for mahine learning.

Key words: Geneti Algorithms, Evolutionary Computation, Learning.

1 Introdution

Evolutionary Computation (EC) uses omputational models of evolutionary pro-

esses as key elements in the design and implementation of omputer-based problem

solving systems. There are a variety of evolutionary omputational models that have

been proposed and studied whih are referred as Evolutionary Algorithms (EAs).

Shortly, this paradigm overs several variations, suh as Evolutionary Strategies,

addressing ontinuous funtion optimization [72℄, Evolutionary Programming , gen-

erating �nite state automata that desribe strategies or behaviors [25℄, Geneti

Algorithms, providing ontinuous and disrete funtion optimization and searh

[31,45℄ and Geneti Programming, evolving omputer programs to approximately

solve problems [52℄.

In this leture we will give a short introdution to the most widely studied EA,

Geneti Algorithms, and the use of them for Mahine Learning.



2 Geneti Algorithms

Geneti algorithms (GAs) have had a great measure of suess in searh and op-

timization problems. The reason for a great part of their suess is their ability

to exploit the information aumulated about an initially unknown searh spae

in order to bias subsequent searhes into useful subspaes, i.e., their adaptation.

This is their key feature, partiularly in large, omplex, and poorly understood

searh spaes, where lassial searh tools (enumerative, heuristi,..) are inappro-

priate, o�ering a valid approah to problems requiring eÆient and e�etive searh

tehniques.

GAs are general purpose searh algorithms whih use priniples inspired by natural

geneti populations to evolve solutions to problems [45,31℄. The basi idea is to

maintain a population of hromosomes, whih represent andidate solutions to the

onrete problem, that evolves over time through a proess of ompetition and

ontrolled variation. Eah hromosome in the population has an assoiated �tness

to determine whih hromosomes are used to form new ones in the ompetition

proess, whih is alled seletion. The new ones are reated using geneti operators

suh as rossover and mutation.

A GA starts o� with a population of randomly generated hromosomes, and ad-

vanes toward better hromosomes by applying geneti operators modeled on the

geneti proesses ourring in nature. The population undergoes evolution in a form

of natural seletion. During suessive iterations, alled generations, hromosomes

in the population are rated for their adaptation as solutions, and on the basis of

these evaluations, a new population of hromosomes is formed using a seletion

mehanism and spei� geneti operators suh as rossover and mutation. An eval-

uation or �tness funtion (f) must be devised for eah problem to be solved. Given

a partiular hromosome, a possible solution, the �tness funtion returns a single

numerial �tness, whih is supposed to be proportional to the utility or adaptation

of the solution represented by that hromosome.

Although there are many possible variants of the basi GA, the fundamental un-

derlying mehanism onsists of three operations:

(1) evaluation of individual �tness,

(2) formation of a gene pool (intermediate population) through seletion meha-

nism, and

(3) reombination through rossover and mutation operators.

Next proedure shows the struture of a basi GA, where P (t) denotes the popula-

tion at generation t.
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Proedure Geneti Algorithm

begin (1)

t = 0;

initialize P (t);

evaluate P (t);

While (Not termination-ondition) do

begin (2)

t = t+ 1;

selet P (t) from P (t� 1);

reombine P (t);

evaluate P (t);

end (2)

end (1)

The basi priniples of GAs were �rst laid down rigorously by Holland ([45℄), and

are well desribed in many books, suh as [31,60℄. It is generally aepted that the

appliation of a GA to solve a problem must take into aount the following �ve

omponents:

(1) A geneti representation of solutions to the problem,

(2) a way to reate an initial population of solutions,

(3) an evaluation funtion whih gives the �tness of eah hromosome,

(4) geneti operators that alter the geneti omposition of o�spring during repro-

dution, and

(5) values for the parameters that the GA uses (population size, probabilities of

applying geneti operators, et.).

2.1 Appliations of GAs

GAs may deal suessfully with a wide range of problem areas. The main reasons

for this suess are: 1) GAs an solve hard problems quikly and reliably, 2) GAs are

easy to interfae to existing simulations and models, 3) GAs are extensible and 4)

GAs are easy to hybridize. All these reasons may be summed up in only one: GAs are

robust. GAs are more powerful in diÆult environments where the spae is usually

large, disontinuous, omplex and poorly understood. They are not guaranteed to

�nd the global optimum solution to a problem, but they are generally good at

�nding aeptably good solutions to problems aeptably quikly. These reasons

have been behind the fat that, during the last few years, GA appliations have

grown enormously in many �elds.

The following referenes show monograph books of appliations in di�erent areas:

engineering and omputer siene [22,84℄, mahine learning [37,28℄, pattern reog-

nition [63℄, neuronal networks [83℄, robotis [21℄, investment strategies [5℄, manage-

ment appliations [6℄, and fuzzy systems [42,67,70℄.
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3 Learning with GAs

Although GAs are not learning algorithms, they may o�er a powerful and domain-

independent searh method for a variety of learning tasks. In fat, there has been a

good deal of interest in using GAs for mahine learning problems ([48,37,30℄).

Three alternative approahes, in whih GAs have been applied to learning pro-

esses, have been proposed, the Mihigan ([47℄), the Pittsburgh ([74℄), and the

Iterative Rule Learning (IRL) approahes [32,82℄. In the �rst one, the hromosomes

orrespond to lassi�er rules whih are evolved as a whole, whereas in the Pitts-

burgh approah, eah hromosome enodes a omplete set of lassi�ers. In the IRL

approah eah hromosome represents only one rule learning, but ontrary to the

�rst, only the best individual is onsidered as the solution, disarding the remaining

hromosomes in the population. Below, we will desribe them briey.

Mihigan approah. The hromosomes are individual rules and a rule set is rep-

resented by the entire population. The olletion of rules are modi�ed over time via

interation with the environment. This model maintains the population of lassi�ers

with redit assignment, rule disovery and geneti operations applied at the level of

the individual rule.

A geneti learning proess based on the Mihigan approah reeives the name of

Classi�er System. A omplete desription is to be found in [12℄.

Pittsburgh approah. Eah hromosome enodes a whole rule sets. Crossover

serves to provide a new ombination of rules and mutation provides new rules. In

some ases, variable-length rule bases are used, employing modi�ed geneti opera-

tors for dealing with these variable-length and position independent genomes.

This model was initially proposed by Smith in 1980 [74℄. Reent instanes of this

approah may be found in [37℄.

Iterative Rule Learning approah. In this latter model, as in the Mihigan one,

eah hromosome in the population represents a single rule, but ontrary to the

Mihigan one, only the best individual is onsidered to form part of the solution,

disarding the remaining hromosomes in the population. Therefore, in the iterative

model, the GA provides a partial solution to the problem of learning. In order to

obtain a set of rules, whih will be a true solution to the problem, the GA has to

be plaed within an iterative sheme similar to the following:

(1) Use a GA to obtain a rule for the system.

(2) Inorporate the rule into the �nal set of rules.

(3) Penalize this rule.

(4) If the set of rules obtained till now is adequate to be a solution to the problem,

the system ends up returning the set of rules as the solution. Otherwise return

6



to step 1.

The main di�erene with respet to the Mihigan approah is that the �tness of eah

hromosome is omputed individually, without taking into aount ooperation with

other ones. This substantially redues the searh spae, beause in eah sequene

of iterations only one rule is searhed.

A more detailed desription of this approah may be found in [32℄.

3.1 Some Remarks

The Mihigan approah will prove to be the most useful in an on-line proess.

It is more exible to handle inremental-mode learning (training instanes arrive

over time) and dynamially hanging domains, whereas the Pittsburgh and the IRL

approahes seem to be better suited to bath-mode learning, where all training

instanes are available before learning is initiated, and for stati domains.

The major problem in the Mihigan approah is that of resolving the onit be-

tween the individual and olletive interests of lassi�ers within the system. The

ultimate aim of a learning lassi�er system is to evolve a set of o-adapted rules

whih at together in solving some problems. In a Mihigan style system, with se-

letion and replaement at the level of the individual rule, rules whih ooperate

to e�et good ations and reeive payo� also ompete with eah other under the

ation of the GA.

This onit between individual and olletive interests of individual lassi�ers does

not arise with Pittsburgh-style lassi�er systems, sine reprodutive ompetition o-

urs between omplete rule sets rather than individual rules. However, maintenane

and evaluation of a population of omplete rule-sets in Pittsburgh-style systems an

often lead to a muh greater omputational burden (in terms of both memory and

proessing time). Therefore, problems with the Pittsburgh approah have proven to

be, at least, equally as hallenging. Although the approah avoids the problem of

expliit ompetition between lassi�ers, large amounts of omputing resoures are

required to evaluate a omplete population of rule-sets.

When ompared with the latter, the advantage of the IRL approah is that, in

the �rst stage spae it onsiderably redues the searh beause it looks for only

one rule in eah sequene of iterations, although this approah also implies a great

omputational burden.
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4 Conluding Remarks

A short introdution of GAs have been presented. Regarding to their use for ma-

hine learning, to point out that GAs are also used for re�ning parameters in other

learning approahes, as is done using GAs for determining weights in a neural net-

work.
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Abstrat

In this leture, an evaluation of the urrent situation regarding to the ombina-

tion of Geneti Algorithms and Fuzzy Logi is given. This is made by means of a

lassi�ation in areas, giving a short introdution to eah one of them.

Key words: Fuzzy Logi, Geneti Algorithms.

1 Introdution

Reentely, numerous papers and appliations ombining Fuzzy Logi (FL) and Ge-

neti Algorithms (GAs) have beome known, and there is an inreasing interest in

the integration of these two topis.

In the following we explore this ombination from the bidiretional integration:

� the use of FL based tehniques for either improving GA behaviour and modeling

GA omponents, the results obtained have been alled fuzzy geneti algorithms

(FGAs), and

� the appliation of GAs in various optimization and searh problems involving

fuzzy systems.

The present leture tries to give a short review of the ombination of FL and GAs,

introduing a lassi�ation of the publiations in fourteen areas, presenting briey

them.

Before to introdue the aforementioned areas, a few remarks seem to be neessary.



� The �rst is regarding to the bibliography. It is olleted in our tehnial report O.

Cord�on, F. Herrera, M. Lozano, "A Classi�ed Review on the Combination Fuzzy

Logi-Geneti Algorithms Bibliography", Dept. of Computer Siene and A.I.,

University of Granada, Teh.Report 95129, Otober 1995 (Last version Deember

1996). Available at the URL address: http://desai.ugr.es/~herrera/-ga.html. It

lassi�es and lists 562 referenes. This report lassi�es the bibliography in 15

setions aording to the following table. It ontains the keywords and the number

of papers on eah of them. These keywords overs the appliation of FL based

tools to GAs (with the name of fuzzy geneti algorithms) and the di�erent areas

of FL and fuzzy set theory where GAs have been applied. The underlying report

is ontinuously being updated.

1 Fuzzy geneti algorithms 24

2 Fuzzy lustering 14

3 Fuzzy optimization 39

4 Fuzzy neural networks 34

5 Fuzzy relational equations 6

6 Fuzzy expert systems 8

7 Fuzzy lassi�er systems 33

8 Fuzzy information retrieval 6

and database quering

9 Fuzzy deision making, �nanial, 10

and eonomi models

10 Fuzzy regression analysis 6

11 Fuzzy pattern reognition and 24

image proessing

12 Fuzzzy lassi�ation - Conept 24

Learning

13 Fuzzy logi ontrollers (Design, 287

Learning, Tuning, Appliations)

14 Fuzzy logi - Geneti algorithms framework 13

15 Fuzzy logi misellaneous 38

Table 1. Classi�ation keywords

� The seond, is regarding to this leture.It is a summary of the ontribution: O.

Cord�on, F. Herrera, M. Lozano, "On the Combination of Fuzzy Logi and Evolu-

tionary Computation: A Short Review and Bibliography", In: Fuzzy Evolutionary

Computation. W. Pedryz (Ed.), Kluwer Aademi Pub., 1997, pp. 33-56.

We onsider fourteen areas, we join the table areas 7 and 13 in a global area with

the name Geneti fuzzy rule-based ontrol systems. In the following we desribe

the lassi�ation areas. The exhaustive bibliography is found in the aforementioned

referene.
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2 Classi�ation Areas

In this setion we introdue a desription of every area and desribe shortly theap-

pliation of GAs to them.

Fuzzy geneti algorithms. A Fuzzy Geneti Algorithm (FGA) is onsidered as

a GA that uses fuzzy logi based tehniques or fuzzy tools to improve the GA

behaviour modeling di�erent GA omponents.

An FGA may be de�ned as an ordering sequene of instrutions in whih some of the

instrutions or algorithm omponents may be designed with fuzzy logi based tools,

suh as, fuzzy operators and fuzzy onnetives for designing geneti operators with

di�erent properties, fuzzy logi ontrol systems for ontrolling the GA parameters

aording to some performane measures, fuzzy stop riteria, representation tasks,

et.

Fuzzy lustering. Clustering plays a key role in searhing for strutures in data.

Given a �nite set of data, X, the problem of lustering in X is to �nd several

luster enters that an properly haraterize relevant lasses of X. In lassial

luster analysis, these lasses are required to form a partition of X suh that the

degree of assoiation is strong for data within bloks of the partition and weak for

data in di�erent bloks. However, this requirement is too strong in many pratial

appliations, and it is thus desirable to replae it with a weaker requirement. When

the requirement of a risp partition of X is replaed with a weaker requirement of a

fuzzy partition or a fuzzy pseudopartition on X, the emerged problem area is refered

as fuzzy lustering.

GAs are used for a global searh of the spae of possible data partitions given a

hoie of the number of lusters or lasses in the data, for determining the number

of lusters, et.

Fuzzy optimization. Fuzzy optimization deals with how to �nd a best point under

some fuzzy goals and restritions given as linguisti terms or fuzzy sets.

GAs are used for solving di�erent fuzzy optimization problems. This is the ase

for instane of fuzzy owshop sheduling problems, vehile routing problems with

fuzzy due-time, fuzzy mixed integer programming applied to resoure distribution,

interative fuzzy satisfying method for multiobjetive 0-1, fuzzy optimal reliability

design problems, job-shop sheduling problem with fuzzy proessing time, fuzzy

optimization of distribution networks, et.

Fuzzy neural networks. Neural networks have been reognized as an important

tool for onstruting membership funtions, operations on membership funtions,

fuzzy inferene rules, and other ontext-dependent entities in fuzzy set theory.
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On other hand, attempts have been made to develop alternative neural networks,

more attuned to the various proedures of approximate reasoning. These alterna-

tive neural networks are usually referred to as fuzzy neural networks. The following

features, or some of them, distinguish fuzzy neural networks from their lassial

ounterparts: inputs are fuzzy numbers, outputs are fuzzy numbers, weights are

fuzzy numbers, weighted inputs of eah neuron are not aggregated by summation,

but by some other aggregation operation. A deviation from lassial neural net-

works in any of these features requires a properly modi�ed learning algorithm to be

developed.

GAs are used for designing an overall good arhiteture of fuzzy neural networks

and fuzzy neural networks, for determining an optimal set of link weightd, for par-

tiipating in hybrid learning algorithms, et.

Fuzzy relational equations. The notion of fuzzy relational equations is assoiated

with the onept of omposition of binary relations. This operation involves exatly

the same ombinations of matrix entries as in the regular matrix multipliation.

However, the multipliations and additions that are applied to these ombinations

in the matrix multipliation are replaed with other operations. These alternative

operations represent, in eah given ontext, the appropriate operations of fuzzy set

intersetion and union, respetively. Fuzzy relational equations have been intensively

exploited in many areas of appliations of fuzzy sets.

GAs may be used either for �nding approximate solutions to a system of fuzzy

relational equations or for learning in relational strutures.

Fuzzy expert systems. An expert system is a omputer-based system that em-

ulates the reasoning proess of a human expert within a spei� domain of knowl-

edge. In fuzzy expert systems, the knowledge is usually represented by a set of

fuzzy prodution rules, whih onnet anteedents with onsequent, premises with

onlusions, or onditions with ations.

GAs an solve two basial problems of the knowledge base, the knowledge base

buliding and the knowledge �ltering.

Fuzzy information retrieval Information retrieval may be de�ned as the problem

of the seletion of doumentary information from storage in response to searh

questions. The motivation of the appliation of fuzzy set theory to the design of

databases and information storage and retrieval systems lies in the need to handle

impreise information. The database that an aommodate impreise information

an store and manipulate not only preise fats, but also subjetive expert opinions,

judgments, and values that an be spei�ed in linguisti terms.

GAs are used for designing models for optimization of queries in a fuzzy information

retrieval system.
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Fuzzy deision making, �nanial, and eonomi models. Deision making

is the study of how deisions are atually made and how they an be made better

or more suessfully. Fuzzy set theory has been widely used in the �eld of deision

making. For the most part, the appliation onsisted on fuzzi�ations of the lassial

theories of deision making. Also it is used for modelling some �nanial and eonomi

problems.

GAs are used for ooperating in the design and resolution of these models.

Fuzzy regression analysis Regression analysis is an area of statistis that deals

with the investigation of the dependene of a variable upon one or more other

variables. Two distint motivations, fuzzy relation seems intuitively more realisti

and the nature of data whih in some appliations are inherently fuzzy, lead to two

types of fuzzy regression analysis. One involves fuzzy parameters and risp data,

while the other one involves risp parameters and fuzzy data.

GAs are used for solving the underlying optimization problems.

Fuzzy pattern reognition and image proessing. There are various aspets

of image proessing and analysis problems where the theory of fuzzy sets has been

applied: as generalizations of lassial membership-roster methods, generalizations

of lassial syntati methods, providing image ambiguity/information measures

and quantitative evaluation, omputing fuzzy geometrial properties, et.

In handling unertainty in pattern analysis, GAs may be helpful in determining

the appropriate membership funtions, rules and parameter spae, and in providing

a reasonably suitable solution. For this purpose, a suitable fuzzy �tness funtion

needs to be de�ned depending on the problem.

Fuzzy lassi�ation - Conept learning.

Fuzzy lassi�ation sytems based on fuzzy logi are apable of dealing with og-

nitive unertainties suh as the vagueness and ambiguity involved in lassi�ation

problems. In a fuzzy lassi�ation system, a ase or an objet an be lassifed by

applying (mainly) a set of fuzzy rules based on the linguisti values of its attributes.

GAs are used in a fuzzy lassi�ation system for learning fuzzy rules, membership

funtions, fuzzy partitions, et.

Geneti fuzzy rule based ontrol systems. Fuzzy rule based systems have been

shown to be an important tool for modelling omplex systems in whih, due to the

omplexity or the impreision, lassial tools are unsuessful.

GAs have demonstrated to be a powerful tool for automating the de�nition of

the Kownledge Base of a Fuzzy Controller sine adaptive ontrol, learning, and

self-organization may be onsidered in a lot of ases as optimization or searh pro-
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esses. Their adavantages have extended the use of GAs in the development of a

wide range of approahes for designing Fuzzy Controllers over the last few years. In

partiular, the appliation to the design, learning and tuning of KBs has produed

quite promising results. These approahes an reeive the general name of Geneti

Fuzzy Systems (GFSs). On other hand, we also must understand the GFSs as the

appliation of GAs to any fuzzy system being the fuzzy rule based systems a par-

tiular ase although the most extended, this is the reason of alling this area as

geneti fuzzy rule based ontrol systems.

3 Conluding Remarks

After the short desription of areas, to point out that the use of fuzzy logi teh-

niques permits GA behaviour to be improved in di�erent ways, as well as emphasize

the potential of GAs in fuzzy environments as a exible tool for optimization and

searh.

Finally, to mention six referenes. Two of them are tehnial reports that ollet

bibliography on the ombination of GAs and FL [1,19℄, the third referene is the

paper basis for this summary [20℄, and the last three referenes, the three edited

books [42,67,70℄, present a olletion of papers dealing with the topi.
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1 Introdution

In a very broad sense, a Fuzzy System (FS) is any Fuzzy Logi-Based System, where

Fuzzy Logi an be used either as the basis for the representation of di�erent forms of

system knowledge, or to model the interations and relationships among the system

variables. FSs have proven to be an important tool for modeling omplex systems,

in whih, due to the omplexity or the impreision, lassial tools are unsuessful

([66,85℄).

Reently, a great number of publiations explore the use of Geneti Algorithms

(GAs) for designing fuzzy systems. These approahes reeive the general name of

Geneti Fuzzy Systems (GFSs).

The automati de�nition of an FS an be onsidered in many ases as an opti-

mization or searh proess. GAs are the best known and most widely used global

searh tehnique with an ability to explore and exploit a given operating spae us-

ing available performane measures. GAs are known to be apable of �nding near

optimal solutions in omplex searh spaes. A priori knowledge may be in the form

of linguisti variables, fuzzy membership funtion parameters, fuzzy rules, number

of rules, et. The generi ode struture and independent performane features of



GAs make them suitable andidates for inorporating a priori knowledge. These

advantages have extended the use of GAs in the development of a wide range of

approahes for designing fuzzy systems over the last few years.

We shall enter this leture on Fuzzy Rule Based Systems (FRBSs), [2℄, the most

extended FS model to whih the most suessful appliation of FSs belong, the

fuzzy logi ontrollers (FLCs), whih have been and are used in many real-world

ontrol problems ([23℄). As is well known, the Knowledge Base (KB) of an FRBS

is omprised of two omponents, a Data Base (DB), ontaining the de�nitions of

the saling fators and the membership funtions of the fuzzy sets speifying the

meaning of the linguisti terms, and a Rule Base (RB), onstituted by the olletion

of fuzzy rules. GAs may be applied to adapting/learning the DB and/or the RB

of an FRBS. This tutorial will summarize and analyze the GFSs, paying a speial

attention to FRBSs inorporating tuning/learning through GAs.

This leture presents some harateristis of geneti fuzzy rule based systems.

2 Geneti Fuzzy Rule Based Systems

The idea of a Geneti FRBS is that of a geneti FRBS design proess whih in-

orporates geneti tehniques to ahieve the automati generation or modi�ation

of its KB (or a part of it). This generation or modi�ation usually involves a tun-

ing/learning proess, and onsequently this proess plays a entral role in GFSs.

The objetive of this tuning/learning proess is optimization, i.e., maximizing or

minimizing a ertain funtion representing or desribing the behavior of the system.

It is possible to de�ne two di�erent groups of optimization problems in FRBSs. The

�rst group ontains those problems where optimization only involves the behavior

of the FRBS, while the seond one refers to those problems where optimization

involves the global behavior of the FRBS and an additional system. The �rst group

ontains problems suh as modeling, lassi�ation, predition and, in general, iden-

ti�ation problems. In this ase, the optimization proess searhes for an FRBS

able to reprodue the behavior of a ertain target system. The most representative

problem in the seond group is ontrol, where the objetive is to add an FRBS to

a ontrolled system in order to obtain a ertain overall behavior. Next, we analyze

some aspets of the Geneti FRBSs.

2.1 Obtaining the Knowledge for an FRBS

As a �rst step, it is interesting to distinguish between tuning and learning problems.

In tuning problems, a prede�ned RB is used and the objetive is to �nd a set

of parameters de�ning the DB. In learning problems, a more elaborate proess
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inluding the modi�ation of the RB is performed. We an distinguish between

three di�erent groups of GFSs depending on the KB omponents inluded in the

geneti learning proess.

For an extensive bibliography see [19℄ (setion 3.13), some approahes may be found

in [32℄.

Geneti tuning of the DB. The tuning of the saling funtions and fuzzy mem-

bership funtions is an important task in the design of fuzzy systems. It is possible

to parameterize the saling funtions or the membership funtions and adapt them

using GAs to deal with their parameters aording to a �tness funtion. As re-

gards to the tuning of membership funtions, several methods have been proposed

in order to de�ne the DB using GAs. Eah hromosome involved in the evolution

proess represents di�erent DB de�nitions, i.e., eah hromosome ontains a oding

of the whole set of membership funtions giving meaning to the linguisti terms.

Two possibilities an be onsidered depending on whether the fuzzy model nature is

desriptive or approximate, either to ode the fuzzy partition maintaining a linguis-

ti desription of the system, or to ode the rule membership funtions tuning the

parameters of a label loally for every rule, thereby obtaining a fuzzy approximate

model.

Geneti learning of the RB. All the methods belonging to this family involve the

existene of a prede�ned olletion of fuzzy membership funtions giving meaning

to the linguisti labels ontained in the rules, a DB. On this basis GAs are applied

to obtain a suitable rule base, using hromosomes that ode single rules or omplete

rule bases.

Geneti learning of the KB. There are many approahes for the geneti learn-

ing of a omplete KB (RB and DB). We may �nd approahes presenting variable

hromosome lengths, others oding a �xed number of rules and their membership

funtions, several working with hromosomes enoding single ontrol rules instead

of a omplete KBs, et.

2.2 The Keys to the Tuning/Learning Proess

Regardless of the kind of optimization problem, i.e., given a system to be mod-

eled/ontrolled (hereafter we use this notation), the involved tuning/learning pro-

ess will be based on evolution. Three points are the keys to an evolutionary based

tuning/learning proess. These three points are: the population of potential solu-

tions, the set of evolution operators and the performane index.

The population of potential solutions. The learning proess works on a popu-

lation of potential solutions to the problem. In this ase, the potential solution is an

FRBS. From this point of view, the learning proess will work on a population of
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FRBSs, but onsidering that all the systems use an idential proessing struture,

the individuals in the population will be redued to DB/RB or KBs. In some ases

the proess starts o� with an initial population obtained from available knowledge,

while in other ases the initial population is randomly generated.

The set of evolution operators. The seond question is the de�nition of a set

of evolution operators that searh for new and/or better potential solutions (KBs).

The searh reveals two di�erent aspets: the exploitation of the best solution and

the exploration of the searh spae. The suess of evolutionary learning is spei�-

ally related to obtaining an adequate balane between exploration and exploitation,

that �nally depends on the seleted set of evolution operators. The new potential

solutions are obtained by applying the evolution operators to the members of the

population of knowledge bases, eah one of these members is referred to as an indi-

vidual in the population. The evolution operators, that work with a ode (alled a

hromosome) representing the KB, are basially three: seletion, rossover and mu-

tation. Sine these evolution operators work in a oded representation of the KBs, a

ertain ompatibility between the operators and the struture of the hromosomes is

required. This ompatibility is stated in two di�erent ways: work with hromosomes

oded as binary strings (adapting the problem solutions to binary ode) using a set

of lassial geneti operators, or adapt the operators to obtain ompatible evolution

operators using hromosomes with a non-binary ode. Consequently, the question

of de�ning a set of evolution operators involves de�ning a ompatible ouple of

evolution operators and hromosome oding.

The performane index. Finally, the third question is that of designing an eval-

uation system apable of generating an appropriate performane index related to

eah individual in the population, in suh a way that a better solution will obtain

a higher performane index. This performane index will drive the optimization

proess.

In identi�ation problems, the performane index will usually be based on error

measures that haraterize the di�erene between the desired output and the a-

tual output of the system. In ontrol problems there are two di�erent soures of

information to be used when de�ning the performane index: information desrib-

ing the desired behavior of the ontrolled system, or desribing the desired behavior

of the ontroller (FRBS) itself. The seond situation is losely related to identi�a-

tion problems. The de�nition of a performane index is usually more omplex for

the �rst situation, where the objetive is to �nd a ontroller that gives the desired

behavior in the ontrolled system.

The proess. Summarizing the points that haraterize a spei� learning pro-

ess, these are: the initial population of solutions (obtained randomly or from some

initial knowledge), the oding sheme for KBs (hromosomes), the set of evolution

operators and the evaluation funtion. The initial population and the evaluation

funtion are related to the spei� problem while the oding sheme and the evolu-
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tion operators ould be generi. In addition to these four points, eah evolutionary

learning proess is haraterized by a set of parameters suh as the dimension of

the population (�xed or variable), the parameters regulating the ativity of the op-

erators or even theirs e�et, and the parameters or onditions de�ning the end of

the proess or the time when a qualitative hange in the proess ours.

2.3 The Cooperation vs. Competition Problem

A GFS ombines the main aspets of the system to be obtained, an FS, and the

design tehnique used to obtain it, a GA, with the aim of improving as far as possible

the auray of the �nal FS generated.

One of the most interesting features of an FS is the interpolative reasoning it de-

velops. This harateristi plays a key role in the high performane of FSs and is

a onsequene of the ooperation between the fuzzy rules omposing the KB. As is

known, the output obtained from an FS is not usually due to a single fuzzy rule but

to the ooperative ation of several fuzzy rules that have been �red beause they

math the input to the system to some degree.

On the other hand, the main feature of a GA is the ompetition between members

of the population representing possible solutions to the problem being solved. In this

ase, this harateristi is due to the mehanisms of natural seletion on whih the

GA is based.

Therefore, sine a GFS ombines both aforementioned features, it works by induing

ompetition to get the best possible ooperation. This seems to be a very interesting

way to solve the problem of designing an FS, beause the di�erent members of

the population ompete with one another to provide a �nal solution presenting the

best ooperation between the fuzzy rules omposing it. The problem is to obtain

the best possible way to put this way of working into e�et. This is referred to

as ooperation vs. ompetition problem (CCP) ([10℄). The diÆulty of solving the

introdued problem depends diretly on the geneti learning approah followed by

the GFS (Mihigan, Pittsburgh or IRL approahes). Below we briey analyze them.

Mihigan approah. It is diÆult to solve the CCP when working with the Mihi-

gan approah. In this ase, the evolution is performed at the level of fuzzy rules

instead of at the level of KBs and it is not easy to obtain an adequate ooperation

between fuzzy rules that are ompeting with one another. To do this, we need a

�tness funtion able to measure both the goodness of a single fuzzy rule and the

quality of its ooperation with the other fuzzy rules in the population to give the

best ation as output. As mentioned in [10℄, the design of a �tness funtion of this

kind is not an easy task.

Pittsburgh approah. This approah is able to solve adequately the CCP. When
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using this approah, the GFS evolves populations of KBs and the �tness funtion

assoiated to eah individual is omputed taking into aount the real ation that

the FS enoded into the hromosome should give as output when it reeives a on-

rete input. Thus, eah time an individual is evaluated, the ooperation between the

fuzzy rules omposing the KB is measured, so the GFS is able to evolve adequately

the population to obtain the FS presenting the best possible ooperation between

the fuzzy rules omposing its KB. Unfortunately, this approah presents the draw-

bak of having to deal with very large searh spaes, whih makes it diÆult to

�nd optimal solutions. This drawbak is usual when designing GFSs belonging to

the third family, i.e., when the generation of the whole KB is onsidered in the

geneti learning proess. In this ase, a large quantity of KB parameters have to

be inluded in the geneti representation, whih therefore beomes larger. This fat

will be more pronouned if an approximate fuzzy model is onsidered, the use of

di�erent membership funtion de�nitions for eah rule makes the number of KB

parameters inrease, and then the searh spae beomes more omplex, making the

problem omputationally hard.

IRL approah. Finally, GFSs based on the IRL approah try to solve the CCP

at the same time reduing the searh spae by enoding a single fuzzy rule in

eah hromosome. To put this into e�et, these proesses follow the usual problem

partitioning working way and divide the geneti learning proess into, at least, two

stages. Therefore, the CCP is solved in two steps ating at two di�erent levels, with

the ompetition between fuzzy rules in the �rst one, the geneti generation stage,

and with the ooperation between these generated fuzzy rules in the seond one,

the post-proessing stage.

3 Conluding Remarks

In this leture we have introdued the GFSs, presenting the basi keys to the tun-

ing/learning proesses and the problem of the ooperation vs. ompetition in the

di�erent learning approahes.
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The tuning of the membership funtions is an important task in the design of

a fuzzy system. Geneti Algorithms are used for the optimization of membership

funtions and the saling funtions. This leture introdues the use of Geneti Al-
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1 Introdution

The tuning of the saling funtions and fuzzy membership funtions is an impor-

tant task in the design of fuzzy systems. It is possible to parameterize the saling

funtions or the membership funtions and adapt them using Geneti Algorithms

to deal with their parameters aording to a �tness funtion.

As regards to the tuning of membership funtions, several methods have been pro-

posed in order to de�ne the Data Base (DB) using GAs. Eah hromosome involved

in the evolution proess represents di�erent DB de�nitions, i.e., eah hromosome

ontains a oding of the whole set of membership funtions giving meaning to the

linguisti terms. Two possibilities an be onsidered depending on whether the

fuzzy model nature is desriptive or approximate, either to ode the fuzzy partition

maintaining a linguisti desription of the system, or to ode the rule membership

funtions tuning the parameters of a label loally for every rule, thereby obtaining

a fuzzy approximate model.

In this leture we analyze the use of GAs for the tuning of DBs aording to the two

metioned areas, the adaptation of ontexts using saling funtions and the tuning

of membership funtions, we shall present briey them.



2 Adapting the Context

The use of saling funtions that are applied to the input and output variables of

an FRBS, allows us to work with normalized universes of disourse where the fuzzy

membership funtions are de�ned. These saling funtions ould be interpreted as

gains assoiated with the variables (from a ontrol engineering point of view) or

as ontext information that translates relative semantis into absolute ones (from

a knowledge engineering point of view). If using saling funtions, it is possible

to �x them or to parameterize the saling funtions and adapt them. Linear and

non-linear ontexts have been used.

Linear ontext. It is the simplest saling. The parameterized funtion is de�ned

by means of two parameters (one, if used as a saling fator). The e�et of saling

is that of linearly mapping the real interval [a,b℄ into a referene interval (e.g.,

[0,1℄). The use of a saling fator maps the interval [-a,a℄ in a symmetrial referene

interval (e.g., [-1,1℄). This kind of ontext is the most broadly applied one. Geneti

tehniques have been applied to adapting the parameters de�ning the saling fators

([62℄) and linear saling funtions ([59℄).

Nonlinear ontext. The main disadvantage of linear saling is the �xed relative

distribution of the membership funtions (uniformly distributed or not) one they

have been generated. To solve this problem nonlinear saling is used allowing us to

obtain a modi�ed relative distribution and a hange in the shape of the member-

ship funtions. The de�nition of parameterized nonlinear saling funtions is more

omplex than in the linear ase and a larger number of parameters are needed. The

proess atually requires two steps: previous saling (linear) and nonlinear map-

ping. Parameterized potential ([56℄) and sigmoidal ([38℄) funtions have been used

when applying GAs to adapt the nonlinear ontext. Usually, the parameters (real

numbers) onstitute the genes of the hromosomes without binary representation.

Figure 1 shows a normalized fuzzy partition (top), a nonlinear adaption with lower

granularity for middle or for extreme values (enter) and lower granularity for lowest

or for highest values (bottom).

3 Tuning the Membership Funtions

Another element of the KB is the set of membership funtions. This is a seond point

where GAs ould be applied with a tuning purpose. As in the previous ase of saling

funtions, the main idea is the de�nition of parameterized funtions and the subse-

quent adaptation of parameters. Some approahes are found to be in [8,11,40,50,76℄.
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Fig. 1. Nonlinear ontexts adaption
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The di�erent proposals di�er in the oding sheme and the management of the so-

lutions (�tness funtions, ...).

3.1 Shape of the Membership Funtions

Two main groups of parameterized membership funtions have been proposed and

applied: pieewise linear funtions and di�erentiable funtions.

Pieewise linear funtions. The most broadly used parameterized member-

ship funtions in the �eld of GFSs are triangles, in some ases these are isoseles

([14,24,49,64℄) and other times they are irregular ([53℄). A seond possibility are

trapezoidal membership funtions ([51℄).

Eah parameter of the funtion onstitutes a gene of the hromosome that may

be a binary ode representing the parameter ([14,49,51,53℄) or a real number (the

parameter itself, [24,40,64℄).

Di�erentiable funtions. Gaussian, bell and sigmoidal are examples of param-

eterized di�erentiable funtions. These membership funtions have been broadly

applied in di�erent fuzzy-neural systems ([57℄) but radial funtions ([26℄) and Gaus-

sian funtions ([54,71℄) are used in GFSs too. To translate the parameters of the

funtion into geneti information a binary ode is used in [71,26℄ and the oeÆient

itself in [54℄.

3.2 Sope of the Semantis

The geneti tuning proess of membership funtions is based on two variants,

depending on the fuzzy model nature, whether approximate ([40℄) or desriptive

([18,50℄).

The desriptive fuzzy model is essentially a qualitative expression of the system.

A KB in whih the fuzzy sets giving meaning (semanti) to the linguisti labels

are uniformly de�ned for all rules inluded in the RB. It onstitutes a desriptive

approah sine the linguisti labels take the same meaning for all the fuzzy rules

ontained in the RB. The system uses a global semantis.

In the approximate fuzzy model a KB is onsidered for whih eah fuzzy rule presents

its own meaning, i. e., the linguisti variables involved in the rules do not take as

their values any linguisti label from a global term set. In this ase, the linguisti

variables beome fuzzy variables. The system applies loal semantis.
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R1: If X is NB then Y is NB

NB

R2: If X is NM then Y is NM
R3: If X is NS then Y is NS
R4: If X is ZR then Y is ZR

a) Descriptive Knowledge Base

Xl Xr Yl Yr

R5: If X is PS then Y is PS
R6: If X is PM then Y is PM
R7: If X is PB then Y is PB

R1: If X is
R2: If X is
R3: If X is
R4: If X is

then Y is 
then Y is 
then Y is 
then Y is 

b) Approximate Knowledge Base

Fig. 2. Desriptive versus Approximate fuzzy models

Figure 2 and the examples desribed in the following paragraphs illustrate these

two variants, and their partiular aspets reeted in the oding sheme.

3.3 The Approximate Geneti Tuning Proess

As mentioned earlier, eah hromosome forming the geneti population will enode

a omplete KB. More onretely, all of them enode the RB, R, and the di�erene

between them are the fuzzy rule membership funtions, i. e., the DB de�nition.

Taking into aount a parametri representation with triangular-shaped member-

ship funtions based on a 3-tuple of real values, eah rule

R

i

: IF x

1

is A

i1

and ... and x

n

is A

in

THEN y is B

i

,

of a ertain KB (KB

l

), is enoded in a piee of hromosome C

li

:

C

li

= (a

i1

; b

i1

; 

i1

; : : : ; a

in

; b

in

; 

in

; a

i

; b

i

; 

i

)

where A

ij

,B

i

have the parametri representation (a

ij

; b

ij

; 

ij

), (a

i

; b

i

; 

i

), i = 1; : : : ; m

(m represents the number of rules), j = 1; : : : ; n (n is the number of input variables).
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Therefore the omplete RB with its assoiated DB is represented by a omplete

hromosome C

l

:

C

l

= C

l1

C

l2

::: C

lm

This hromosome may be a binary or a real oded individual.

3.4 The Desriptive Geneti Ttuning Proess

In this seond geneti tuning proess eah hromosome enodes a di�erent DB

de�nition based on the fuzzy domain partitions. A primary fuzzy partition is rep-

resented as an array omposed by 3 � N real values, with N being the number of

terms forming the linguisti variable term set. The omplete DB for a problem, in

whih m linguisti variables are involved, is enoded into a �xed length real oded

hromosome C

j

built up by joining the partial representations of eah one of the

variable fuzzy partitions,

C

ji

= (a

i1

; b

i1

; 

i1

; : : : ; a

iN

i

; b

iN

i

; 

iN

i

)

C

j

= C

j1

C

j2

::: C

jm

where C

ji

represents the fuzzy partition orresponding to the i� th variable.

4 Conluding Remarks

This leture have presented the use of GAs for tuning fuzzy systems. Finally, to

point out that the geneti tuning proess may be ombined with the fuzzy rule

learning proess for improving the learning apabilities of them.
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An Appliation
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Abstrat

In this part, an appliation of geneti tuning of a fuzzy system is presented. First,

a fuzzy method for a ertain kind of pixel lassi�ation is introdued. In the seond

part, geneti methods for tuning the membership funtions of the lassi�ation

system are disussed and ompared with other probilisti optimization methods.

Key words: Hybrid Geneti Algorithm, Pixel lassi�ation, Tuning Problem.

1 Introdution

Pixel lassi�ation is an important preproessing task in many image proessing

appliations. In this projet, where the FLLL developed an inspetion system for a

silk-sreen printing proess, it was neessary to extrat regions from the print image

whih had to be heked by applying di�erent riteria:

(1) Homogeneous area: uniformly olored area;

(2) Edge area: pixels within or lose to visually signi�ant edges;

(3) Halftone: area whih looks rather homogeneous from a ertain distane, al-

though it is atually obtained by printing small raster dots of two or more

olors;

(4) Piture: rastered area with high, haoti deviations, in partiular small high-

ontrasted details.

The magni�ations in Figure 3 show how these areas typially look like at the pixel

level. Of ourse, transitions between two or more of these areas are possible, hene

a fuzzy model is reommendable.



Homogeneous Edge Halftone Piture

Fig. 3. Magni�ations of typial representatives of the four types

6

-
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Homogeneous Edge Halftone Picture

Fig. 4. Typial gray value urves

If we plot one olor extration of the eight neighbor pixels with respet to a lokwise

enumeration of the eight neighbors, we typially get urves like those shown in

Figure 4. Seemingly, the size of the deviations, e.g., by omputing the variane,

an be used to distinguish between homogeneous areas, halftones and the other two

types. On the other hand, a method whih judges the width and onnetedness of

the peaks should be used in order to separate edge areas from pitures. A simple

but e�etive method for this purpose is the so-alled disrepany norm, for whih

there are already other appliations in pattern reognition (f. [61℄):

k~xk

D

= max

1�����n

�

�

�

�

�

�

�

X

i=�

x

i

�

�

�

�

�

�

(1)

A more detailed analysis of the disrepany norm, espeially how it an be omputed

in linear time, an be found in [3℄.

2 The Fuzzy System

For eah pixel (i; j) we onsider its nearest eight neighbors enumerated as desribed

above, whih yields three vetors of gray values with 8 entries | one for eah olor

extration. As already mentioned, the sum of the varianes of the three vetors an

be taken as a measure for the size of the deviations in the neighborhood of the pixel.

Let us denote this value with v(i; j). On the other hand, the sum of the disrepany

norms of the vetors, where we subtrat eah entry by the mean value of all entries,

an be used as a riterion whether the pixel is within or lose to a visually signi�ant

edge.

The fuzzy deision is then arried out for eah pixel (i; j) independently: First of all,
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Fig. 5. The linguisti variables v and e

the harateristi values v(i; j) and e(i; j) are omputed. These values are taken as

the input of a small fuzzy system with two inputs and one output. Let us denote the

linguisti variables on the input side with v and e. Sine the position of the pixel is

of no relevane for the deision in this onrete appliation, indies an be omitted

here. The input spae of the variable v is represented by three fuzzy sets whih are

labeled \low", \med", and \high". Analogously, the input spae of the variable e is

represented by two fuzzy sets, whih are labeled \low" and \high". Experiments have

shown that [0; 600℄ and [0; 200℄ are appropriate universes of disourse for v and e,

respetively. For the deomposition of the input domains simple Ruspini partitions

(see [69℄) onsisting of trapezoidal fuzzy subsets were hosen. Figure 5 shows how

these partitions typially look like.

The output spae is a set of linguisti labels, namely \Ho", \Ed", \Ha", and \Pi",

whih are, of ourse, just abbreviations of the names of the four types. Let us denote

the output variable itself with t. Finally, the output of the system for eah pixel

(i; j) is a fuzzy subset of f\Ho"; \Ed"; \Ha"; \Pi"g. This output set is omputed by

proessing the values v(i; j) and e(i; j) through a rulebase with �ve rules, whih

over all the possible ombinations:

IF v is low THEN t = Ho

IF v is med AND e is high THEN t = Ed

IF v is high AND e is high THEN t = Ed

IF v is med AND e is low THEN t = Ha

IF v is high AND e is low THEN t = Pi

In this appliation, ordinary Mamdani min/max-inferene is used. Finally, the de-

gree to whih \Ho", \Ed", \Ha", or \Pi" belong to the output set an be regarded

as the degree to whih the partiular pixel belongs to area Homogeneous, Edge,

Halftone, or Piture, respetively.

For details on the integration of the lassi�ation algorithm into the printing proess

and information about the performane and robustness of the algorithm see [4℄.

3 The Optimization of the Classi�ation System

The behavior of the fuzzy system depends on six parameters, v

1

; : : : ; v

4

, e

1

, and

e

2

, whih determine the shape of the two fuzzy partitions. In the �rst step, these
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parameters were tuned manually. Of ourse, we have also taken into onsideration

to use (semi)automati methods for �nding the optimal parameters.

Our optimization proedure onsists of a painting program whih o�ers tools, suh

as a penil, a rubber, a �lling algorithm, and many more, whih an be used to

make a lassi�ation of a given representative image by hand. Then an optimization

algorithm an be used to �nd that on�guration of parameters whih yields the

maximal degree of mathing between the desired result and the output atually

obtained by the lassi�ation system.

Assume that we have N sample pixels for whih the input values (~v

k

; ~e

k

)

k2f1;:::;Ng

are omputed and that we already have a referene lassi�ation of these pixels

~

t(k) = (

~

t

Ho

(k);

~

t

Ed

(k);

~

t

Ha

(k);

~

t

Pi

(k)), where k 2 f1; : : : ; Ng. Sine, as soon as the

values ~v and ~e are omputed, the geometry of the image plays no role anymore,

we an swith to one-dimensional indies here. Then one possibility to de�ne the

performane (�tness) of the fuzzy system would be

1

N

N

X

k=1

d(t(k);

~

t(k)); (2)

where t(k) = (t

Ho

(k); t

Ed

(k); t

Ha

(k); t

Pi

(k)) are the lassi�ations atually obtained

by the fuzzy system for the input pairs (~v

k

; ~e

k

) with respet to the parameters v

1

,

v

2

, v

3

, v

4

, e

1

, and e

2

; d(:; :) is an arbitrary (pseudo-)metri on [0; 1℄

4

. The problem of

this brute fore approah is that the output of the fuzzy system has to be evaluated

for eah pair (v

k

; e

k

), even if many of these values are similar or even equal. In

order to keep the amount of omputation low, we \simpli�ed" the proedure by a

\lustering proess" as follows:

We hoose a partition (P

1

; : : : ; P

K

) of the input spae, where (n

1

; : : : ; n

K

) are the

numbers of sample points fp

i

1

; : : : ; p

i

n

i

g eah part ontains. Then the desired lassi-

�ation of a ertain part (luster) an be de�ned as

~

t

X

(P

i

) =

1

n

i

n

i

X

j=1

~

t

X

(p

i

j

); (3)

where X 2 fHo;Ed;Ha;Pig.

If � is a funtion whih maps eah luster to a representative value (e.g., its enter

of gravity), we an de�ne the �tness (objetive) funtion as

100

N

K

X

i=1

n

i

�

0

�

1�

1

2

�

X

X2fHo;Ed;Ha;Pig

�

~

t

X

(P

i

)� t

X

(�(P

i

))

�

2

1

A

; (4)

If the number of parts is hosen moderately (e.g. a retangular 64 � 32 net whih
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Fig. 6. Cross setions of a funtion of type (4)

yields K = 2048) the evaluation of the �tness funtion takes onsiderably less time

than a diret appliation of formula (2).

Note that in (4) the �tness is already transformed suh that it an be regarded as

a degree of mathing between the desired and the atually obtained lassi�ation

measured in perent. This value has then to be maximized.

In fat, �tness funtions of this type are, in almost all ases, ontinuous but not

di�erentiable and have a lot of loal maxima. Figure 6 shows ross setions of suh

funtions. Therefore, it is more reasonable rather to use probabilisti optimization

algorithms than to apply ontinuous optimization methods, whih make exessive

use of derivatives. This, �rst of all, requires a (binary) oding of the parameters.

We deided to use a oding whih maps the parameters v

1

, v

2

, v

3

, v

4

, e

1

, and e

2

to a string of six 8-bit integers s

1

; : : : ; s

6

whih range from 0 to 255. The following

table shows how the enoding and deoding is done:

s

1

= v

1

v

1

= s

1

s

2

= v

2

� v

1

v

2

= s

1

+ s

2

s

3

= v

3

� v

2

v

3

= s

1

+ s

2

+ s

3

s

4

= v

4

� v

3

v

4

= s

1

+ s

2

+ s

3

+ s

4

s

5

= e

1

e

1

= s

5

s

6

= e

2

� e

1

e

2

= s

5

+ s

6

We �rst tried a standard GA (see [31℄ or [45℄) with proportional (standard roulette

wheel) seletion, one-point rossing over with uniform seletion of the rossing point,

and bitwise mutation. The size of the population m was onstant, the length of the

strings was, as shown above, 48.

In order to ompare the performane of the GAs with other well-known probabilisti

optimization methods, we additionally onsidered the following methods:

Hill limbing: always moves to the best-�tted neighbor of the urrent string until

a loal maximum is reahed; the initial string is generated randomly.

Simulated annealing: powerful, often used probabilisti method whih is based

on the imitation of the solidi�ation of a rystal under slowly dereasing temper-

ature (see [81℄ for a detailed desription)

Eah one of these methods requires only a few binary operations in eah step. Most
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f

max

f

min

�

f �

f

#

Hill Climbing 94.3659 89.6629 93.5536 1.106 862

Simulated Annealing 94.3648 89.6625 93.5639 1.390 1510

Improved Simulated
Annealing

94.3773 93.7056 94.2697 0.229 21968

GA 94.3760 93.5927 94.2485 0.218 9910

Hybrid GA (elite) 94.3760 93.6299 94.2775 0.207 7460

Hybrid GA (random) 94.3776 94.3362 94.3693 0.009 18631

90.0000 94.2006 94.2759 94.3206 94.3526 94.3776
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� Hill Climbing / Genetic Algorithm

� Simulated Annealing � Hybrid GA (elite)

� Improved Simulated Annealing � Hybrid GA (random)

Fig. 7. A omparison of the results of various probabilisti optimization methods

of the time is onsumed by the evaluation of the �tness funtion. So, it is near at

hand to take the number of evaluations as a measure for the speed of the algorithms.

Results All these algorithms are probabilisti methods, therefore their results

are not well-determined, they an di�er randomly within ertain boundaries. In

order to get more information about their average behavior, we tried out eah one

of them 20 times for one ertain problem. For the given problem we found out

that the maximal degree of mathing between the referene lassi�ation and the

lassi�ation atually obtained by the fuzzy system was 94.3776%. In the table in

Figure 7, f

max

is the �tness of the best and f

min

is the �tness of the worst solution;

�

f denotes the average �tness of the 20 solutions, �

f

denotes the standard deviation

of the �tness values of the 20 solutions, and # stands for the average number of

evaluations of the �tness funtion whih was neessary to reah the solution.

The hill limbing method with a random seletion of the initial string onverged

rather quikly. Unfortunately, it was always trapped in a loal maximum, but never

reahed the global solution (at least in these 20 trials).

The simulated annealing algorithm showed similar behavior at the very beginning.

After tuning the parameters involved, the performane improved remarkably.

The raw geneti algorithm was implemented with a population size of 20; the ross-

ing over probability was set to 0:15, the mutation probability was 0:005 for eah

byte. It behaved pretty well from the beginning, but it seemed inferior to the im-

proved simulated annealing.

Next, we tried a hybrid GA, where we kept the geneti operations and parameters of

the raw GA, but every 50th generation the best-�tted individual was taken as initial

string for a hill limbing method. Although the performane inreased slightly, the

hybrid method still seemed to be worse than the improved simulated annealing

algorithm. The reason that the e�ets of this modi�ation were not so dramati

might be that the probability is rather high that the best individual is already a

loal maximum. So we modi�ed the proedure again. This time a randomly hosen

individual of every 25th generation was used as initial solution of the hill limbing

method. The result exeeded the expetations by far. The algorithmwas, in all ases,
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nearer to the global solution than the improved simulated annealing (ompare with

table in Figure 7), but, surprisingly, suÆed with less invoations of the �tness

funtion. The graph in Figure 7 shows the results graphially. Eah line in this

graph orresponds to one algorithm. The urve shows, for a given �tness value x,

how many of the 20 di�erent solutions had a �tness higher or equal to x. It an be

seen easily from this graph that the hybrid GA with random seletion led to the best

results. Note that the x-axis is not a linear sale in this �gure. It was transformed

in order to make small di�erenes visible.

4 Conluding Remarks

In this leture we have investigated the suitability of geneti algorithms for �nding

the optimal parameters of a fuzzy system, espeially if the analytial properties of

the objetive funtion are bad. Moreover, hybridization has been disovered as an

enormous potential for improvements of geneti algorithms.
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1 Introdution

Reently, there has been a growing interest in using Geneti Algorithms (GAs) for

mahine learning problems, appearing di�erent geneti learning approahes. One of

them, the Pittsburgh approah adopts the view that eah individual in a population,

eah hromosome, enodes a whole rule sets. Crossover serves to provide a new

ombination of rules and mutation provides new rules. In some ases, variable-

length rule bases are used, employing modi�ed geneti operators for dealing with

these variable-length and position independent genomes. This model was initially

proposed by Smith in 1980 [74℄.

In this leture we shortly desribe the use of Geneti Fuzzy Systems (GFSs) with

this learning approah for learning Rule Bases (RB) and Knowledge Bases (KB) for

Fuzzy Rule Bases Systems (FRBSs).



2 Geneti Learning of RB

It is possible to represent the RB of an FRBS with three di�erent representations.

These representations are: relational matrix, deision table and list or set of rules.

The Pittsburgh approah has been applied to learn rule bases in two di�erent situ-

ations. The �rst situation refers to those systems using a omplete rule base repre-

sented by means of a deision table or a relational matrix. The seond situation is

that of FRBSs, whose RB is represented using a list or set of fuzzy rules.

2.1 Using a Complete RB

A tabular representation guarantees the ompleteness of the knowledge of the FRBS

in the sense that the overage of the input spae (the Cartesian produt of universes

of the input variables) is only related to the level of overage of eah input variable

(the orresponding fuzzy partitions), and not to the rules.

Deision tables. A possible representation for the RB of an FS is a deision table.

It is a lassial representation used in di�erent GFSs. A hromosome is obtained

from the deision table by going row-wise and oding eah output fuzzy set as an

integer or any other kind of label. It is possible to inlude the \no output" de�nition

in a ertain position, using a \null" label ([62,78℄).

Relational matries. Oasionally GAs are used to modify the fuzzy relational

matrix (R) of a Fuzzy System with one input and one output. The hromosome

is obtained by onatenating the m � n elements of R, where m and n are the

number of fuzzy sets assoiated with the input and output variables respetively.

The elements of R that will make up the genes may be represented by binary odes

[68℄ or real numbers.

2.2 Using a Partial RB

Neither the relational nor the tabular representations are adaptable to systems with

more than two or three input variables beause of the dimension of a omplete RB

for these situations. This fat stimulated the idea of working with sets of rules.

In a set of rules representation the absene of appliable rules for a ertain input

that was perfetly overed by the fuzzy partitions of individual input variables is

possible. As a ounterpart to the loss of ompleteness, this representation allows

ompressing several rules with idential outputs into a singular rule and this is a

really important question as the dimension of the system grows.

There are many di�erent methods for oding the rule base in this kind of evolution-

ary system. The ode of the rule base is usually obtained by onatenating rules
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odes.

Rules of �xed length. A �rst approah is to represent a rule with a ode of

�xed length and position dependent meaning. The ode will have as many elements

as the number of variables in the system. A possible ontent of these elements is:

a label pointing to a ertain fuzzy set in the fuzzy partition of the variable or a

binary string with a bit per fuzzy set in the fuzzy partition of the variable oding

the presene or absene of the fuzzy set in the rule [58℄.

Rules of variable length. Codes with position independent meaning and based

on pairs fvariable, membership funtiong (the membership funtions is desribed

using a label) are used in [43℄.

3 Geneti Learning of KB

The simultaneous use as geneti material of the DB and the RB of an FRBS has

produed di�erent and interesting results. The most general approah is the use of a

set of parameterized membership funtions and a list of fuzzy rules that are jointly

oded to generate a hromosome, then applying a Pittsburgh-type GA to evolve a

population of suh hromosomes. This kind of GFSs use hromosomes ontaining

two subhromosomes that enode separately, but not independently, the DB and

the RB.

It is possible to maintain, at this point, the same division that was stated when

talking about geneti learning of RBs with a Pittsburgh approah: learning omplete

rule bases or partial rule bases.

3.1 Using a Complete RB

In [64℄ the rule base is represented as a fuzzy relation matrix (R), and the GA

modi�es R or the fuzzy membership funtions (triangular) or both of them simulta-

neously, on a Fuzzy Logi Controller (FLC) with one input and one output variables.

Eah gene is a real number. When generating the optimal fuzzy relation matrix this

real number orresponds to a fuzzy relation degree whose value is between 0 and

1. The geneti string is obtained by onatenating the m � n real numbers that

onstitute R. When �nding simultaneously the optimal rule base and the fuzzy

membership funtions, eah hromosome alloates two subhromosomes: the genes

of the rule base and the genes of the fuzzy membership funtions. Both subhro-

mosomes are treated as independent entities as far as rossover and mutation are

onerned but as a single entity as far as reprodution is onerned.

A slightly di�erent approah is to use a TSK-type rule base, struturing its geneti
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ode as if it ame from a deision table. In this ase, the ontents of the ode of a

rule base is an ordered and omplete list ontaining the onsequents of all possible

rules, where the anteedents are impliitly de�ned as a funtion of the position the

onsequent oupies in the list.

The fuzzy membership funtions onstitute a �rst subhromosome while the oef-

�ients of the onsequents for a TSK fuzzy model onstitute the seond subhro-

mosome. One gene is used to ode eah oeÆient of a TSK-type in [53℄, in [26℄ a

single oeÆient is onsidered for the output.

3.2 Using a Partial RB

Liska and Melsheimer ([54℄) use a rule base de�ned as a set of a �xed number of

rules, and ode eah rule with integer numbers that de�ne the membership funtion

related with a ertain input or output variable that is applied by the rule (member-

ship funtions for every variable are ordered). The systems use radial membership

funtions oded through two real numbers (two genes). The geneti string is ob-

tained by onatenating the two genes in eah membership funtion.

There are many di�erent methods for oding the rule base in this kind of evolu-

tionary system. The ode of the rule base is usually obtained by onatenating rule

odes. To represent a single rule, it is possible to use a position dependent ode

with as many elements as the number of variables of the system. A possible ontent

in these elements is: a label pointing to a ertain fuzzy set in the fuzzy partition of

the variable ([71℄) or a binary string with a bit per fuzzy set in the fuzzy partition

of the variable ([55℄).

Using an approximate approah, [13,14℄ inlude the de�nition of the membership

funtions into the rules, oding eah rule through the orresponding set of member-

ship funtions.

4 A Learning Proess of Fuzzy Logi Controllers

FLCs represent a partiular and widely applied kind of FRBSs. A geneti proess

using a Pittsburgh approah and working on an FLC may be rewritten as follows

in suh a situation:

(1) Start with an initial population of solutions that onstitutes the �rst generation

(P(0)).

(2) Evaluate P(0):

(a) take eah hromosome (KB) from the population and introdue it into the

FLC,
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(b) apply the FLC to the ontrolled system for an adequate evaluation period

(a single ontrol yle, several ontrol yles or even several times, starting

out from di�erent initial onditions) and

() evaluate the behavior of the ontrolled system by produing a performane

index related to the KB.

(3) While the Termination Condition is not met, do

(a) reate a new generation (P(t+1)) by applying the evolution operators to

the individuals in P(t),

(b) evaluate P(t+1) and

() t = t + 1.

(4) Stop.

5 An Example of GFS with Pittsburgh Approah

This setion desribe, in a few lines, one of the GFSs previously ited, spei�ally a

GFS learning RBs and representing the rule base with a deision table. This method

was proposed by Philip Thrift ([78℄). This example will be analyzed aording to

the keys of the learning proess, the population of potential solutions, the set of

evolution operators and the performane index.

Given a single output FRBS with n input variables, a fuzzy partition is de�ned for

eah variable (n+1 fuzzy partitions). In this ase eah fuzzy partition ontains �ve

or seven fuzzy sets. An n-dimensional deision table is then made up by plaing the

onsequents of eah rule in the plae orresponding to its premise. Entries in the

table an be either one of the labels representing a fuzzy set of the output variable

partition, or a blank representing no fuzzy set output for the orresponding rule.

The population of potential solutions. The population of potential solutions

will be made up of RBs applied by a ommon proessing struture to solve a spei�

problem. Beause the learning proess is entered on rules and all the KBs will

ontain an idential DB, onsequently the population of solutions an be redued

to a population of RBs. Eah RB is represented by a deision table, and these

deision tables must by oded to onstitute suitable geneti material.

Eah position in the deision table will represent a gene of the hromosome oded

with an integer in f0; 1; : : : ; 5g, with its 6 possible values orresponding to the 5

omponents of the fuzzy partition and the blank output. A hromosome is obtained

by going rowwise through the table and produing a string with the integers found

at eah plae in it. For a system with two input variables and �ve fuzzy sets per

partition, the deision table will ontain 5�5 plaes and onsequently will generate

a hromosome with 25 genes.

The population where the geneti proess will be applied is a number of hromo-
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somes (31 in the example desribed in the paper) oded as strings with 25 integers

in f0; 1; : : : ; 5g.

The set of evolution operators. The system uses a standard two point rossover

([60℄) and a mutation operator that hanges a fuzzy ode either up one level or

down one level, or to the blank ode. When the mutation operator ats on a blank

ode, a non-blank ode is generated at random. An elite strategy allows the best

solution at a given generation to be diretly promoted to the next.

The performane index. The system desribed is applied to enter a art by

applying a fore on it. The objetive is to move the art to the zero position and

veloity in a minimum time. Eah RB is tested by applying the FRBS to ontrol

the art starting at 25 equally spaed starting points and over 500 steps (0.02 s.

for eah step). The performane index assigned to an RB is 500-T where T is the

average time (number of steps) required to plae the art suÆiently lose to the

enter (max(jxj; jvj) < 0:5). If, for a ertain starting point, more than 500 steps are

required, the proess times out and 500 steps are reorded.

With this performane index the learning proess beomes a minimization problem

sine the best solution is the one with the lowest average time to enter the art

(the highest performane index).

6 Conluding Remarks

We have reviewed the GFS for learning FRBSs based on the Pittsburgh approah,.

showing the di�erent proposal developped under this approah.
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1 Introdution

Sine the beginning of the 80s there has been growing interest in applying meth-

ods based on Geneti Algorithms (GAs) to automati learning problems, espeially

the learning of prodution rules on the basis of attribute-evaluated example sets.

The main problem in these appliations onsists of �nding a "omfortable" rep-

resentation in the sense that it might be apable both of gathering the problem's

harateristis and representing the potential solutions.

In reent literature we may �nd di�erent algorithms that use a new learning model

based on GAs, the Iterative Rule Learning (IRL) approah [82,32℄. In the latter

model, as in the Mihigan one, eah hromosome in the population represents a

single rule, but ontrary to the latter, only the best individual is onsidered as the

solution, disarding the remaining hromosomes in the population. This model has

been used in papers suh as [82,36,35,33,39,41,15{17℄.

This leture desribes the IRL approah for learning fuzzy rule based sytems (FRBSs).



2 IRL Approah

In this approah the GA provides a partial solution to the problem of learning, and

attempts to redue the searh spae for the possible solutions. In order to obtain a

set of rules, whih will be a true solution to the problem, the GA has to be plaed

within an iterative sheme similar to the following:

1. Use a GA to obtain a rule for the system.

2. Inorporate the rule into the �nal set of rules.

3. Penalize this rule.

4. If the set of rules obtained is adequate to represent the examples in the training

set, the system ends up returning the set of rules as the solution. Otherwise return

to step 1.

A very easy way to penalize the rules already obtained, and thus be able to learn

new rules, onsists of eliminating from the training set all those examples that are

overed by the set of rules obtained previously.

This learning way is to allow "nihes" and "speies" formation. Speies formation

seems partiularly appealing for onept learning, onsidering the proess as the

learning of multimodal onepts.

The main di�erene with respet to the Mihigan approah is that the �tness of eah

hromosome is omputed individually, without taking into aount ooperation with

other ones. This redues substantially the searh spae, beause in eah sequene

of iterations only one rule is searhed.

In the literature we an �nd some geneti learning proesses that use this model

suh as SLAVE [35℄, SIA [82℄ and the geneti generation proess proposed in [39℄.

These three geneti learning proesses use the IRL approah with light di�erene:

� SLAVE launhes a new GA to �nd a new rule after having eliminated the examples

overed by the last rule obtained. SLAVE was designed to work with or without

linguisti information.

� SIA uses a single GA that goes on deteting rules and eliminating the examples

overed by the latter. SIA an only work with risp data.

� The geneti generation proess runs a GA for obtaining the best rule aording to

di�erent features, assigns a relative overing value to every example, and removes

the examples with a overing value greater than a onstant.

From the desription above, we may see that in order to implement a learning

algorithm based on GAs using the IRL approah, we need, at least, the following:

(1) a riterion for seleting the best rule in eah iteration,

(2) a penalization riterion, and
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(3) a riterion for determining when enough rules are available to represent the

examples in the training set.

The �rst riterion is normally assoiated with one or several harateristis that

are desirable so as to determine good rules. Usually riteria about the rule strength

have been proposed (number of examples overed), riteria of onsisteny of the

rule or riteria of simpliity.

The seond riterion is often assoiated, although it is not neessary, with the elim-

ination of the examples overed by the previous rules.

Finally, the third riterion is assoiated with the ompleteness of the set of rules and

must be taken into aount when we an say that all the examples in the training

set are suÆiently overed and no more rules are needed to represent them.

2.1 Multi-Stage Geneti Fuzzy System Based on the IRL Approah

Learning algorithms that use the IRL approah do not envisage any relationship be-

tween them in the proess for obtaining rules. Therefore, the �nal set of rules usually

needs an a posteriori proess that will modify and/or �t the said set. The method-

ology that is presently applied inludes di�erent proesses that are not neessarily

applied simultaneously. This methodology, whih we all multi-stage geneti fuzzy

systems and has been abbreviated as MSGFS, onsists of three omponent parts:

I A geneti generation stage for generating fuzzy rules using the IRL approah.

II A postproessing stage working on the rule set obtained in the previous stage in

order to either to re�ne rules or eliminate redundant rules.

III A geneti tuning stage that tunes the membership funtions of the fuzzy rules.

We desribe these shortly below.

Geneti generation stage. In this stage the IRL approah is used for learning

fuzzy rules apable of inluding the omplete knowledge from the set of examples.

A hromosome represents a fuzzy rule, the generation method selets the best rule

aording to di�erent features inluded in the �tness funtion of the GA, features

that inlude general properties of the KB and partiular requirements to the fuzzy

rule. This features lead to the de�nition of the overing degree between a rule and

an example and the use of the onept of positive and negative examples. The IRL

approah uses a overing method of the set of examples. This overing method

assigns a relative overing value to every example, and removes the examples with

an adequate overing value, aording to a overing riterion.

As we have indiated, this model may be used for learning RB as SLAVE [36,35℄

and for learning KB as the geneti generation proess proposed in [39,41℄.
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Postproessing stage: seletion and re�nement. As we mentioned earlier,

the IRL approah does not analyze any relationship between the rules that it is

obtaining. That is why, one the rule base has been obtained, it may be improved

either beause there are rules that may be re�ned or redundant rules if high degrees

of overage are used. Two possible post-proessing methods have been used , a

re�nement algorithm [34℄ and a seletion or simpli�ation algorithm [40℄.

Geneti tuning stage. At this stage the geneti tuning proess is applied over the

KB for obtaining a more aurate one. We an onsider two possibilities, depending

on the fuzzy model's nature:

a) an approximative model based on a KB omposed of a olletion of fuzzy rules

without a �xed relationship between the fuzzy rules and some primary fuzzy

partitions giving meaning to them, or

b) a desriptive model based on a linguisti desription of the system with a fuzzy

partition that assigns a membership funtion to every linguisti label.

In both ases, eah hromosome forming the geneti population will enode a om-

plete DB, but in the �rst ase eah piee of hromosome odes the membership

funtions assoiated to one rule and in the seond one eah piee of hromosome

odes the fuzzy partition of a variable. The main di�erene between both proesses

is the oding sheme.

2.2 A Multi-stage Geneti Fuzzy Rule-Based System Struture

In the following we present a guideline struture for multi-stage GFRBSs used in

[15{17,41℄:

a) A fuzzy rule generation proess. This proess will determine the type of

the �nal FRBS generated, so the generated fuzzy rules may present a desriptive,

onstrained approximative or unonstrained approximative semantis. In all ases,

it will present two omponents: a fuzzy rule generating method omposed of an in-

dutive or evolutionary proess whih uses a nihe riterion for obtaining the best

possible ooperation among the fuzzy rules generated when working with the ap-

proximative approah, and an iterative overing method of the system behaviour ex-

ample set, whih penalizes eah rule generated by the fuzzy rule generating method

by onsidering its overing over the examples in the training set and removes the

ones yet overed from it. This proess allows us to obtain a set of fuzzy rules with

a onrete semantis overing the training set in an adequate form.

b) A geneti multisimpli�ation proess for seleting rules, based on a bi-

nary oded GA with a phenotypi sharing funtion and a measure of the FRBS
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auray in the problem being solved. It will save the overlearning that the previ-

ous omponent may ause due to the existene of redundant rules, with the aim of

obtaining a simpli�ed KB presenting the best possible ooperation among the fuzzy

rules omposing it. This proess will obtain di�erent possibilities for this simpli�ed

KB thanks to a genotypi nihing sheme.

) An evolutionary tuning proess based on any kind of real oded EA and a

measure of the FRBS performane. It will give the �nal KB as output by adjusting

the membership funtions for eah fuzzy rule in eah possible KB obtained from

the geneti multisimpli�ation proess. The type of tuning performed will depend

on the nature of the FRBS being generated, i.e., when generating a desriptive

FRBS, a global tuning of the fuzzy partition assoiated to eah linguisti variable

will be performed, but when working with any of the approximative approahes,

the membership funtions involved in eah fuzzy rule will be adjusted. The most

aurate KB obtained in this stage will onstitute the �nal output of the whole

learning proess.

Properties required for the generated Knowledge Base. Several important

statial properties have to be veri�ed by the KB in order to obtain an aurate

FRBS. The multi-stage GFRBSs obtained from our methodology will onsider two

of them, the ompleteness and onsisteny, by inluding some riteria in the di�erent

stage �tness funtions. These riteria will penalize those solutions not verifying

adequatelly both properties. For a wider desription, refers to [16,17℄.

3 Conluding Remarks

In this paper, we have presented the IRL approah as an alternative model to

the lassial Mihigan and Pittsburgh approahes for the design of geneti learning

proesses, and we have desribed how it an be applied within a multi-stage learning

proess.
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1 Introdution

Classi�er systems of the Pittsburgh type have in ommon that (1) the geneti

algorithms operate on whole rulebases, they work with populations of rulebases,

and (2) rulebases are judged globally, i.e., the performane of whole rulebases is

evaluated by the �tness funtion.

The other approah | the so-alled Mihigan approah | is to observe the behav-

ior of the system throughout a ertain period of time adjusting the rules aording

to temporal payo� from the environment. While in the Pittsburgh approah whole

rulebases are onsidered in an o�ine proess, the Mihigan approah operates on

single rules in an online proess or a simulated environment. Obviously, in the Mihi-

gan approah, tehniques for judging the performane of single rules are neessary.

In fat, this is, in most ases, a nontrivial task, sine positive e�ets of some rules

are not always observable immediately. Consider, for instane, the game of hess,

where early moves an ontribute to a late suess.

Figure 8 shows the typial arhiteture of Mihigan type system. The main ompo-
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Fig. 8. A lassi�er system of the Mihigan type

nents are:

(1) A prodution system ontaining a rulebase whih proesses inoming messages

from the environment and sends output messages to the environment

(2) An apportionment of redit system whih reeives payo� from the environment

and determines whih rules had been responsible for that feedbak.

(3) A geneti algorithm whih reombines existing rules and introdues new ones.

Obviously, the learning task is divided into two subtasks | the judgment of already

existing and the disovery of new rules.

2 The Holland Classi�er System

A Holland lassi�er system is a lassi�er system of the Mihigan type whih pro-

esses binary messages of a �xed length through a rulebase whose rules are adapted

aording to the response of the environment ([44{46,28℄).

2.1 The Prodution System

First of all, the ommuniation of the prodution system with the environment is

done via an arbitrarily long list of messages. The detetors translate responses from

the environment into binary messages and plae them on the message list whih is
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then sanned and hanged by the rulebase. Finally, the e�etors translate output

messages into ations on the environment, suh as fores or movements.

Messages are binary strings of the same length k. More formally, a message belongs

to f0; 1g

k

. The rulebase onsists of a �xed number m of rules (lassi�ers) whih

onsist of a �xed number r of onditions and an ation, where both onditions and

ations are strings of length k over the alphabet f0; 1; �g. The asterisk plays the

role of a wildard, a \don't are" symbol.

A ondition is mathed, if there is a message in the list whih mathes the ondition

in all non-wildard positions. Moreover, onditions, exept the �rst one, may be

negated by adding a \{" pre�x. Suh a pre�xed ondition is satis�ed if there is no

message in the list whih mathes the string assoiated with the ondition. Finally,

a rule �res if all the onditions are satis�ed, i.e., the onditions are onneted with

AND. Suh \�ring" rules ompete to put their ation messages on the message list

(see 2.2).

In the ation parts, the wildard symbols have a di�erent meaning. They take the

role of \pass through" element. The output message of a �ring rule, whose ation

part ontains a wildard, is omposed from the non-wildard positions of the ation

and the message whih satis�es the �rst ondition of the lassi�er (this is atually

the reason why negations of the �rst onditions are not allowed). More formally,

the outgoing message ~m is de�ned as

~m[i℄ :=

(

a[i℄ if a[i℄ 6= �

m[i℄ if a[i℄ = �

i = 1; : : : ; k; (5)

where a is the ation part of the lassi�er and m is the message whih mathes the

�rst ondition. Formally, a lassi�er is a string of the form

Cond

1

; [\{"℄Cond

2

; : : : ; [\{"℄Cond

r

/Ation; (6)

where the brakets should express the optionality of the \{" pre�xes.

Moreover, it an be of advantage to supply the messages with pre�xes, so-alled tags,

whih identify the origin of the message. Consequently, these pre�xes must also be

appended to the onditions and ations of the lassi�ers. In this ase, we must

take speial are that no ation spei�es the pre�x reserved for the input interfae.

Tagging o�ers new opportunities to transfer information about the urrent step

into the next step. This an be aomplished by plaing tagged messages on the list

whih are not interpreted by the output interfae. These messages, whih, obviously,

ontain information about the previous step, an support the deisions in the next

step. So, appropriate use of tags permits rules to be oupled to at sequentially. In

some sense, suh messages are the memory of the system.
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To summarize this, a single exeution yle of the prodution system onsists of the

following steps:

(1) Messages from the environment are appended to the message list.

(2) All the onditions of all lassi�ers are heked against the message list to obtain

the set of �ring rules.

(3) The message list is erased.

(4) The �ring lassi�ers partiipate in a ompetition to plae their messages on

the list (see below).

(5) The winning lassi�ers plae their ations on the list.

(6) The messages direted to the e�etors are exeuted.

This proedure is repeated iteratively.

How (6) is done, if these messages are deleted or not, and so on, depends on the

onrete implementation. It is, on the one hand, possible to hoose a representation

suh that every output message an be interpreted by the e�etors. On the other

hand, it is possible to diret messages expliitely to the e�etors with a speial tag.

In this ase, if no messages are direted to the e�etors, the system is in a thinking

phase.

If a lassi�er R

1

produes a message m

0

, whih is not direted to the e�etors, but

tagged as an internal message, and m

0

satis�es a ondition of a lassi�er R

2

in the

next timestep, R

2

is alled a onsumer of R

1

. Reversly, R

1

is alled a supplier of R

2

.

2.2 Credit Assignment | The Buket Brigade Algorithm

The purpose of the redit assignment system is to assign a strength value to eah

lassi�er. This strength value represents the orretness and importane of a las-

si�er. On the one hand, the strength value inuenes the hane of a lassi�er to

plae its ation on the output list. On the other hand, the strength values are used

by the rule disovery system. Let us denote the strength value of lassi�er R

i

in

timestep T with u

i;t

.

The ompetition for having the right to post an ation and the adaptation of the

strength values depending on the feedbak (payo�) from the environment is alled

Buket Brigade Algorithm. It an be regarded as a simulated eonomi system in

whih various agents, in our ase lassi�ers, partiipate in an aution, where the

hane to buy the right to post the ation depends on the strength of the agents.

In one of its simpliest forms, the bid of a lassi�er is de�ned as

b

i;t

:= 

L

� u

i;t

� s

i

; (7)
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where 

L

2 [0; 1℄ is a learning parameter, similar to learning rates in arti�ial neural

nets, and s

i

is the spei�ty, the number of non-wildard symbols in the ondition

part of the lassi�er. If 

L

is hosen small, the system adapts slowly. If it is hosen

too high, the strengths an tend to osillate haotially.

Then, depending on the bids, the rules, whih are allowed to plae their output

messages on the list, the so-alled winning agents, are seleted. In the simpliest ase,

this an be done by a random experiment. For eah bidding lassi�er it is deided

randomly, if it wins or not, where the probability that it wins is proportional to its

bid:

P[r

i

wins℄ :=

b

i;t

P

j2Sat

t

b

j;t

; (8)

where Sat

t

is the set of indies whih belong to satis�ed lassi�ers at time t.

Obviously, in this approah, more than one winning lassi�ers are allowed. Of ourse,

other seletion shemes are reasonable, for instane the highest bidding agent wins

alone. This an be neessary to avoid that two winning lassi�ers diret mutually

exluding ations to the e�etors.

Now let us disuss how payment from the environment is distributed and how the

strengths are adapted. For this purpose, let us denote the set of lassi�ers, whih

have supplied a winning agent R

i

in step t, with S

i;t

. Then the new strength of a

winning agent is redued by its bid and inreased by its portion of the payo� P

t

reeived from the environment:

u

i;t+1

:= u

i;t

+

P

t

w

t

� b

i;t

; (9)

where w

t

is the number of winning agents in the atual time step. A winning agent

pays its bid to its suppliers, whih share the bid among eah other, equally in the

simpliest ase:

u

l;t+1

:= u

l;t

+

b

i;t

jS

i;t

j

8r

l

2 S

i;t

(10)

If a winning agent has also been ative in the previous step and supplies another

winning agent, the value above is additionally inreased by one portion of the bid

the onsumer o�ers. In the extreme ase, that two winning agents have supplied eah

other mutually, the portions of the bids are exhanged in the manner as presented

above. The strengths of all other lassi�ers r

n

, whih are neither winning agents nor

suppliers of winning agents, are redued by a ertain fator (they pay a tax):

u

n;t+1

:= u

n;t

� (1� T ); (11)
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Fig. 9. The buket brigade priniple

where T 2 [0; 1℄ is a small value. The intention of taxation is to punish lassi�ers

whih never ontribute anything to the output of the system. With this onept

redundant lassi�ers, whih never beome ative, an be �ltered out.

The idea behind redit assignment in general and buket brigade in partiular is to

inrease the strengths of rules whih have set the stage for later suessful ations.

The problem of determining suh lassi�ers, whih were responsible for onditions

under whih it was later on possible to reeive a high payo�, an be very diÆult.

However, the buket brigade algorithm an solve this problem, although, obviously,

strength is only transferred to the suppliers whih were ative in the previous step.

Eah time the same sequene is ativated, a little bit of the payo� is transferred

one step bak in the sequene. It is easy to see, that repeated suessful exeution

of a sequene an inrease the strengths of all oupled lassi�ers involved.

Figure 9 shows a simple example how the buket brigade algorithm works. For

simpliity, we onsider a sequene of �ve lassi�ers whih always bid 20 perents of

their strength. Only after the �fth step, after the ativation of the �fth lassi�er,

a payo� of 60 is reeived. The further future of this sequene would be the one

shown in �gure 10. It is easy to see from this example that the reinforement of

the strengths is slow at the beginning but it aelerates later. Exatly this property

ontributes muh to the robustness of lassi�er systems | they tend to be autious

at the beginning, trying not to rush onlusions, but, after a ertain number of

similar situations, the system adopts the rules more and more. Figure 10 also shows

a graphial visualization of this fat interpreting the table as a two-dimensional

surfae.
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Strength after the
3rd 100.00 100.00 101.60 120.80 172.00
4th 100.00 100.32 105.44 136.16 197.60
5th 100.06 101.34 111.58 152.54 234.46
6th 100.32 103.39 119.78 168.93 247.57

.

.

.
10th 106.56 124.17 164.44 224.84 278.52

.

.

.
25th 215.86 253.20 280.36 294.52 299.24

.

.

.
execution of the
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Fig. 10. Repeated buket brigade

2.3 Rule Generation

While the apportionment of redit system just judges the rules, the purpose of

the rule disovery system is to eliminate low-�tted rules and to replae them by

hopefully better performing ones. The �tness of a rule is given by its strength. Sine

the lassi�ers of a Holland lassi�er system themselves are strings, the adaptation

of a geneti algorithm to the problem of rule indution is straightforward, though

many variants are reasonable. Almost all variants have in ommon that the GA is

not invoked in eah time step, but only every n-th step, where n has to be set suh

that enough information about the performane of new lassi�ers an be obtained

in the meantime.

Furthermore, this proess of aquiring new rules has an interesting side e�et. It

is more than only the exhange of parts of onditions and ations. Sine we have

not stated restritions for manipulating tags, the geneti algorithm an reombine

parts of established tags to invent new tags. In the following, tags spawn related

tags establishing new ouplings. These new tags survive if they ontribute to useful

interations. In this sense, the GA additionally reates experiene-based internal

strutures.

3 Conluding Remarks

In this part, the Mihigan approah has been introdued. As one of the most im-

portant representatives, the Holland lassi�er system has been studied in detail.

We have seen that the main idea is that single rules are manipulated in an online

proess, whih requires a profound analysis of the performane of every rule. It is

important to point out that there is no expliit distintion between learning and

regular work of the system. Hene, suh a system an adapt to varying environmen-

tal irumstanes automatially. However, one should not forget that the random

modi�ation of rules, whih is done by a geneti algorithm, an be a risk in some

appliations where seurity is of speial importane. Moreover, the Mihigan ap-

proah is subjet to fail if the environment is so omplex that there is only a low

probability that important state sequenes are observed repeatedly.
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1 Introdution

While lassi�er systems of the Mihigan type had been introdued by J. H. Holland

in 1976, their fuzzi�ation awaited disovery many years. The �rst fuzzy lassi�er

system of the Mihigan type was introdued by M. Valenzuela-Rend�on ([79,80℄)

and is, more or less, a straightforward fuzzi�ation of a Holland lassi�er system.

An alternative approah has been developed by A. Bonarini ([9,10℄), who applies

a di�erent sheme of ompetetion between lassi�ers. These two approahes have

in ommon that they operate only on the rules | the shape of the membership

funtions is �xed. A third method, whih was introdued by P. Bonelli and A. Parodi

([65℄), tries to optimize even the membership funtions and the output weights in

aordane to payo� from the environment.

2 Fuzzifying Holland Classi�er Systems

2.1 The Prodution System

We onsider a fuzzy ontroller with real-valued input and output. The system has,

unlike ordinary fuzzy ontrollers, three di�erent types of variables | input, output,
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and internal variables. As we will see later, internal variables are for the purpose of

storing information about the near past. They orrespond to the internally tagged

messages in Holland lassi�er systems. For the sake of generality and simpliity,

all the universes of disourse, are transformed to the unit interval [0; 1℄. For eah

variable the same number of membership funtions n is assumed. These membership

funtions are �xed at the beginning. They are not hanged throughout the learning

proess. M. Valenzuela-Rend�on took bell-shaped funtion whih divided the interval

rather equally.

A message is a binary string of length l+ n, where n is the number of membership

funtions de�ned above and l is the length of the pre�x (tag), whih identi�es the

variable to whih the message belongs. A good hoie for l would be dlog

2

Ke, where

K is the total number of variables we want to onsider. To eah message an ativity

level, whih represents a truth value, is assigned. Consider for instane the following

message (l = 3, n = 5):

010

|{z}

=2

: 00010! 0:6

Its meaning is \Input no. 2 belongs to fuzzy set no. 4 with a degree of 0:6". On the

message list only so-alled minimal messages are used, i.e., messages with only one

1 in the part whih identi�es the numbers of the fuzzy sets.

Classi�ers again onsist of a �xed number r of onditions and an ation part. Note

that, in this approah, no wildards and no \{" pre�xes are used. Both ondition

and ation part are also binary strings of length l + n, where the tag and the

identi�ers of the fuzzy sets are separated by a olon. Then the degree to whih suh

a ondition is mathed is a truth value between 0 and 1. The degree of mathing

is omputed as the maximal ativity of messages on the list, whih have the same

tag and whose 1s are a subset of those of the ondition. Figure 11 shows a simple

example how this mathing is done. The degree of satisfation of the whole lassi�er

is then omputed as the minimum of mathing degrees of the onditions. This is

then also the ativity level whih is assigned to the output message (i.e., Mamdani

inferene).
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The whole rulebase onsists of a �xed number m of suh lassi�ers. Similarly to

Holland lassi�er systems, one exeution step of the prodution system is done as

follows:

(1) The detetors reeive risp input values from the environment and translate

them into minimal messages whih are then added to the message list.

(2) The degrees of mathing are omputed for all lassi�ers.

(3) The message list is erased.

(4) The output messages of some mathed lassi�ers (see below) are plaed on the

message list.

(5) The output messages are translated into minimal messages. For instane, the

message 010 : 00110 ! 0:9 is split into the two messages 010 : 00010 ! 0:9

and 010 : 00100 ! 0:9.

(6) The e�etors disard the output messages (referring to output variables) from

the list and translate them into instrutions to the environment.

From point 2 it an be seen easily that it is of advantage to use fuzzy sets with loal

support instead of bell-shaped ones, beause, if bell-shaped fuzzy sets are used,

every rule �res in eah time step.

Step 6 is done by a modi�ed Mamdani inferene: The sum (instead of the maximum

or another t-onorm) of ativity levels of messages, whih refer to the same fuzzy

set of a variable, is omputed. The membership funtions are then saled with these

sums. Finally, the enter of gravity of the \union" (i.e. maximum) of these funtions,

whih belong to one variable, is omputed (Sum-Prod inferene).

2.2 Credit Assignment

Sine fuzzy systems have been designed to model transitions, a probabilisti aution

proess as disussed in onnetion with Holland lassi�er systems, where only a

small number of rules is allowed to �re, is not desirable. Of ourse, we again assign

strength values to the lassi�ers.

If we are dealing with a one-stage system, in whih payo� for a ertain ation is

reeived immediately, where no long-term strategies must be evolved, we an suÆe

with allowing all mathed rules to post their outputs and sharing the payo� among

the rules, whih were ative in the last step, aording to their ativity levels in this

step. For example, if R

t

is the set of lassi�ers, whih have been ative at time t,

and P

t

is the payo� reeived after the t-th step, the modi�ation of the strengths

of �ring rules an be de�ned as

u

i;t+1

:= u

i;t

+ P

t

�

a

i;t

P

r

i

2R

t

a

i;t

8r

i

2 R

t

; (12)
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where a

i;t

denotes the ativity level of the lassi�er r

i

at time t. It is again possible

to redue the strength of inative lassi�ers by a ertain tax.

In the ase, that the problem is so omplex that long-term strategies are indis-

pensable, a fuzzi�ation of the buket brigade mehanism must be found. While

Valenzuela-Rend�on only provides a few vague ideas, we state one possible variant,

where the �ring rules pay a ertain value to their suppliers whih depends on the

ativity level. The strength of a lassi�er, whih has reently been ative in time step

t is then inreased by a portion of the payo� as de�ned in (12), but it is additionally

dereased by a value

b

i;t

:= 

L

� u

i;t

� a

i;t

; (13)

where 

L

2 [0; 1℄ is again the learning rate. Of ourse, it is again possible to inor-

porate terms whih depend on the spei�ty of the lassi�er.

This \bid" is then shared among the suppliers of suh a �ring lassi�er aording to

the amount they have ontributed to the mathing of the onsumer. If we onsider

an arbitrary but �xed lassi�er r

j

whih has been ative in step t and if we denote

the set of lassi�ers supplying r

j

, whih have been ative in step t�1, with S

j;t

, the

hange of the strengths of these suppliers an be de�ned as

u

k;t+1

:= u

k;t

+ b

j;t

�

a

k;t�1

P

r2S

j;t

a

r;t�1

8r

k

2 S

j;t

: (14)

It is easy to see, that this an be an appropriate generalization of the buket brigade

algorithm as desribed in the previous leture.

2.3 Rule Disovery

The adaptation of a geneti algorithm to the problem of manipulating lassi�ers

in our system is again straightforward. We only have to take speial are that tags

in onditional parts must not refer to output variables and that tags in the ation

parts of the lassi�ers must not refer to input variables of the system.

Analogously to our previous onsiderations, if we admit a ertain number of in-

ternal variables, the system tends to build up internal hains, oupled sequenes,

autonomously. If we admit internal variables, a lassi�er system of this type not only

learns stupid input-output ations, it also tries to disover ausal interrelations.
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3 Bonarini's ELF Method

In [9℄, A. Bonarini presents his ELF (=evolutionary learning of fuzzy rules) method

and applies it to the problem of guiding an autonomous robot. The key issue of

ELF is to �nd a small rulebase whih only ontains important rules. While he takes

over many of M. Valenzuela-Rend�on's ideas, his way of modifying the rulebase

di�ers strongly from Valenzuela-Rend�on's straightforward fuzzi�ation of Holland's

tehnique.

Bonarini alls the modi�ation sheme \over-detetor algorithm". The number of

rules an be varied in eah timestep depending on the number of rules whih math

the atual situation. This is done by two mutually exlusive operations:

(1) If the rules, whih math the atual situation, are too many, the worst of them

is deleted.

(2) If there are too few rules mathing the urrent inputs, a new rule, whose

anteents over the urrent state, with randomly hosen onsequent value, is

added to the rulebase.

The geneti operations are only applied to the onsequent values of the rules. Sine

the anteedents are generated on demand in the di�erent timesteps, no taxation is

neessary.

Seemingly, suh a simple modi�ation sheme an only be applied to so-alled one-

stage problems, where the e�et of eah rule an be observed in the next timestep.

For appliations where this is not valid, e.g., baking up a truk, Bonarini introdued

a modi�ation of his ELF algorithm | the onept of an episode, whih is a given

number of subsequent ontrol ations, after whih the reahed state is evaluated.

4 Online Modi�ation of the Whole Knowledge Base

While the last two methods only manipulate rules and work with �xed member-

ship funtions, there is at least one variant of fuzzy lassi�er systems where also

the membership funtions are involved in the learning proess. This variant was

introdued by A. Parodi and P. Bonelli in [65℄.

The main idea is that an approximative knowledge base is used instead of a de-

sriptive one as in the two previous examples. So, a fuzzy rule is not represented as

a linguisti expression whih refers only to labels of fuzzy sets, but a fuzzy relation

on X�Y , where X is the input and Y is the output domain. More spei�ally, eah

rule is represented as a pair onsisting of a fuzzy subset of X and a fuzzy subset of

Y .
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Sine, in many appliations, X and Y are themselves ross produts, i.e., X =

X

1

� � � ��X

n

and Y = Y

1

� � � �� Y

m

, rules in a approximative knowledge base an

be written as

A

i1

� � � � � A

in

� B

i1

� � � � �B

im

(15)

where i is the index of the rule.

If one restrits to ertain lass of fuzzy subsets, suh as triangular or bell-shaped

membership funtions, it is possible to enode a rule as

(a

i1

; : : : ; a

in

; b

i1

; : : : ; b

im

)

where a

ij

and b

ij

are parameters uniquely identifying a fuzzy subset of X

j

or Y

j

,

respetively.

Moreover, in this approah, eah rule is additionally equipped with a strength fator,

whih is taken as a saling fator of the output set. This strength fator is also used

as �tness measure by the geneti algorithm whih modi�es the knowledge base and

modi�ed aording to payo� from the environment.

5 Conluding Remarks

The advantage of M. Valenzuela-Rend�on's method is generality. Its appliability is

not limited to one-stage systems. However, the use of internal variables an lead to

diÆultly interpretable fuzzy systems.

Bonarini's ELF method is suitable for one-stage systems and multi-stage systems,

where the duration of e�ets of rules an be assumed as limited (length of episode).

The advantage of this approah is that also the size of the rulebase is optimized.

Parodi's and Bonelli's approah has the advantage that the membership funtions

need not to be �xed in the design phase of the system. Therefore, the system an

learn to emphasize ertain regions of the input and output domains. The disadvan-

tage is that, in general, approximative representations are muh more ompliated

and an result in diÆultly interpretable knowledge bases.
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1 O�ine Optimization of a Table-Based TSK Controller

In [53,77℄, M. Lee and H. Takagi introdue a method for �nding an optimal TSK

ontroller. In general, a Sugeno ontroller (see [75℄) is a rulebase onsisting of rules

of the form

IF x is A

j

THEN y is f

j

(x);

where j is the index of the rule, A

j

is a fuzzy subset of the input domain, y is

the risp (real-valued) output variable, and f

j

(x) is an arbitrary mapping from the

input to the output domain. If there is at least one �ring rule, the output of suh a

ontroller an be omputed as

y =

N

P

j=1

�

A

j

(x) � f

j

(x)

N

P

j=1

�

A

j

(x)

;

where N is the total number of rules.



In most reent appliations, the funtions f

j

are onstants. A Sugeno ontroller with

polynomials of degree 1, i.e., aÆne linear mappings, on the right hand side is alled

Takagi-Sugeno-Kang (TSK) ontroller.

If the input domain is a ross produt of two real intervals [a

1

; b

1

℄ and [a

2

; b

2

℄ whih

are deomposed by N

1

and N

2

fuzzy subsets, respetively, the whole ontroller an

be represented as an N

1

� N

2

matrix (table), where eah entry ontains the three

parameters (�

ij

; �

ij

; 

ij

) of f

ij

(x

1

; x

2

) = �

ij

� x

1

+ �

ij

� x

2

+ 

ij

.

In order to �nd an optimal TSK ontroller with a geneti algorithm, Lee and Takagi

�rst �xed the numbers of fuzzy setsN

1

andN

2

in advane. In their model, triangular-

shaped fuzzy sets with three degrees of freedom | enter, left o�set, and right

o�set | were hosen. Then, eah fuzzy set was enoded by oding eah of the three

parameters exept that not the enters were enoded but their o�sets. The reason

for oding the o�sets of the enters instead of the enters themselves was to avoid

that unreasonable overlappings our and to guarantee a anonial ordering of the

fuzzy sets. Finally, a whole ontroller is represented by a binary string omposed of

the parameters of the fuzzy subsets of the two input domains and a binary oding of

the table ontaining the onsequent values. Apparently, this is a desriptive model.

In the optimization step, a geneti algorithm, whih operates on a population of

ontrollers, was applied to �nd the optimal one in an o�ine optimization proess

(f. Pittsburgh approah) with respet to a ertain �tness funtion.

The generalization of the tehniques presented above to the ase of ontrollers with

more than two inputs is, apparently, straightforward. However, it is easy to see that

the length of the strings depends exponentially on the dimension.

2 The Nagoya Approah

The seond idea goes bak to T. Furuhashi, K. Nakaoka, and Y. Uhikawa from the

university of Nagoya, Japan. In their approah, a modi�ed kind of geneti algorithm

is used. Pretentiously, they have alled their idea \Nagoya Approah". It an be

found in [27℄.

The three authors applied a geneti algorithm to the optimization of a Mamdani

ontroller with �ve inputs and two outputs for guiding a robot to a ertain goal

through a room whih ontains one moving obstale.

For the input variables they used bell-shaped fuzzy sets whih were additionally

saled with a fator. For the output variables ordinary triangular membership fun-

tions were used with the modi�ation that only one o�set was used for both left

and right.
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In this approah, it was assumed that the whole system is ontrollable with a ertain

�xed number N (onretely 15 in this appliation) of rules. Hene, the oding of

a whole ontroller onsisted of N binary representations of rules, where eah rule

was enoded by enoding the parameters of the �ve input and the two output sets

(approximative model).

The most interesting novelty of this paper is that a new modi�ation of an ordinary

geneti algorithm is introdued. It provides a better loal improvement of single

rules. The idea is the following: The whole individual is divided into N

p

parts whih

an be judged independently (the parts and how they an be judged depends on

the onrete appliation). In the mutation step, for eah individual of the atual

population, a ertain number M of lones of eah part is produed. M � 1 of them

are mutated. The best lone of eah part is then implanted into the new individual.

After this step, normal seletion and rossing over are performed. Normally, mu-

tation yields bad individuals very often, beause one modi�ation an deteriorate

the �tness of the whole individual. In this approah, various loal phenomena are

judged independently whih an result in better loal improvement.

3 Optimizing Hierarhial Strutures of Fuzzy Systems

Consider for instane a fuzzy system with 14 inputs, eah represented by three fuzzy

sets, and one output with �ve verbal values. Then the total number of di�erent

premises, whih speify eah variable in the premise, is 3

14

= 4782969 and the total

number of rules with premises of suh a kind is even 5

4782969

. Obviously, this is a size

whih is diÆult to survey for a human and impossibly large for an optimization

algorithm. This entails the neessity either to use generalizing rules with wildards in

their premises or to prepare a hierarhial struture, whih bundles the information

suh that the deisions are divided into a ertain number of subdeisions.

In many appliations, where the relationships between the di�erent sets of data are

unknown, the preparation of an appropriate hierarhy is a very diÆult task. Of

ourse, it is desireable to have methods whih an help to �nd suh a hierarhy.

One approah for �nding an appropriate hierarhial struture by means of geneti

algorithms was introdued by T. Fukuda, Y. Hasegawa, and K. Shimojima ([26,73℄).

These four researhers have presented a oding tehnique for hierarhies whih an

be integrated in a geneti optimization proess. The appliability of this oding is

limited to tree strutures, whih is not a serious restrition.

Starting point is a binary tree whih onsists of a ertain number of units, i.e.,

rulebases, whih are enumerated from the root to the leaves. In [26,73℄, 2

n�2

is

reommended, where n is the total number of input variables. Then the numbers of

the units, to whih the input variables are onneted, an be enoded. Of ourse, a
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U 2

U 0

U 1

No. 1 No. 6No. 5No. 4No. 3No. 2 No. 1 No. 2 No. 6No. 5No. 4No. 3

Fig. 12. Example for oding a hierarhial struture

few simpliations have to be done:

(1) Only units, whih are onneted to input variables, and the units above are

onsidered. Units below are removed.

(2) If, after step (1) a bottommost unit has only one input, it is removed.

Figure 12 shows an example for six inputs whih illustrates the oding and how the

struture is simpli�ed:

� Units 8, 4, and 9{14 are removed, sine none of them or of their predeessors is

onneted to an input variable.

� Units 3, 7, 15, 5, and 6 are removed sine they only have one input. Consequently,

input No. 1 is onsidered to be onneted to unit 1, No. 5 and No. 6 are onneted

to unit 2.

Note that, due to the simplifations, the deoding funtion is not injetive | dif-

ferent strings an result in the same hierarhies.

The onept of oding a hierarhy an now be inorporated in a optimization pro-

ess. In [73℄, the hierarhy is tuned before the rulebases. The proess of tuning the

hierarhial struture an be outlined as follows:

(1) The omplete tree is prepared. For eah input of eah unit, a ertain number

of fuzzy sets is assumed. Initially, they are set equal for all variables, suh that

they divide the input spae rather equally.

(2) Hierarhies are hosen randomly. The onsequent parameters of the rules are

initially set to 0.

(3) The onsequent parameters (we have a Sugeno ontroller with onstants on the

right hand side) are tuned with a gradient method, where the desired output

of an intermediate unit is omputed using bakpropagation.

(4) Seletion, rossing over, and mutation are applied to the population.

(5) If the stopping ondition is not ful�lled, return to (3).

Apparently, this is only a raw searh for an optimal fuzzy system, beause the fuzzy
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sets are �xed, but it an be a way for aquiring a fairly good hierarhial struture.

In order to optimize all the parameters involved, it is, after �nding an appropriate

struture, reommendable to apply further optimization tehniques.

4 Fuzzy Geneti Programming

A omparatively new idea is to apply geneti programming to the aquistation of

optimal rulebases. Muh of the theory goes bak to A. Geyer-Shulz ([28℄) who also

implemented the �rst appliation, where he tried to improve stok management

strategies with fuzzy geneti programming ([29℄).

Within this promising approah, all kinds of onstruts for representing fuzzy know-

ledge, suh as adverbs (hedges), di�erent onnetives, et. an be used. The one and

only indispensable thing is a rule language whose grammar is given in Bakus-Naur

form (reursive de�nition).

An example of suh a rule language ould be the following:

hrulei := \IF" hpremisei \THEN" honlusioni;

hpremisei := honditionali j

\(" hunaryi hpremisei \)" j

\(" hpremisei honnetivei hpremisei \)" ;

honditionali := \x

1

" \is" hexpr

1

i j � � � j \x

n

" \is" hexpr

n

i ;

hunaryi := \NOT" ;

honnetivei := \AND" j \OR" ;

honlusioni := \y" \is" hexpr

y

i ;

where the expressions hexpr

1

i . . . hexpr

n

i and hexpr

y

i are verbal values of the lin-

guisti variables x

1

. . .x

n

and y, respetively. Of ourse, these values an also be

built up reursively of adverbs, adjetives, and onnetives.

For oding a whole rulebase, two methods are reasonable:

(1) Fixing the number of rules m:

<rulebase> := \(" hrulei \," . . . \," hrulei

| {z }

m times

\)" ;

(2) Allow an arbitrary number of rules:

hrulebasei := \(" hrulelisti \)" ;

hrulelisti := hrulei j \," hrulelisti ;

Furthermore, if the set of verbal values of the linguisti variable y is a �nite set of

adjetives, it is, under some additional assumptions, possible to suÆe with a �nite

number of rules (see [7, setion 5.1.2℄).
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Geneti operations an be applied as usual in geneti programming. However, it

an be of advantage to inorporate mehanisms into the �tness funtion whih

additionally take the omplexity and the number of the rules into aount. Moreover,

it is useful to simplify the expressions after eah generation in order to avoid wild

growth of the premises and onlusions. If simpli�ation is desired, the operations

(t-norms and t-onorms) should be hosen suh that some derivation laws, suh as

the De-Morgan law, are ful�lled.

More, espeially theoretial details on fuzzy geneti programming an be found in

[28℄, where also a global onvergene proof is provided.

5 Conluding Remarks

One of the most important advantages of fuzzy systems is that the funtions are

parameterized in a way whih is interpretable for humans. More spei�ally, it is

possible to translate human knowledge into fuzzy rules and fuzzy sets, but, on the

ontrary, not every system, whih is formally a fuzzy system, is really interpretable.

In fat, the probability, that diÆultly interpretable on�gurations are obtained,

is rather high when representations with lots of degrees of freedom are tried to be

optimized. An alternative, whih an help to overome this problem, is to enode

whole fuzzy partitions as shown in the �fth leture. Obviously, this approah allows

less degrees of freedom, whih an also speed up onvergene.

There have been a lot of publiations onerning with geneti optimization of fuzzy

systems (see [1,19,20℄ for reent bibliographies). Eah of these approahes | many

of them are rather similar | has only been applied to a few benhmark problems.

So far, there are no proofs (neither theoretial nor empirial) whih methods are

suitable for whih problems.
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