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Abstra
t

Geneti
 algorithms play a signi�
ant role, as sear
h te
hniques for handling 
omplex

spa
es, in many �elds su
h as arti�
ial intelligen
e, engineering, roboti
s, et
. Ge-

neti
 algorithms are based on the underlying geneti
 pro
ess in biologi
al organisms

and on the natural evolution prin
iples of populations. A short des
ription is given

in this le
ture, introdu
ing their use for ma
hine learning.

Key words: Geneti
 Algorithms, Evolutionary Computation, Learning.

1 Introdu
tion

Evolutionary Computation (EC) uses 
omputational models of evolutionary pro-


esses as key elements in the design and implementation of 
omputer-based problem

solving systems. There are a variety of evolutionary 
omputational models that have

been proposed and studied whi
h are referred as Evolutionary Algorithms (EAs).

Shortly, this paradigm 
overs several variations, su
h as Evolutionary Strategies,

addressing 
ontinuous fun
tion optimization [72℄, Evolutionary Programming , gen-

erating �nite state automata that des
ribe strategies or behaviors [25℄, Geneti


Algorithms, providing 
ontinuous and dis
rete fun
tion optimization and sear
h

[31,45℄ and Geneti
 Programming, evolving 
omputer programs to approximately

solve problems [52℄.

In this le
ture we will give a short introdu
tion to the most widely studied EA,

Geneti
 Algorithms, and the use of them for Ma
hine Learning.



2 Geneti
 Algorithms

Geneti
 algorithms (GAs) have had a great measure of su

ess in sear
h and op-

timization problems. The reason for a great part of their su

ess is their ability

to exploit the information a

umulated about an initially unknown sear
h spa
e

in order to bias subsequent sear
hes into useful subspa
es, i.e., their adaptation.

This is their key feature, parti
ularly in large, 
omplex, and poorly understood

sear
h spa
es, where 
lassi
al sear
h tools (enumerative, heuristi
,..) are inappro-

priate, o�ering a valid approa
h to problems requiring eÆ
ient and e�e
tive sear
h

te
hniques.

GAs are general purpose sear
h algorithms whi
h use prin
iples inspired by natural

geneti
 populations to evolve solutions to problems [45,31℄. The basi
 idea is to

maintain a population of 
hromosomes, whi
h represent 
andidate solutions to the


on
rete problem, that evolves over time through a pro
ess of 
ompetition and


ontrolled variation. Ea
h 
hromosome in the population has an asso
iated �tness

to determine whi
h 
hromosomes are used to form new ones in the 
ompetition

pro
ess, whi
h is 
alled sele
tion. The new ones are 
reated using geneti
 operators

su
h as 
rossover and mutation.

A GA starts o� with a population of randomly generated 
hromosomes, and ad-

van
es toward better 
hromosomes by applying geneti
 operators modeled on the

geneti
 pro
esses o

urring in nature. The population undergoes evolution in a form

of natural sele
tion. During su

essive iterations, 
alled generations, 
hromosomes

in the population are rated for their adaptation as solutions, and on the basis of

these evaluations, a new population of 
hromosomes is formed using a sele
tion

me
hanism and spe
i�
 geneti
 operators su
h as 
rossover and mutation. An eval-

uation or �tness fun
tion (f) must be devised for ea
h problem to be solved. Given

a parti
ular 
hromosome, a possible solution, the �tness fun
tion returns a single

numeri
al �tness, whi
h is supposed to be proportional to the utility or adaptation

of the solution represented by that 
hromosome.

Although there are many possible variants of the basi
 GA, the fundamental un-

derlying me
hanism 
onsists of three operations:

(1) evaluation of individual �tness,

(2) formation of a gene pool (intermediate population) through sele
tion me
ha-

nism, and

(3) re
ombination through 
rossover and mutation operators.

Next pro
edure shows the stru
ture of a basi
 GA, where P (t) denotes the popula-

tion at generation t.
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Pro
edure Geneti
 Algorithm

begin (1)

t = 0;

initialize P (t);

evaluate P (t);

While (Not termination-
ondition) do

begin (2)

t = t+ 1;

sele
t P (t) from P (t� 1);

re
ombine P (t);

evaluate P (t);

end (2)

end (1)

The basi
 prin
iples of GAs were �rst laid down rigorously by Holland ([45℄), and

are well des
ribed in many books, su
h as [31,60℄. It is generally a

epted that the

appli
ation of a GA to solve a problem must take into a

ount the following �ve


omponents:

(1) A geneti
 representation of solutions to the problem,

(2) a way to 
reate an initial population of solutions,

(3) an evaluation fun
tion whi
h gives the �tness of ea
h 
hromosome,

(4) geneti
 operators that alter the geneti
 
omposition of o�spring during repro-

du
tion, and

(5) values for the parameters that the GA uses (population size, probabilities of

applying geneti
 operators, et
.).

2.1 Appli
ations of GAs

GAs may deal su

essfully with a wide range of problem areas. The main reasons

for this su

ess are: 1) GAs 
an solve hard problems qui
kly and reliably, 2) GAs are

easy to interfa
e to existing simulations and models, 3) GAs are extensible and 4)

GAs are easy to hybridize. All these reasons may be summed up in only one: GAs are

robust. GAs are more powerful in diÆ
ult environments where the spa
e is usually

large, dis
ontinuous, 
omplex and poorly understood. They are not guaranteed to

�nd the global optimum solution to a problem, but they are generally good at

�nding a

eptably good solutions to problems a

eptably qui
kly. These reasons

have been behind the fa
t that, during the last few years, GA appli
ations have

grown enormously in many �elds.

The following referen
es show monograph books of appli
ations in di�erent areas:

engineering and 
omputer s
ien
e [22,84℄, ma
hine learning [37,28℄, pattern re
og-

nition [63℄, neuronal networks [83℄, roboti
s [21℄, investment strategies [5℄, manage-

ment appli
ations [6℄, and fuzzy systems [42,67,70℄.
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3 Learning with GAs

Although GAs are not learning algorithms, they may o�er a powerful and domain-

independent sear
h method for a variety of learning tasks. In fa
t, there has been a

good deal of interest in using GAs for ma
hine learning problems ([48,37,30℄).

Three alternative approa
hes, in whi
h GAs have been applied to learning pro-


esses, have been proposed, the Mi
higan ([47℄), the Pittsburgh ([74℄), and the

Iterative Rule Learning (IRL) approa
hes [32,82℄. In the �rst one, the 
hromosomes


orrespond to 
lassi�er rules whi
h are evolved as a whole, whereas in the Pitts-

burgh approa
h, ea
h 
hromosome en
odes a 
omplete set of 
lassi�ers. In the IRL

approa
h ea
h 
hromosome represents only one rule learning, but 
ontrary to the

�rst, only the best individual is 
onsidered as the solution, dis
arding the remaining


hromosomes in the population. Below, we will des
ribe them brie
y.

Mi
higan approa
h. The 
hromosomes are individual rules and a rule set is rep-

resented by the entire population. The 
olle
tion of rules are modi�ed over time via

intera
tion with the environment. This model maintains the population of 
lassi�ers

with 
redit assignment, rule dis
overy and geneti
 operations applied at the level of

the individual rule.

A geneti
 learning pro
ess based on the Mi
higan approa
h re
eives the name of

Classi�er System. A 
omplete des
ription is to be found in [12℄.

Pittsburgh approa
h. Ea
h 
hromosome en
odes a whole rule sets. Crossover

serves to provide a new 
ombination of rules and mutation provides new rules. In

some 
ases, variable-length rule bases are used, employing modi�ed geneti
 opera-

tors for dealing with these variable-length and position independent genomes.

This model was initially proposed by Smith in 1980 [74℄. Re
ent instan
es of this

approa
h may be found in [37℄.

Iterative Rule Learning approa
h. In this latter model, as in the Mi
higan one,

ea
h 
hromosome in the population represents a single rule, but 
ontrary to the

Mi
higan one, only the best individual is 
onsidered to form part of the solution,

dis
arding the remaining 
hromosomes in the population. Therefore, in the iterative

model, the GA provides a partial solution to the problem of learning. In order to

obtain a set of rules, whi
h will be a true solution to the problem, the GA has to

be pla
ed within an iterative s
heme similar to the following:

(1) Use a GA to obtain a rule for the system.

(2) In
orporate the rule into the �nal set of rules.

(3) Penalize this rule.

(4) If the set of rules obtained till now is adequate to be a solution to the problem,

the system ends up returning the set of rules as the solution. Otherwise return

6



to step 1.

The main di�eren
e with respe
t to the Mi
higan approa
h is that the �tness of ea
h


hromosome is 
omputed individually, without taking into a

ount 
ooperation with

other ones. This substantially redu
es the sear
h spa
e, be
ause in ea
h sequen
e

of iterations only one rule is sear
hed.

A more detailed des
ription of this approa
h may be found in [32℄.

3.1 Some Remarks

The Mi
higan approa
h will prove to be the most useful in an on-line pro
ess.

It is more 
exible to handle in
remental-mode learning (training instan
es arrive

over time) and dynami
ally 
hanging domains, whereas the Pittsburgh and the IRL

approa
hes seem to be better suited to bat
h-mode learning, where all training

instan
es are available before learning is initiated, and for stati
 domains.

The major problem in the Mi
higan approa
h is that of resolving the 
on
i
t be-

tween the individual and 
olle
tive interests of 
lassi�ers within the system. The

ultimate aim of a learning 
lassi�er system is to evolve a set of 
o-adapted rules

whi
h a
t together in solving some problems. In a Mi
higan style system, with se-

le
tion and repla
ement at the level of the individual rule, rules whi
h 
ooperate

to e�e
t good a
tions and re
eive payo� also 
ompete with ea
h other under the

a
tion of the GA.

This 
on
i
t between individual and 
olle
tive interests of individual 
lassi�ers does

not arise with Pittsburgh-style 
lassi�er systems, sin
e reprodu
tive 
ompetition o
-


urs between 
omplete rule sets rather than individual rules. However, maintenan
e

and evaluation of a population of 
omplete rule-sets in Pittsburgh-style systems 
an

often lead to a mu
h greater 
omputational burden (in terms of both memory and

pro
essing time). Therefore, problems with the Pittsburgh approa
h have proven to

be, at least, equally as 
hallenging. Although the approa
h avoids the problem of

expli
it 
ompetition between 
lassi�ers, large amounts of 
omputing resour
es are

required to evaluate a 
omplete population of rule-sets.

When 
ompared with the latter, the advantage of the IRL approa
h is that, in

the �rst stage spa
e it 
onsiderably redu
es the sear
h be
ause it looks for only

one rule in ea
h sequen
e of iterations, although this approa
h also implies a great


omputational burden.
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4 Con
luding Remarks

A short introdu
tion of GAs have been presented. Regarding to their use for ma-


hine learning, to point out that GAs are also used for re�ning parameters in other

learning approa
hes, as is done using GAs for determining weights in a neural net-

work.

8



Integrating Geneti
 Algorithms and Fuzzy

Logi


Fran
is
o Herrera

Dept. of Computer S
ien
e and A.I., E.T.S. Ingenier��a Inform�ati
a

University of Granada, E-18071 Granada, Spain

E-mail: herrera�de
sai.ugr.es

Abstra
t

In this le
ture, an evaluation of the 
urrent situation regarding to the 
ombina-

tion of Geneti
 Algorithms and Fuzzy Logi
 is given. This is made by means of a


lassi�
ation in areas, giving a short introdu
tion to ea
h one of them.

Key words: Fuzzy Logi
, Geneti
 Algorithms.

1 Introdu
tion

Re
entely, numerous papers and appli
ations 
ombining Fuzzy Logi
 (FL) and Ge-

neti
 Algorithms (GAs) have be
ome known, and there is an in
reasing interest in

the integration of these two topi
s.

In the following we explore this 
ombination from the bidire
tional integration:

� the use of FL based te
hniques for either improving GA behaviour and modeling

GA 
omponents, the results obtained have been 
alled fuzzy geneti
 algorithms

(FGAs), and

� the appli
ation of GAs in various optimization and sear
h problems involving

fuzzy systems.

The present le
ture tries to give a short review of the 
ombination of FL and GAs,

introdu
ing a 
lassi�
ation of the publi
ations in fourteen areas, presenting brie
y

them.

Before to introdu
e the aforementioned areas, a few remarks seem to be ne
essary.



� The �rst is regarding to the bibliography. It is 
olle
ted in our te
hni
al report O.

Cord�on, F. Herrera, M. Lozano, "A Classi�ed Review on the Combination Fuzzy

Logi
-Geneti
 Algorithms Bibliography", Dept. of Computer S
ien
e and A.I.,

University of Granada, Te
h.Report 95129, O
tober 1995 (Last version De
ember

1996). Available at the URL address: http://de
sai.ugr.es/~herrera/
-ga.html. It


lassi�es and lists 562 referen
es. This report 
lassi�es the bibliography in 15

se
tions a

ording to the following table. It 
ontains the keywords and the number

of papers on ea
h of them. These keywords 
overs the appli
ation of FL based

tools to GAs (with the name of fuzzy geneti
 algorithms) and the di�erent areas

of FL and fuzzy set theory where GAs have been applied. The underlying report

is 
ontinuously being updated.

1 Fuzzy geneti
 algorithms 24

2 Fuzzy 
lustering 14

3 Fuzzy optimization 39

4 Fuzzy neural networks 34

5 Fuzzy relational equations 6

6 Fuzzy expert systems 8

7 Fuzzy 
lassi�er systems 33

8 Fuzzy information retrieval 6

and database quering

9 Fuzzy de
ision making, �nan
ial, 10

and e
onomi
 models

10 Fuzzy regression analysis 6

11 Fuzzy pattern re
ognition and 24

image pro
essing

12 Fuzzzy 
lassi�
ation - Con
ept 24

Learning

13 Fuzzy logi
 
ontrollers (Design, 287

Learning, Tuning, Appli
ations)

14 Fuzzy logi
 - Geneti
 algorithms framework 13

15 Fuzzy logi
 mis
ellaneous 38

Table 1. Classi�
ation keywords

� The se
ond, is regarding to this le
ture.It is a summary of the 
ontribution: O.

Cord�on, F. Herrera, M. Lozano, "On the Combination of Fuzzy Logi
 and Evolu-

tionary Computation: A Short Review and Bibliography", In: Fuzzy Evolutionary

Computation. W. Pedry
z (Ed.), Kluwer A
ademi
 Pub., 1997, pp. 33-56.

We 
onsider fourteen areas, we join the table areas 7 and 13 in a global area with

the name Geneti
 fuzzy rule-based 
ontrol systems. In the following we des
ribe

the 
lassi�
ation areas. The exhaustive bibliography is found in the aforementioned

referen
e.
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2 Classi�
ation Areas

In this se
tion we introdu
e a des
ription of every area and des
ribe shortly theap-

pli
ation of GAs to them.

Fuzzy geneti
 algorithms. A Fuzzy Geneti
 Algorithm (FGA) is 
onsidered as

a GA that uses fuzzy logi
 based te
hniques or fuzzy tools to improve the GA

behaviour modeling di�erent GA 
omponents.

An FGA may be de�ned as an ordering sequen
e of instru
tions in whi
h some of the

instru
tions or algorithm 
omponents may be designed with fuzzy logi
 based tools,

su
h as, fuzzy operators and fuzzy 
onne
tives for designing geneti
 operators with

di�erent properties, fuzzy logi
 
ontrol systems for 
ontrolling the GA parameters

a

ording to some performan
e measures, fuzzy stop 
riteria, representation tasks,

et
.

Fuzzy 
lustering. Clustering plays a key role in sear
hing for stru
tures in data.

Given a �nite set of data, X, the problem of 
lustering in X is to �nd several


luster 
enters that 
an properly 
hara
terize relevant 
lasses of X. In 
lassi
al


luster analysis, these 
lasses are required to form a partition of X su
h that the

degree of asso
iation is strong for data within blo
ks of the partition and weak for

data in di�erent blo
ks. However, this requirement is too strong in many pra
ti
al

appli
ations, and it is thus desirable to repla
e it with a weaker requirement. When

the requirement of a 
risp partition of X is repla
ed with a weaker requirement of a

fuzzy partition or a fuzzy pseudopartition on X, the emerged problem area is refered

as fuzzy 
lustering.

GAs are used for a global sear
h of the spa
e of possible data partitions given a


hoi
e of the number of 
lusters or 
lasses in the data, for determining the number

of 
lusters, et
.

Fuzzy optimization. Fuzzy optimization deals with how to �nd a best point under

some fuzzy goals and restri
tions given as linguisti
 terms or fuzzy sets.

GAs are used for solving di�erent fuzzy optimization problems. This is the 
ase

for instan
e of fuzzy 
owshop s
heduling problems, vehi
le routing problems with

fuzzy due-time, fuzzy mixed integer programming applied to resour
e distribution,

intera
tive fuzzy satisfy
ing method for multiobje
tive 0-1, fuzzy optimal reliability

design problems, job-shop s
heduling problem with fuzzy pro
essing time, fuzzy

optimization of distribution networks, et
.

Fuzzy neural networks. Neural networks have been re
ognized as an important

tool for 
onstru
ting membership fun
tions, operations on membership fun
tions,

fuzzy inferen
e rules, and other 
ontext-dependent entities in fuzzy set theory.
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On other hand, attempts have been made to develop alternative neural networks,

more attuned to the various pro
edures of approximate reasoning. These alterna-

tive neural networks are usually referred to as fuzzy neural networks. The following

features, or some of them, distinguish fuzzy neural networks from their 
lassi
al


ounterparts: inputs are fuzzy numbers, outputs are fuzzy numbers, weights are

fuzzy numbers, weighted inputs of ea
h neuron are not aggregated by summation,

but by some other aggregation operation. A deviation from 
lassi
al neural net-

works in any of these features requires a properly modi�ed learning algorithm to be

developed.

GAs are used for designing an overall good ar
hite
ture of fuzzy neural networks

and fuzzy neural networks, for determining an optimal set of link weightd, for par-

ti
ipating in hybrid learning algorithms, et
.

Fuzzy relational equations. The notion of fuzzy relational equations is asso
iated

with the 
on
ept of 
omposition of binary relations. This operation involves exa
tly

the same 
ombinations of matrix entries as in the regular matrix multipli
ation.

However, the multipli
ations and additions that are applied to these 
ombinations

in the matrix multipli
ation are repla
ed with other operations. These alternative

operations represent, in ea
h given 
ontext, the appropriate operations of fuzzy set

interse
tion and union, respe
tively. Fuzzy relational equations have been intensively

exploited in many areas of appli
ations of fuzzy sets.

GAs may be used either for �nding approximate solutions to a system of fuzzy

relational equations or for learning in relational stru
tures.

Fuzzy expert systems. An expert system is a 
omputer-based system that em-

ulates the reasoning pro
ess of a human expert within a spe
i�
 domain of knowl-

edge. In fuzzy expert systems, the knowledge is usually represented by a set of

fuzzy produ
tion rules, whi
h 
onne
t ante
edents with 
onsequent, premises with


on
lusions, or 
onditions with a
tions.

GAs 
an solve two basi
al problems of the knowledge base, the knowledge base

buliding and the knowledge �ltering.

Fuzzy information retrieval Information retrieval may be de�ned as the problem

of the sele
tion of do
umentary information from storage in response to sear
h

questions. The motivation of the appli
ation of fuzzy set theory to the design of

databases and information storage and retrieval systems lies in the need to handle

impre
ise information. The database that 
an a

ommodate impre
ise information


an store and manipulate not only pre
ise fa
ts, but also subje
tive expert opinions,

judgments, and values that 
an be spe
i�ed in linguisti
 terms.

GAs are used for designing models for optimization of queries in a fuzzy information

retrieval system.

12



Fuzzy de
ision making, �nan
ial, and e
onomi
 models. De
ision making

is the study of how de
isions are a
tually made and how they 
an be made better

or more su

essfully. Fuzzy set theory has been widely used in the �eld of de
ision

making. For the most part, the appli
ation 
onsisted on fuzzi�
ations of the 
lassi
al

theories of de
ision making. Also it is used for modelling some �nan
ial and e
onomi


problems.

GAs are used for 
ooperating in the design and resolution of these models.

Fuzzy regression analysis Regression analysis is an area of statisti
s that deals

with the investigation of the dependen
e of a variable upon one or more other

variables. Two distin
t motivations, fuzzy relation seems intuitively more realisti


and the nature of data whi
h in some appli
ations are inherently fuzzy, lead to two

types of fuzzy regression analysis. One involves fuzzy parameters and 
risp data,

while the other one involves 
risp parameters and fuzzy data.

GAs are used for solving the underlying optimization problems.

Fuzzy pattern re
ognition and image pro
essing. There are various aspe
ts

of image pro
essing and analysis problems where the theory of fuzzy sets has been

applied: as generalizations of 
lassi
al membership-roster methods, generalizations

of 
lassi
al synta
ti
 methods, providing image ambiguity/information measures

and quantitative evaluation, 
omputing fuzzy geometri
al properties, et
.

In handling un
ertainty in pattern analysis, GAs may be helpful in determining

the appropriate membership fun
tions, rules and parameter spa
e, and in providing

a reasonably suitable solution. For this purpose, a suitable fuzzy �tness fun
tion

needs to be de�ned depending on the problem.

Fuzzy 
lassi�
ation - Con
ept learning.

Fuzzy 
lassi�
ation sytems based on fuzzy logi
 are 
apable of dealing with 
og-

nitive un
ertainties su
h as the vagueness and ambiguity involved in 
lassi�
ation

problems. In a fuzzy 
lassi�
ation system, a 
ase or an obje
t 
an be 
lassifed by

applying (mainly) a set of fuzzy rules based on the linguisti
 values of its attributes.

GAs are used in a fuzzy 
lassi�
ation system for learning fuzzy rules, membership

fun
tions, fuzzy partitions, et
.

Geneti
 fuzzy rule based 
ontrol systems. Fuzzy rule based systems have been

shown to be an important tool for modelling 
omplex systems in whi
h, due to the


omplexity or the impre
ision, 
lassi
al tools are unsu

essful.

GAs have demonstrated to be a powerful tool for automating the de�nition of

the Kownledge Base of a Fuzzy Controller sin
e adaptive 
ontrol, learning, and

self-organization may be 
onsidered in a lot of 
ases as optimization or sear
h pro-
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esses. Their adavantages have extended the use of GAs in the development of a

wide range of approa
hes for designing Fuzzy Controllers over the last few years. In

parti
ular, the appli
ation to the design, learning and tuning of KBs has produ
ed

quite promising results. These approa
hes 
an re
eive the general name of Geneti


Fuzzy Systems (GFSs). On other hand, we also must understand the GFSs as the

appli
ation of GAs to any fuzzy system being the fuzzy rule based systems a par-

ti
ular 
ase although the most extended, this is the reason of 
alling this area as

geneti
 fuzzy rule based 
ontrol systems.

3 Con
luding Remarks

After the short des
ription of areas, to point out that the use of fuzzy logi
 te
h-

niques permits GA behaviour to be improved in di�erent ways, as well as emphasize

the potential of GAs in fuzzy environments as a 
exible tool for optimization and

sear
h.

Finally, to mention six referen
es. Two of them are te
hni
al reports that 
olle
t

bibliography on the 
ombination of GAs and FL [1,19℄, the third referen
e is the

paper basis for this summary [20℄, and the last three referen
es, the three edited

books [42,67,70℄, present a 
olle
tion of papers dealing with the topi
.
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Abstra
t

The sear
h 
apabilities and ability for in
orporating a priori knowledge have ex-

tended the use of Geneti
 Algorithms in the development of a wide range of methods

for designing fuzzy systems over the last few years. Systems applying these design

approa
hes have re
eived the general name of Geneti
 Fuzzy Systems.

In this le
ture we fo
us our presentation on geneti
 fuzzy rule-based systems.

Key words: Geneti
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1 Introdu
tion

In a very broad sense, a Fuzzy System (FS) is any Fuzzy Logi
-Based System, where

Fuzzy Logi
 
an be used either as the basis for the representation of di�erent forms of

system knowledge, or to model the intera
tions and relationships among the system

variables. FSs have proven to be an important tool for modeling 
omplex systems,

in whi
h, due to the 
omplexity or the impre
ision, 
lassi
al tools are unsu

essful

([66,85℄).

Re
ently, a great number of publi
ations explore the use of Geneti
 Algorithms

(GAs) for designing fuzzy systems. These approa
hes re
eive the general name of

Geneti
 Fuzzy Systems (GFSs).

The automati
 de�nition of an FS 
an be 
onsidered in many 
ases as an opti-

mization or sear
h pro
ess. GAs are the best known and most widely used global

sear
h te
hnique with an ability to explore and exploit a given operating spa
e us-

ing available performan
e measures. GAs are known to be 
apable of �nding near

optimal solutions in 
omplex sear
h spa
es. A priori knowledge may be in the form

of linguisti
 variables, fuzzy membership fun
tion parameters, fuzzy rules, number

of rules, et
. The generi
 
ode stru
ture and independent performan
e features of



GAs make them suitable 
andidates for in
orporating a priori knowledge. These

advantages have extended the use of GAs in the development of a wide range of

approa
hes for designing fuzzy systems over the last few years.

We shall 
enter this le
ture on Fuzzy Rule Based Systems (FRBSs), [2℄, the most

extended FS model to whi
h the most su

essful appli
ation of FSs belong, the

fuzzy logi
 
ontrollers (FLCs), whi
h have been and are used in many real-world


ontrol problems ([23℄). As is well known, the Knowledge Base (KB) of an FRBS

is 
omprised of two 
omponents, a Data Base (DB), 
ontaining the de�nitions of

the s
aling fa
tors and the membership fun
tions of the fuzzy sets spe
ifying the

meaning of the linguisti
 terms, and a Rule Base (RB), 
onstituted by the 
olle
tion

of fuzzy rules. GAs may be applied to adapting/learning the DB and/or the RB

of an FRBS. This tutorial will summarize and analyze the GFSs, paying a spe
ial

attention to FRBSs in
orporating tuning/learning through GAs.

This le
ture presents some 
hara
teristi
s of geneti
 fuzzy rule based systems.

2 Geneti
 Fuzzy Rule Based Systems

The idea of a Geneti
 FRBS is that of a geneti
 FRBS design pro
ess whi
h in-


orporates geneti
 te
hniques to a
hieve the automati
 generation or modi�
ation

of its KB (or a part of it). This generation or modi�
ation usually involves a tun-

ing/learning pro
ess, and 
onsequently this pro
ess plays a 
entral role in GFSs.

The obje
tive of this tuning/learning pro
ess is optimization, i.e., maximizing or

minimizing a 
ertain fun
tion representing or des
ribing the behavior of the system.

It is possible to de�ne two di�erent groups of optimization problems in FRBSs. The

�rst group 
ontains those problems where optimization only involves the behavior

of the FRBS, while the se
ond one refers to those problems where optimization

involves the global behavior of the FRBS and an additional system. The �rst group


ontains problems su
h as modeling, 
lassi�
ation, predi
tion and, in general, iden-

ti�
ation problems. In this 
ase, the optimization pro
ess sear
hes for an FRBS

able to reprodu
e the behavior of a 
ertain target system. The most representative

problem in the se
ond group is 
ontrol, where the obje
tive is to add an FRBS to

a 
ontrolled system in order to obtain a 
ertain overall behavior. Next, we analyze

some aspe
ts of the Geneti
 FRBSs.

2.1 Obtaining the Knowledge for an FRBS

As a �rst step, it is interesting to distinguish between tuning and learning problems.

In tuning problems, a prede�ned RB is used and the obje
tive is to �nd a set

of parameters de�ning the DB. In learning problems, a more elaborate pro
ess
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in
luding the modi�
ation of the RB is performed. We 
an distinguish between

three di�erent groups of GFSs depending on the KB 
omponents in
luded in the

geneti
 learning pro
ess.

For an extensive bibliography see [19℄ (se
tion 3.13), some approa
hes may be found

in [32℄.

Geneti
 tuning of the DB. The tuning of the s
aling fun
tions and fuzzy mem-

bership fun
tions is an important task in the design of fuzzy systems. It is possible

to parameterize the s
aling fun
tions or the membership fun
tions and adapt them

using GAs to deal with their parameters a

ording to a �tness fun
tion. As re-

gards to the tuning of membership fun
tions, several methods have been proposed

in order to de�ne the DB using GAs. Ea
h 
hromosome involved in the evolution

pro
ess represents di�erent DB de�nitions, i.e., ea
h 
hromosome 
ontains a 
oding

of the whole set of membership fun
tions giving meaning to the linguisti
 terms.

Two possibilities 
an be 
onsidered depending on whether the fuzzy model nature is

des
riptive or approximate, either to 
ode the fuzzy partition maintaining a linguis-

ti
 des
ription of the system, or to 
ode the rule membership fun
tions tuning the

parameters of a label lo
ally for every rule, thereby obtaining a fuzzy approximate

model.

Geneti
 learning of the RB. All the methods belonging to this family involve the

existen
e of a prede�ned 
olle
tion of fuzzy membership fun
tions giving meaning

to the linguisti
 labels 
ontained in the rules, a DB. On this basis GAs are applied

to obtain a suitable rule base, using 
hromosomes that 
ode single rules or 
omplete

rule bases.

Geneti
 learning of the KB. There are many approa
hes for the geneti
 learn-

ing of a 
omplete KB (RB and DB). We may �nd approa
hes presenting variable


hromosome lengths, others 
oding a �xed number of rules and their membership

fun
tions, several working with 
hromosomes en
oding single 
ontrol rules instead

of a 
omplete KBs, et
.

2.2 The Keys to the Tuning/Learning Pro
ess

Regardless of the kind of optimization problem, i.e., given a system to be mod-

eled/
ontrolled (hereafter we use this notation), the involved tuning/learning pro-


ess will be based on evolution. Three points are the keys to an evolutionary based

tuning/learning pro
ess. These three points are: the population of potential solu-

tions, the set of evolution operators and the performan
e index.

The population of potential solutions. The learning pro
ess works on a popu-

lation of potential solutions to the problem. In this 
ase, the potential solution is an

FRBS. From this point of view, the learning pro
ess will work on a population of
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FRBSs, but 
onsidering that all the systems use an identi
al pro
essing stru
ture,

the individuals in the population will be redu
ed to DB/RB or KBs. In some 
ases

the pro
ess starts o� with an initial population obtained from available knowledge,

while in other 
ases the initial population is randomly generated.

The set of evolution operators. The se
ond question is the de�nition of a set

of evolution operators that sear
h for new and/or better potential solutions (KBs).

The sear
h reveals two di�erent aspe
ts: the exploitation of the best solution and

the exploration of the sear
h spa
e. The su

ess of evolutionary learning is spe
i�-


ally related to obtaining an adequate balan
e between exploration and exploitation,

that �nally depends on the sele
ted set of evolution operators. The new potential

solutions are obtained by applying the evolution operators to the members of the

population of knowledge bases, ea
h one of these members is referred to as an indi-

vidual in the population. The evolution operators, that work with a 
ode (
alled a


hromosome) representing the KB, are basi
ally three: sele
tion, 
rossover and mu-

tation. Sin
e these evolution operators work in a 
oded representation of the KBs, a


ertain 
ompatibility between the operators and the stru
ture of the 
hromosomes is

required. This 
ompatibility is stated in two di�erent ways: work with 
hromosomes


oded as binary strings (adapting the problem solutions to binary 
ode) using a set

of 
lassi
al geneti
 operators, or adapt the operators to obtain 
ompatible evolution

operators using 
hromosomes with a non-binary 
ode. Consequently, the question

of de�ning a set of evolution operators involves de�ning a 
ompatible 
ouple of

evolution operators and 
hromosome 
oding.

The performan
e index. Finally, the third question is that of designing an eval-

uation system 
apable of generating an appropriate performan
e index related to

ea
h individual in the population, in su
h a way that a better solution will obtain

a higher performan
e index. This performan
e index will drive the optimization

pro
ess.

In identi�
ation problems, the performan
e index will usually be based on error

measures that 
hara
terize the di�eren
e between the desired output and the a
-

tual output of the system. In 
ontrol problems there are two di�erent sour
es of

information to be used when de�ning the performan
e index: information des
rib-

ing the desired behavior of the 
ontrolled system, or des
ribing the desired behavior

of the 
ontroller (FRBS) itself. The se
ond situation is 
losely related to identi�
a-

tion problems. The de�nition of a performan
e index is usually more 
omplex for

the �rst situation, where the obje
tive is to �nd a 
ontroller that gives the desired

behavior in the 
ontrolled system.

The pro
ess. Summarizing the points that 
hara
terize a spe
i�
 learning pro-


ess, these are: the initial population of solutions (obtained randomly or from some

initial knowledge), the 
oding s
heme for KBs (
hromosomes), the set of evolution

operators and the evaluation fun
tion. The initial population and the evaluation

fun
tion are related to the spe
i�
 problem while the 
oding s
heme and the evolu-

18



tion operators 
ould be generi
. In addition to these four points, ea
h evolutionary

learning pro
ess is 
hara
terized by a set of parameters su
h as the dimension of

the population (�xed or variable), the parameters regulating the a
tivity of the op-

erators or even theirs e�e
t, and the parameters or 
onditions de�ning the end of

the pro
ess or the time when a qualitative 
hange in the pro
ess o

urs.

2.3 The Cooperation vs. Competition Problem

A GFS 
ombines the main aspe
ts of the system to be obtained, an FS, and the

design te
hnique used to obtain it, a GA, with the aim of improving as far as possible

the a

ura
y of the �nal FS generated.

One of the most interesting features of an FS is the interpolative reasoning it de-

velops. This 
hara
teristi
 plays a key role in the high performan
e of FSs and is

a 
onsequen
e of the 
ooperation between the fuzzy rules 
omposing the KB. As is

known, the output obtained from an FS is not usually due to a single fuzzy rule but

to the 
ooperative a
tion of several fuzzy rules that have been �red be
ause they

mat
h the input to the system to some degree.

On the other hand, the main feature of a GA is the 
ompetition between members

of the population representing possible solutions to the problem being solved. In this


ase, this 
hara
teristi
 is due to the me
hanisms of natural sele
tion on whi
h the

GA is based.

Therefore, sin
e a GFS 
ombines both aforementioned features, it works by indu
ing


ompetition to get the best possible 
ooperation. This seems to be a very interesting

way to solve the problem of designing an FS, be
ause the di�erent members of

the population 
ompete with one another to provide a �nal solution presenting the

best 
ooperation between the fuzzy rules 
omposing it. The problem is to obtain

the best possible way to put this way of working into e�e
t. This is referred to

as 
ooperation vs. 
ompetition problem (CCP) ([10℄). The diÆ
ulty of solving the

introdu
ed problem depends dire
tly on the geneti
 learning approa
h followed by

the GFS (Mi
higan, Pittsburgh or IRL approa
hes). Below we brie
y analyze them.

Mi
higan approa
h. It is diÆ
ult to solve the CCP when working with the Mi
hi-

gan approa
h. In this 
ase, the evolution is performed at the level of fuzzy rules

instead of at the level of KBs and it is not easy to obtain an adequate 
ooperation

between fuzzy rules that are 
ompeting with one another. To do this, we need a

�tness fun
tion able to measure both the goodness of a single fuzzy rule and the

quality of its 
ooperation with the other fuzzy rules in the population to give the

best a
tion as output. As mentioned in [10℄, the design of a �tness fun
tion of this

kind is not an easy task.

Pittsburgh approa
h. This approa
h is able to solve adequately the CCP. When
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using this approa
h, the GFS evolves populations of KBs and the �tness fun
tion

asso
iated to ea
h individual is 
omputed taking into a

ount the real a
tion that

the FS en
oded into the 
hromosome should give as output when it re
eives a 
on-


rete input. Thus, ea
h time an individual is evaluated, the 
ooperation between the

fuzzy rules 
omposing the KB is measured, so the GFS is able to evolve adequately

the population to obtain the FS presenting the best possible 
ooperation between

the fuzzy rules 
omposing its KB. Unfortunately, this approa
h presents the draw-

ba
k of having to deal with very large sear
h spa
es, whi
h makes it diÆ
ult to

�nd optimal solutions. This drawba
k is usual when designing GFSs belonging to

the third family, i.e., when the generation of the whole KB is 
onsidered in the

geneti
 learning pro
ess. In this 
ase, a large quantity of KB parameters have to

be in
luded in the geneti
 representation, whi
h therefore be
omes larger. This fa
t

will be more pronoun
ed if an approximate fuzzy model is 
onsidered, the use of

di�erent membership fun
tion de�nitions for ea
h rule makes the number of KB

parameters in
rease, and then the sear
h spa
e be
omes more 
omplex, making the

problem 
omputationally hard.

IRL approa
h. Finally, GFSs based on the IRL approa
h try to solve the CCP

at the same time redu
ing the sear
h spa
e by en
oding a single fuzzy rule in

ea
h 
hromosome. To put this into e�e
t, these pro
esses follow the usual problem

partitioning working way and divide the geneti
 learning pro
ess into, at least, two

stages. Therefore, the CCP is solved in two steps a
ting at two di�erent levels, with

the 
ompetition between fuzzy rules in the �rst one, the geneti
 generation stage,

and with the 
ooperation between these generated fuzzy rules in the se
ond one,

the post-pro
essing stage.

3 Con
luding Remarks

In this le
ture we have introdu
ed the GFSs, presenting the basi
 keys to the tun-

ing/learning pro
esses and the problem of the 
ooperation vs. 
ompetition in the

di�erent learning approa
hes.
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Abstra
t

The tuning of the membership fun
tions is an important task in the design of

a fuzzy system. Geneti
 Algorithms are used for the optimization of membership

fun
tions and the s
aling fun
tions. This le
ture introdu
es the use of Geneti
 Al-

gorithms in the tuning of the fuzzy systems.
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1 Introdu
tion

The tuning of the s
aling fun
tions and fuzzy membership fun
tions is an impor-

tant task in the design of fuzzy systems. It is possible to parameterize the s
aling

fun
tions or the membership fun
tions and adapt them using Geneti
 Algorithms

to deal with their parameters a

ording to a �tness fun
tion.

As regards to the tuning of membership fun
tions, several methods have been pro-

posed in order to de�ne the Data Base (DB) using GAs. Ea
h 
hromosome involved

in the evolution pro
ess represents di�erent DB de�nitions, i.e., ea
h 
hromosome


ontains a 
oding of the whole set of membership fun
tions giving meaning to the

linguisti
 terms. Two possibilities 
an be 
onsidered depending on whether the

fuzzy model nature is des
riptive or approximate, either to 
ode the fuzzy partition

maintaining a linguisti
 des
ription of the system, or to 
ode the rule membership

fun
tions tuning the parameters of a label lo
ally for every rule, thereby obtaining

a fuzzy approximate model.

In this le
ture we analyze the use of GAs for the tuning of DBs a

ording to the two

metioned areas, the adaptation of 
ontexts using s
aling fun
tions and the tuning

of membership fun
tions, we shall present brie
y them.



2 Adapting the Context

The use of s
aling fun
tions that are applied to the input and output variables of

an FRBS, allows us to work with normalized universes of dis
ourse where the fuzzy

membership fun
tions are de�ned. These s
aling fun
tions 
ould be interpreted as

gains asso
iated with the variables (from a 
ontrol engineering point of view) or

as 
ontext information that translates relative semanti
s into absolute ones (from

a knowledge engineering point of view). If using s
aling fun
tions, it is possible

to �x them or to parameterize the s
aling fun
tions and adapt them. Linear and

non-linear 
ontexts have been used.

Linear 
ontext. It is the simplest s
aling. The parameterized fun
tion is de�ned

by means of two parameters (one, if used as a s
aling fa
tor). The e�e
t of s
aling

is that of linearly mapping the real interval [a,b℄ into a referen
e interval (e.g.,

[0,1℄). The use of a s
aling fa
tor maps the interval [-a,a℄ in a symmetri
al referen
e

interval (e.g., [-1,1℄). This kind of 
ontext is the most broadly applied one. Geneti


te
hniques have been applied to adapting the parameters de�ning the s
aling fa
tors

([62℄) and linear s
aling fun
tions ([59℄).

Nonlinear 
ontext. The main disadvantage of linear s
aling is the �xed relative

distribution of the membership fun
tions (uniformly distributed or not) on
e they

have been generated. To solve this problem nonlinear s
aling is used allowing us to

obtain a modi�ed relative distribution and a 
hange in the shape of the member-

ship fun
tions. The de�nition of parameterized nonlinear s
aling fun
tions is more


omplex than in the linear 
ase and a larger number of parameters are needed. The

pro
ess a
tually requires two steps: previous s
aling (linear) and nonlinear map-

ping. Parameterized potential ([56℄) and sigmoidal ([38℄) fun
tions have been used

when applying GAs to adapt the nonlinear 
ontext. Usually, the parameters (real

numbers) 
onstitute the genes of the 
hromosomes without binary representation.

Figure 1 shows a normalized fuzzy partition (top), a nonlinear adaption with lower

granularity for middle or for extreme values (
enter) and lower granularity for lowest

or for highest values (bottom).

3 Tuning the Membership Fun
tions

Another element of the KB is the set of membership fun
tions. This is a se
ond point

where GAs 
ould be applied with a tuning purpose. As in the previous 
ase of s
aling

fun
tions, the main idea is the de�nition of parameterized fun
tions and the subse-

quent adaptation of parameters. Some approa
hes are found to be in [8,11,40,50,76℄.
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Fig. 1. Nonlinear 
ontexts adaption
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The di�erent proposals di�er in the 
oding s
heme and the management of the so-

lutions (�tness fun
tions, ...).

3.1 Shape of the Membership Fun
tions

Two main groups of parameterized membership fun
tions have been proposed and

applied: pie
ewise linear fun
tions and di�erentiable fun
tions.

Pie
ewise linear fun
tions. The most broadly used parameterized member-

ship fun
tions in the �eld of GFSs are triangles, in some 
ases these are isos
eles

([14,24,49,64℄) and other times they are irregular ([53℄). A se
ond possibility are

trapezoidal membership fun
tions ([51℄).

Ea
h parameter of the fun
tion 
onstitutes a gene of the 
hromosome that may

be a binary 
ode representing the parameter ([14,49,51,53℄) or a real number (the

parameter itself, [24,40,64℄).

Di�erentiable fun
tions. Gaussian, bell and sigmoidal are examples of param-

eterized di�erentiable fun
tions. These membership fun
tions have been broadly

applied in di�erent fuzzy-neural systems ([57℄) but radial fun
tions ([26℄) and Gaus-

sian fun
tions ([54,71℄) are used in GFSs too. To translate the parameters of the

fun
tion into geneti
 information a binary 
ode is used in [71,26℄ and the 
oeÆ
ient

itself in [54℄.

3.2 S
ope of the Semanti
s

The geneti
 tuning pro
ess of membership fun
tions is based on two variants,

depending on the fuzzy model nature, whether approximate ([40℄) or des
riptive

([18,50℄).

The des
riptive fuzzy model is essentially a qualitative expression of the system.

A KB in whi
h the fuzzy sets giving meaning (semanti
) to the linguisti
 labels

are uniformly de�ned for all rules in
luded in the RB. It 
onstitutes a des
riptive

approa
h sin
e the linguisti
 labels take the same meaning for all the fuzzy rules


ontained in the RB. The system uses a global semanti
s.

In the approximate fuzzy model a KB is 
onsidered for whi
h ea
h fuzzy rule presents

its own meaning, i. e., the linguisti
 variables involved in the rules do not take as

their values any linguisti
 label from a global term set. In this 
ase, the linguisti


variables be
ome fuzzy variables. The system applies lo
al semanti
s.
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NSNM ZR PS PM PB

X Y

NB NM NS ZR PS PM PB

R1: If X is NB then Y is NB

NB

R2: If X is NM then Y is NM
R3: If X is NS then Y is NS
R4: If X is ZR then Y is ZR

a) Descriptive Knowledge Base

Xl Xr Yl Yr

R5: If X is PS then Y is PS
R6: If X is PM then Y is PM
R7: If X is PB then Y is PB

R1: If X is
R2: If X is
R3: If X is
R4: If X is

then Y is 
then Y is 
then Y is 
then Y is 

b) Approximate Knowledge Base

Fig. 2. Des
riptive versus Approximate fuzzy models

Figure 2 and the examples des
ribed in the following paragraphs illustrate these

two variants, and their parti
ular aspe
ts re
e
ted in the 
oding s
heme.

3.3 The Approximate Geneti
 Tuning Pro
ess

As mentioned earlier, ea
h 
hromosome forming the geneti
 population will en
ode

a 
omplete KB. More 
on
retely, all of them en
ode the RB, R, and the di�eren
e

between them are the fuzzy rule membership fun
tions, i. e., the DB de�nition.

Taking into a

ount a parametri
 representation with triangular-shaped member-

ship fun
tions based on a 3-tuple of real values, ea
h rule

R

i

: IF x

1

is A

i1

and ... and x

n

is A

in

THEN y is B

i

,

of a 
ertain KB (KB

l

), is en
oded in a pie
e of 
hromosome C

li

:

C

li

= (a

i1

; b

i1

; 


i1

; : : : ; a

in

; b

in

; 


in

; a

i

; b

i

; 


i

)

where A

ij

,B

i

have the parametri
 representation (a

ij

; b

ij

; 


ij

), (a

i

; b

i

; 


i

), i = 1; : : : ; m

(m represents the number of rules), j = 1; : : : ; n (n is the number of input variables).
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Therefore the 
omplete RB with its asso
iated DB is represented by a 
omplete


hromosome C

l

:

C

l

= C

l1

C

l2

::: C

lm

This 
hromosome may be a binary or a real 
oded individual.

3.4 The Des
riptive Geneti
 Ttuning Pro
ess

In this se
ond geneti
 tuning pro
ess ea
h 
hromosome en
odes a di�erent DB

de�nition based on the fuzzy domain partitions. A primary fuzzy partition is rep-

resented as an array 
omposed by 3 � N real values, with N being the number of

terms forming the linguisti
 variable term set. The 
omplete DB for a problem, in

whi
h m linguisti
 variables are involved, is en
oded into a �xed length real 
oded


hromosome C

j

built up by joining the partial representations of ea
h one of the

variable fuzzy partitions,

C

ji

= (a

i1

; b

i1

; 


i1

; : : : ; a

iN

i

; b

iN

i

; 


iN

i

)

C

j

= C

j1

C

j2

::: C

jm

where C

ji

represents the fuzzy partition 
orresponding to the i� th variable.

4 Con
luding Remarks

This le
ture have presented the use of GAs for tuning fuzzy systems. Finally, to

point out that the geneti
 tuning pro
ess may be 
ombined with the fuzzy rule

learning pro
ess for improving the learning 
apabilities of them.
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Learning with Geneti
 Fuzzy Systems:

An Appli
ation

Ulri
h Bodenhofer

Fuzzy Logi
 Laboratorium Linz-Hagenberg, Dept. of Mathemati
s

University of Linz, A-4040 Linz, Austria

E-mail: ulri
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Abstra
t

In this part, an appli
ation of geneti
 tuning of a fuzzy system is presented. First,

a fuzzy method for a 
ertain kind of pixel 
lassi�
ation is introdu
ed. In the se
ond

part, geneti
 methods for tuning the membership fun
tions of the 
lassi�
ation

system are dis
ussed and 
ompared with other probilisti
 optimization methods.

Key words: Hybrid Geneti
 Algorithm, Pixel 
lassi�
ation, Tuning Problem.

1 Introdu
tion

Pixel 
lassi�
ation is an important prepro
essing task in many image pro
essing

appli
ations. In this proje
t, where the FLLL developed an inspe
tion system for a

silk-s
reen printing pro
ess, it was ne
essary to extra
t regions from the print image

whi
h had to be 
he
ked by applying di�erent 
riteria:

(1) Homogeneous area: uniformly 
olored area;

(2) Edge area: pixels within or 
lose to visually signi�
ant edges;

(3) Halftone: area whi
h looks rather homogeneous from a 
ertain distan
e, al-

though it is a
tually obtained by printing small raster dots of two or more


olors;

(4) Pi
ture: rastered area with high, 
haoti
 deviations, in parti
ular small high-


ontrasted details.

The magni�
ations in Figure 3 show how these areas typi
ally look like at the pixel

level. Of 
ourse, transitions between two or more of these areas are possible, hen
e

a fuzzy model is re
ommendable.



Homogeneous Edge Halftone Pi
ture

Fig. 3. Magni�
ations of typi
al representatives of the four types

6

-

6

-

6

-

6

-

0 0 08 8 8 0 8

Homogeneous Edge Halftone Picture

Fig. 4. Typi
al gray value 
urves

If we plot one 
olor extra
tion of the eight neighbor pixels with respe
t to a 
lo
kwise

enumeration of the eight neighbors, we typi
ally get 
urves like those shown in

Figure 4. Seemingly, the size of the deviations, e.g., by 
omputing the varian
e,


an be used to distinguish between homogeneous areas, halftones and the other two

types. On the other hand, a method whi
h judges the width and 
onne
tedness of

the peaks should be used in order to separate edge areas from pi
tures. A simple

but e�e
tive method for this purpose is the so-
alled dis
repan
y norm, for whi
h

there are already other appli
ations in pattern re
ognition (
f. [61℄):

k~xk

D

= max

1�����n

�

�

�

�

�

�

�

X

i=�

x

i

�

�

�

�

�

�

(1)

A more detailed analysis of the dis
repan
y norm, espe
ially how it 
an be 
omputed

in linear time, 
an be found in [3℄.

2 The Fuzzy System

For ea
h pixel (i; j) we 
onsider its nearest eight neighbors enumerated as des
ribed

above, whi
h yields three ve
tors of gray values with 8 entries | one for ea
h 
olor

extra
tion. As already mentioned, the sum of the varian
es of the three ve
tors 
an

be taken as a measure for the size of the deviations in the neighborhood of the pixel.

Let us denote this value with v(i; j). On the other hand, the sum of the dis
repan
y

norms of the ve
tors, where we subtra
t ea
h entry by the mean value of all entries,


an be used as a 
riterion whether the pixel is within or 
lose to a visually signi�
ant

edge.

The fuzzy de
ision is then 
arried out for ea
h pixel (i; j) independently: First of all,
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Fig. 5. The linguisti
 variables v and e

the 
hara
teristi
 values v(i; j) and e(i; j) are 
omputed. These values are taken as

the input of a small fuzzy system with two inputs and one output. Let us denote the

linguisti
 variables on the input side with v and e. Sin
e the position of the pixel is

of no relevan
e for the de
ision in this 
on
rete appli
ation, indi
es 
an be omitted

here. The input spa
e of the variable v is represented by three fuzzy sets whi
h are

labeled \low", \med", and \high". Analogously, the input spa
e of the variable e is

represented by two fuzzy sets, whi
h are labeled \low" and \high". Experiments have

shown that [0; 600℄ and [0; 200℄ are appropriate universes of dis
ourse for v and e,

respe
tively. For the de
omposition of the input domains simple Ruspini partitions

(see [69℄) 
onsisting of trapezoidal fuzzy subsets were 
hosen. Figure 5 shows how

these partitions typi
ally look like.

The output spa
e is a set of linguisti
 labels, namely \Ho", \Ed", \Ha", and \Pi",

whi
h are, of 
ourse, just abbreviations of the names of the four types. Let us denote

the output variable itself with t. Finally, the output of the system for ea
h pixel

(i; j) is a fuzzy subset of f\Ho"; \Ed"; \Ha"; \Pi"g. This output set is 
omputed by

pro
essing the values v(i; j) and e(i; j) through a rulebase with �ve rules, whi
h


over all the possible 
ombinations:

IF v is low THEN t = Ho

IF v is med AND e is high THEN t = Ed

IF v is high AND e is high THEN t = Ed

IF v is med AND e is low THEN t = Ha

IF v is high AND e is low THEN t = Pi

In this appli
ation, ordinary Mamdani min/max-inferen
e is used. Finally, the de-

gree to whi
h \Ho", \Ed", \Ha", or \Pi" belong to the output set 
an be regarded

as the degree to whi
h the parti
ular pixel belongs to area Homogeneous, Edge,

Halftone, or Pi
ture, respe
tively.

For details on the integration of the 
lassi�
ation algorithm into the printing pro
ess

and information about the performan
e and robustness of the algorithm see [4℄.

3 The Optimization of the Classi�
ation System

The behavior of the fuzzy system depends on six parameters, v

1

; : : : ; v

4

, e

1

, and

e

2

, whi
h determine the shape of the two fuzzy partitions. In the �rst step, these
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parameters were tuned manually. Of 
ourse, we have also taken into 
onsideration

to use (semi)automati
 methods for �nding the optimal parameters.

Our optimization pro
edure 
onsists of a painting program whi
h o�ers tools, su
h

as a pen
il, a rubber, a �lling algorithm, and many more, whi
h 
an be used to

make a 
lassi�
ation of a given representative image by hand. Then an optimization

algorithm 
an be used to �nd that 
on�guration of parameters whi
h yields the

maximal degree of mat
hing between the desired result and the output a
tually

obtained by the 
lassi�
ation system.

Assume that we have N sample pixels for whi
h the input values (~v

k

; ~e

k

)

k2f1;:::;Ng

are 
omputed and that we already have a referen
e 
lassi�
ation of these pixels

~

t(k) = (

~

t

Ho

(k);

~

t

Ed

(k);

~

t

Ha

(k);

~

t

Pi

(k)), where k 2 f1; : : : ; Ng. Sin
e, as soon as the

values ~v and ~e are 
omputed, the geometry of the image plays no role anymore,

we 
an swit
h to one-dimensional indi
es here. Then one possibility to de�ne the

performan
e (�tness) of the fuzzy system would be

1

N

N

X

k=1

d(t(k);

~

t(k)); (2)

where t(k) = (t

Ho

(k); t

Ed

(k); t

Ha

(k); t

Pi

(k)) are the 
lassi�
ations a
tually obtained

by the fuzzy system for the input pairs (~v

k

; ~e

k

) with respe
t to the parameters v

1

,

v

2

, v

3

, v

4

, e

1

, and e

2

; d(:; :) is an arbitrary (pseudo-)metri
 on [0; 1℄

4

. The problem of

this brute for
e approa
h is that the output of the fuzzy system has to be evaluated

for ea
h pair (v

k

; e

k

), even if many of these values are similar or even equal. In

order to keep the amount of 
omputation low, we \simpli�ed" the pro
edure by a

\
lustering pro
ess" as follows:

We 
hoose a partition (P

1

; : : : ; P

K

) of the input spa
e, where (n

1

; : : : ; n

K

) are the

numbers of sample points fp

i

1

; : : : ; p

i

n

i

g ea
h part 
ontains. Then the desired 
lassi-

�
ation of a 
ertain part (
luster) 
an be de�ned as

~

t

X

(P

i

) =

1

n

i

n

i

X

j=1

~

t

X

(p

i

j

); (3)

where X 2 fHo;Ed;Ha;Pig.

If � is a fun
tion whi
h maps ea
h 
luster to a representative value (e.g., its 
enter

of gravity), we 
an de�ne the �tness (obje
tive) fun
tion as

100

N

K

X

i=1

n

i

�

0

�

1�

1

2

�

X

X2fHo;Ed;Ha;Pig

�

~

t

X

(P

i

)� t

X

(�(P

i

))

�

2

1

A

; (4)

If the number of parts is 
hosen moderately (e.g. a re
tangular 64 � 32 net whi
h

30



0 50 100 150 200

83

83.1

83.2

83.3

83.4

83.5

0 20 40 60 80 100 120 140

82

83

84

85

86

Fig. 6. Cross se
tions of a fun
tion of type (4)

yields K = 2048) the evaluation of the �tness fun
tion takes 
onsiderably less time

than a dire
t appli
ation of formula (2).

Note that in (4) the �tness is already transformed su
h that it 
an be regarded as

a degree of mat
hing between the desired and the a
tually obtained 
lassi�
ation

measured in per
ent. This value has then to be maximized.

In fa
t, �tness fun
tions of this type are, in almost all 
ases, 
ontinuous but not

di�erentiable and have a lot of lo
al maxima. Figure 6 shows 
ross se
tions of su
h

fun
tions. Therefore, it is more reasonable rather to use probabilisti
 optimization

algorithms than to apply 
ontinuous optimization methods, whi
h make ex
essive

use of derivatives. This, �rst of all, requires a (binary) 
oding of the parameters.

We de
ided to use a 
oding whi
h maps the parameters v

1

, v

2

, v

3

, v

4

, e

1

, and e

2

to a string of six 8-bit integers s

1

; : : : ; s

6

whi
h range from 0 to 255. The following

table shows how the en
oding and de
oding is done:

s

1

= v

1

v

1

= s

1

s

2

= v

2

� v

1

v

2

= s

1

+ s

2

s

3

= v

3

� v

2

v

3

= s

1

+ s

2

+ s

3

s

4

= v

4

� v

3

v

4

= s

1

+ s

2

+ s

3

+ s

4

s

5

= e

1

e

1

= s

5

s

6

= e

2

� e

1

e

2

= s

5

+ s

6

We �rst tried a standard GA (see [31℄ or [45℄) with proportional (standard roulette

wheel) sele
tion, one-point 
rossing over with uniform sele
tion of the 
rossing point,

and bitwise mutation. The size of the population m was 
onstant, the length of the

strings was, as shown above, 48.

In order to 
ompare the performan
e of the GAs with other well-known probabilisti


optimization methods, we additionally 
onsidered the following methods:

Hill 
limbing: always moves to the best-�tted neighbor of the 
urrent string until

a lo
al maximum is rea
hed; the initial string is generated randomly.

Simulated annealing: powerful, often used probabilisti
 method whi
h is based

on the imitation of the solidi�
ation of a 
rystal under slowly de
reasing temper-

ature (see [81℄ for a detailed des
ription)

Ea
h one of these methods requires only a few binary operations in ea
h step. Most
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f

max

f

min

�

f �

f

#

Hill Climbing 94.3659 89.6629 93.5536 1.106 862

Simulated Annealing 94.3648 89.6625 93.5639 1.390 1510

Improved Simulated
Annealing

94.3773 93.7056 94.2697 0.229 21968

GA 94.3760 93.5927 94.2485 0.218 9910

Hybrid GA (elite) 94.3760 93.6299 94.2775 0.207 7460

Hybrid GA (random) 94.3776 94.3362 94.3693 0.009 18631

90.0000 94.2006 94.2759 94.3206 94.3526 94.3776
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� Hill Climbing / Genetic Algorithm

� Simulated Annealing � Hybrid GA (elite)

� Improved Simulated Annealing � Hybrid GA (random)

Fig. 7. A 
omparison of the results of various probabilisti
 optimization methods

of the time is 
onsumed by the evaluation of the �tness fun
tion. So, it is near at

hand to take the number of evaluations as a measure for the speed of the algorithms.

Results All these algorithms are probabilisti
 methods, therefore their results

are not well-determined, they 
an di�er randomly within 
ertain boundaries. In

order to get more information about their average behavior, we tried out ea
h one

of them 20 times for one 
ertain problem. For the given problem we found out

that the maximal degree of mat
hing between the referen
e 
lassi�
ation and the


lassi�
ation a
tually obtained by the fuzzy system was 94.3776%. In the table in

Figure 7, f

max

is the �tness of the best and f

min

is the �tness of the worst solution;

�

f denotes the average �tness of the 20 solutions, �

f

denotes the standard deviation

of the �tness values of the 20 solutions, and # stands for the average number of

evaluations of the �tness fun
tion whi
h was ne
essary to rea
h the solution.

The hill 
limbing method with a random sele
tion of the initial string 
onverged

rather qui
kly. Unfortunately, it was always trapped in a lo
al maximum, but never

rea
hed the global solution (at least in these 20 trials).

The simulated annealing algorithm showed similar behavior at the very beginning.

After tuning the parameters involved, the performan
e improved remarkably.

The raw geneti
 algorithm was implemented with a population size of 20; the 
ross-

ing over probability was set to 0:15, the mutation probability was 0:005 for ea
h

byte. It behaved pretty well from the beginning, but it seemed inferior to the im-

proved simulated annealing.

Next, we tried a hybrid GA, where we kept the geneti
 operations and parameters of

the raw GA, but every 50th generation the best-�tted individual was taken as initial

string for a hill 
limbing method. Although the performan
e in
reased slightly, the

hybrid method still seemed to be worse than the improved simulated annealing

algorithm. The reason that the e�e
ts of this modi�
ation were not so dramati


might be that the probability is rather high that the best individual is already a

lo
al maximum. So we modi�ed the pro
edure again. This time a randomly 
hosen

individual of every 25th generation was used as initial solution of the hill 
limbing

method. The result ex
eeded the expe
tations by far. The algorithmwas, in all 
ases,
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nearer to the global solution than the improved simulated annealing (
ompare with

table in Figure 7), but, surprisingly, suÆ
ed with less invo
ations of the �tness

fun
tion. The graph in Figure 7 shows the results graphi
ally. Ea
h line in this

graph 
orresponds to one algorithm. The 
urve shows, for a given �tness value x,

how many of the 20 di�erent solutions had a �tness higher or equal to x. It 
an be

seen easily from this graph that the hybrid GA with random sele
tion led to the best

results. Note that the x-axis is not a linear s
ale in this �gure. It was transformed

in order to make small di�eren
es visible.

4 Con
luding Remarks

In this le
ture we have investigated the suitability of geneti
 algorithms for �nding

the optimal parameters of a fuzzy system, espe
ially if the analyti
al properties of

the obje
tive fun
tion are bad. Moreover, hybridization has been dis
overed as an

enormous potential for improvements of geneti
 algorithms.
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1 Introdu
tion

Re
ently, there has been a growing interest in using Geneti
 Algorithms (GAs) for

ma
hine learning problems, appearing di�erent geneti
 learning approa
hes. One of

them, the Pittsburgh approa
h adopts the view that ea
h individual in a population,

ea
h 
hromosome, en
odes a whole rule sets. Crossover serves to provide a new


ombination of rules and mutation provides new rules. In some 
ases, variable-

length rule bases are used, employing modi�ed geneti
 operators for dealing with

these variable-length and position independent genomes. This model was initially

proposed by Smith in 1980 [74℄.

In this le
ture we shortly des
ribe the use of Geneti
 Fuzzy Systems (GFSs) with

this learning approa
h for learning Rule Bases (RB) and Knowledge Bases (KB) for

Fuzzy Rule Bases Systems (FRBSs).



2 Geneti
 Learning of RB

It is possible to represent the RB of an FRBS with three di�erent representations.

These representations are: relational matrix, de
ision table and list or set of rules.

The Pittsburgh approa
h has been applied to learn rule bases in two di�erent situ-

ations. The �rst situation refers to those systems using a 
omplete rule base repre-

sented by means of a de
ision table or a relational matrix. The se
ond situation is

that of FRBSs, whose RB is represented using a list or set of fuzzy rules.

2.1 Using a Complete RB

A tabular representation guarantees the 
ompleteness of the knowledge of the FRBS

in the sense that the 
overage of the input spa
e (the Cartesian produ
t of universes

of the input variables) is only related to the level of 
overage of ea
h input variable

(the 
orresponding fuzzy partitions), and not to the rules.

De
ision tables. A possible representation for the RB of an FS is a de
ision table.

It is a 
lassi
al representation used in di�erent GFSs. A 
hromosome is obtained

from the de
ision table by going row-wise and 
oding ea
h output fuzzy set as an

integer or any other kind of label. It is possible to in
lude the \no output" de�nition

in a 
ertain position, using a \null" label ([62,78℄).

Relational matri
es. O

asionally GAs are used to modify the fuzzy relational

matrix (R) of a Fuzzy System with one input and one output. The 
hromosome

is obtained by 
on
atenating the m � n elements of R, where m and n are the

number of fuzzy sets asso
iated with the input and output variables respe
tively.

The elements of R that will make up the genes may be represented by binary 
odes

[68℄ or real numbers.

2.2 Using a Partial RB

Neither the relational nor the tabular representations are adaptable to systems with

more than two or three input variables be
ause of the dimension of a 
omplete RB

for these situations. This fa
t stimulated the idea of working with sets of rules.

In a set of rules representation the absen
e of appli
able rules for a 
ertain input

that was perfe
tly 
overed by the fuzzy partitions of individual input variables is

possible. As a 
ounterpart to the loss of 
ompleteness, this representation allows


ompressing several rules with identi
al outputs into a singular rule and this is a

really important question as the dimension of the system grows.

There are many di�erent methods for 
oding the rule base in this kind of evolution-

ary system. The 
ode of the rule base is usually obtained by 
on
atenating rules
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odes.

Rules of �xed length. A �rst approa
h is to represent a rule with a 
ode of

�xed length and position dependent meaning. The 
ode will have as many elements

as the number of variables in the system. A possible 
ontent of these elements is:

a label pointing to a 
ertain fuzzy set in the fuzzy partition of the variable or a

binary string with a bit per fuzzy set in the fuzzy partition of the variable 
oding

the presen
e or absen
e of the fuzzy set in the rule [58℄.

Rules of variable length. Codes with position independent meaning and based

on pairs fvariable, membership fun
tiong (the membership fun
tions is des
ribed

using a label) are used in [43℄.

3 Geneti
 Learning of KB

The simultaneous use as geneti
 material of the DB and the RB of an FRBS has

produ
ed di�erent and interesting results. The most general approa
h is the use of a

set of parameterized membership fun
tions and a list of fuzzy rules that are jointly


oded to generate a 
hromosome, then applying a Pittsburgh-type GA to evolve a

population of su
h 
hromosomes. This kind of GFSs use 
hromosomes 
ontaining

two sub
hromosomes that en
ode separately, but not independently, the DB and

the RB.

It is possible to maintain, at this point, the same division that was stated when

talking about geneti
 learning of RBs with a Pittsburgh approa
h: learning 
omplete

rule bases or partial rule bases.

3.1 Using a Complete RB

In [64℄ the rule base is represented as a fuzzy relation matrix (R), and the GA

modi�es R or the fuzzy membership fun
tions (triangular) or both of them simulta-

neously, on a Fuzzy Logi
 Controller (FLC) with one input and one output variables.

Ea
h gene is a real number. When generating the optimal fuzzy relation matrix this

real number 
orresponds to a fuzzy relation degree whose value is between 0 and

1. The geneti
 string is obtained by 
on
atenating the m � n real numbers that


onstitute R. When �nding simultaneously the optimal rule base and the fuzzy

membership fun
tions, ea
h 
hromosome allo
ates two sub
hromosomes: the genes

of the rule base and the genes of the fuzzy membership fun
tions. Both sub
hro-

mosomes are treated as independent entities as far as 
rossover and mutation are


on
erned but as a single entity as far as reprodu
tion is 
on
erned.

A slightly di�erent approa
h is to use a TSK-type rule base, stru
turing its geneti


36




ode as if it 
ame from a de
ision table. In this 
ase, the 
ontents of the 
ode of a

rule base is an ordered and 
omplete list 
ontaining the 
onsequents of all possible

rules, where the ante
edents are impli
itly de�ned as a fun
tion of the position the


onsequent o

upies in the list.

The fuzzy membership fun
tions 
onstitute a �rst sub
hromosome while the 
oef-

�
ients of the 
onsequents for a TSK fuzzy model 
onstitute the se
ond sub
hro-

mosome. One gene is used to 
ode ea
h 
oeÆ
ient of a TSK-type in [53℄, in [26℄ a

single 
oeÆ
ient is 
onsidered for the output.

3.2 Using a Partial RB

Liska and Melsheimer ([54℄) use a rule base de�ned as a set of a �xed number of

rules, and 
ode ea
h rule with integer numbers that de�ne the membership fun
tion

related with a 
ertain input or output variable that is applied by the rule (member-

ship fun
tions for every variable are ordered). The systems use radial membership

fun
tions 
oded through two real numbers (two genes). The geneti
 string is ob-

tained by 
on
atenating the two genes in ea
h membership fun
tion.

There are many di�erent methods for 
oding the rule base in this kind of evolu-

tionary system. The 
ode of the rule base is usually obtained by 
on
atenating rule


odes. To represent a single rule, it is possible to use a position dependent 
ode

with as many elements as the number of variables of the system. A possible 
ontent

in these elements is: a label pointing to a 
ertain fuzzy set in the fuzzy partition of

the variable ([71℄) or a binary string with a bit per fuzzy set in the fuzzy partition

of the variable ([55℄).

Using an approximate approa
h, [13,14℄ in
lude the de�nition of the membership

fun
tions into the rules, 
oding ea
h rule through the 
orresponding set of member-

ship fun
tions.

4 A Learning Pro
ess of Fuzzy Logi
 Controllers

FLCs represent a parti
ular and widely applied kind of FRBSs. A geneti
 pro
ess

using a Pittsburgh approa
h and working on an FLC may be rewritten as follows

in su
h a situation:

(1) Start with an initial population of solutions that 
onstitutes the �rst generation

(P(0)).

(2) Evaluate P(0):

(a) take ea
h 
hromosome (KB) from the population and introdu
e it into the

FLC,
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(b) apply the FLC to the 
ontrolled system for an adequate evaluation period

(a single 
ontrol 
y
le, several 
ontrol 
y
les or even several times, starting

out from di�erent initial 
onditions) and

(
) evaluate the behavior of the 
ontrolled system by produ
ing a performan
e

index related to the KB.

(3) While the Termination Condition is not met, do

(a) 
reate a new generation (P(t+1)) by applying the evolution operators to

the individuals in P(t),

(b) evaluate P(t+1) and

(
) t = t + 1.

(4) Stop.

5 An Example of GFS with Pittsburgh Approa
h

This se
tion des
ribe, in a few lines, one of the GFSs previously 
ited, spe
i�
ally a

GFS learning RBs and representing the rule base with a de
ision table. This method

was proposed by Philip Thrift ([78℄). This example will be analyzed a

ording to

the keys of the learning pro
ess, the population of potential solutions, the set of

evolution operators and the performan
e index.

Given a single output FRBS with n input variables, a fuzzy partition is de�ned for

ea
h variable (n+1 fuzzy partitions). In this 
ase ea
h fuzzy partition 
ontains �ve

or seven fuzzy sets. An n-dimensional de
ision table is then made up by pla
ing the


onsequents of ea
h rule in the pla
e 
orresponding to its premise. Entries in the

table 
an be either one of the labels representing a fuzzy set of the output variable

partition, or a blank representing no fuzzy set output for the 
orresponding rule.

The population of potential solutions. The population of potential solutions

will be made up of RBs applied by a 
ommon pro
essing stru
ture to solve a spe
i�


problem. Be
ause the learning pro
ess is 
entered on rules and all the KBs will


ontain an identi
al DB, 
onsequently the population of solutions 
an be redu
ed

to a population of RBs. Ea
h RB is represented by a de
ision table, and these

de
ision tables must by 
oded to 
onstitute suitable geneti
 material.

Ea
h position in the de
ision table will represent a gene of the 
hromosome 
oded

with an integer in f0; 1; : : : ; 5g, with its 6 possible values 
orresponding to the 5


omponents of the fuzzy partition and the blank output. A 
hromosome is obtained

by going rowwise through the table and produ
ing a string with the integers found

at ea
h pla
e in it. For a system with two input variables and �ve fuzzy sets per

partition, the de
ision table will 
ontain 5�5 pla
es and 
onsequently will generate

a 
hromosome with 25 genes.

The population where the geneti
 pro
ess will be applied is a number of 
hromo-
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somes (31 in the example des
ribed in the paper) 
oded as strings with 25 integers

in f0; 1; : : : ; 5g.

The set of evolution operators. The system uses a standard two point 
rossover

([60℄) and a mutation operator that 
hanges a fuzzy 
ode either up one level or

down one level, or to the blank 
ode. When the mutation operator a
ts on a blank


ode, a non-blank 
ode is generated at random. An elite strategy allows the best

solution at a given generation to be dire
tly promoted to the next.

The performan
e index. The system des
ribed is applied to 
enter a 
art by

applying a for
e on it. The obje
tive is to move the 
art to the zero position and

velo
ity in a minimum time. Ea
h RB is tested by applying the FRBS to 
ontrol

the 
art starting at 25 equally spa
ed starting points and over 500 steps (0.02 s
.

for ea
h step). The performan
e index assigned to an RB is 500-T where T is the

average time (number of steps) required to pla
e the 
art suÆ
iently 
lose to the


enter (max(jxj; jvj) < 0:5). If, for a 
ertain starting point, more than 500 steps are

required, the pro
ess times out and 500 steps are re
orded.

With this performan
e index the learning pro
ess be
omes a minimization problem

sin
e the best solution is the one with the lowest average time to 
enter the 
art

(the highest performan
e index).

6 Con
luding Remarks

We have reviewed the GFS for learning FRBSs based on the Pittsburgh approa
h,.

showing the di�erent proposal developped under this approa
h.
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1 Introdu
tion

Sin
e the beginning of the 80s there has been growing interest in applying meth-

ods based on Geneti
 Algorithms (GAs) to automati
 learning problems, espe
ially

the learning of produ
tion rules on the basis of attribute-evaluated example sets.

The main problem in these appli
ations 
onsists of �nding a "
omfortable" rep-

resentation in the sense that it might be 
apable both of gathering the problem's


hara
teristi
s and representing the potential solutions.

In re
ent literature we may �nd di�erent algorithms that use a new learning model

based on GAs, the Iterative Rule Learning (IRL) approa
h [82,32℄. In the latter

model, as in the Mi
higan one, ea
h 
hromosome in the population represents a

single rule, but 
ontrary to the latter, only the best individual is 
onsidered as the

solution, dis
arding the remaining 
hromosomes in the population. This model has

been used in papers su
h as [82,36,35,33,39,41,15{17℄.

This le
ture des
ribes the IRL approa
h for learning fuzzy rule based sytems (FRBSs).



2 IRL Approa
h

In this approa
h the GA provides a partial solution to the problem of learning, and

attempts to redu
e the sear
h spa
e for the possible solutions. In order to obtain a

set of rules, whi
h will be a true solution to the problem, the GA has to be pla
ed

within an iterative s
heme similar to the following:

1. Use a GA to obtain a rule for the system.

2. In
orporate the rule into the �nal set of rules.

3. Penalize this rule.

4. If the set of rules obtained is adequate to represent the examples in the training

set, the system ends up returning the set of rules as the solution. Otherwise return

to step 1.

A very easy way to penalize the rules already obtained, and thus be able to learn

new rules, 
onsists of eliminating from the training set all those examples that are


overed by the set of rules obtained previously.

This learning way is to allow "ni
hes" and "spe
ies" formation. Spe
ies formation

seems parti
ularly appealing for 
on
ept learning, 
onsidering the pro
ess as the

learning of multimodal 
on
epts.

The main di�eren
e with respe
t to the Mi
higan approa
h is that the �tness of ea
h


hromosome is 
omputed individually, without taking into a

ount 
ooperation with

other ones. This redu
es substantially the sear
h spa
e, be
ause in ea
h sequen
e

of iterations only one rule is sear
hed.

In the literature we 
an �nd some geneti
 learning pro
esses that use this model

su
h as SLAVE [35℄, SIA [82℄ and the geneti
 generation pro
ess proposed in [39℄.

These three geneti
 learning pro
esses use the IRL approa
h with light di�eren
e:

� SLAVE laun
hes a new GA to �nd a new rule after having eliminated the examples


overed by the last rule obtained. SLAVE was designed to work with or without

linguisti
 information.

� SIA uses a single GA that goes on dete
ting rules and eliminating the examples


overed by the latter. SIA 
an only work with 
risp data.

� The geneti
 generation pro
ess runs a GA for obtaining the best rule a

ording to

di�erent features, assigns a relative 
overing value to every example, and removes

the examples with a 
overing value greater than a 
onstant.

From the des
ription above, we may see that in order to implement a learning

algorithm based on GAs using the IRL approa
h, we need, at least, the following:

(1) a 
riterion for sele
ting the best rule in ea
h iteration,

(2) a penalization 
riterion, and
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(3) a 
riterion for determining when enough rules are available to represent the

examples in the training set.

The �rst 
riterion is normally asso
iated with one or several 
hara
teristi
s that

are desirable so as to determine good rules. Usually 
riteria about the rule strength

have been proposed (number of examples 
overed), 
riteria of 
onsisten
y of the

rule or 
riteria of simpli
ity.

The se
ond 
riterion is often asso
iated, although it is not ne
essary, with the elim-

ination of the examples 
overed by the previous rules.

Finally, the third 
riterion is asso
iated with the 
ompleteness of the set of rules and

must be taken into a

ount when we 
an say that all the examples in the training

set are suÆ
iently 
overed and no more rules are needed to represent them.

2.1 Multi-Stage Geneti
 Fuzzy System Based on the IRL Approa
h

Learning algorithms that use the IRL approa
h do not envisage any relationship be-

tween them in the pro
ess for obtaining rules. Therefore, the �nal set of rules usually

needs an a posteriori pro
ess that will modify and/or �t the said set. The method-

ology that is presently applied in
ludes di�erent pro
esses that are not ne
essarily

applied simultaneously. This methodology, whi
h we 
all multi-stage geneti
 fuzzy

systems and has been abbreviated as MSGFS, 
onsists of three 
omponent parts:

I A geneti
 generation stage for generating fuzzy rules using the IRL approa
h.

II A postpro
essing stage working on the rule set obtained in the previous stage in

order to either to re�ne rules or eliminate redundant rules.

III A geneti
 tuning stage that tunes the membership fun
tions of the fuzzy rules.

We des
ribe these shortly below.

Geneti
 generation stage. In this stage the IRL approa
h is used for learning

fuzzy rules 
apable of in
luding the 
omplete knowledge from the set of examples.

A 
hromosome represents a fuzzy rule, the generation method sele
ts the best rule

a

ording to di�erent features in
luded in the �tness fun
tion of the GA, features

that in
lude general properties of the KB and parti
ular requirements to the fuzzy

rule. This features lead to the de�nition of the 
overing degree between a rule and

an example and the use of the 
on
ept of positive and negative examples. The IRL

approa
h uses a 
overing method of the set of examples. This 
overing method

assigns a relative 
overing value to every example, and removes the examples with

an adequate 
overing value, a

ording to a 
overing 
riterion.

As we have indi
ated, this model may be used for learning RB as SLAVE [36,35℄

and for learning KB as the geneti
 generation pro
ess proposed in [39,41℄.
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Postpro
essing stage: sele
tion and re�nement. As we mentioned earlier,

the IRL approa
h does not analyze any relationship between the rules that it is

obtaining. That is why, on
e the rule base has been obtained, it may be improved

either be
ause there are rules that may be re�ned or redundant rules if high degrees

of 
overage are used. Two possible post-pro
essing methods have been used , a

re�nement algorithm [34℄ and a sele
tion or simpli�
ation algorithm [40℄.

Geneti
 tuning stage. At this stage the geneti
 tuning pro
ess is applied over the

KB for obtaining a more a

urate one. We 
an 
onsider two possibilities, depending

on the fuzzy model's nature:

a) an approximative model based on a KB 
omposed of a 
olle
tion of fuzzy rules

without a �xed relationship between the fuzzy rules and some primary fuzzy

partitions giving meaning to them, or

b) a des
riptive model based on a linguisti
 des
ription of the system with a fuzzy

partition that assigns a membership fun
tion to every linguisti
 label.

In both 
ases, ea
h 
hromosome forming the geneti
 population will en
ode a 
om-

plete DB, but in the �rst 
ase ea
h pie
e of 
hromosome 
odes the membership

fun
tions asso
iated to one rule and in the se
ond one ea
h pie
e of 
hromosome


odes the fuzzy partition of a variable. The main di�eren
e between both pro
esses

is the 
oding s
heme.

2.2 A Multi-stage Geneti
 Fuzzy Rule-Based System Stru
ture

In the following we present a guideline stru
ture for multi-stage GFRBSs used in

[15{17,41℄:

a) A fuzzy rule generation pro
ess. This pro
ess will determine the type of

the �nal FRBS generated, so the generated fuzzy rules may present a des
riptive,


onstrained approximative or un
onstrained approximative semanti
s. In all 
ases,

it will present two 
omponents: a fuzzy rule generating method 
omposed of an in-

du
tive or evolutionary pro
ess whi
h uses a ni
he 
riterion for obtaining the best

possible 
ooperation among the fuzzy rules generated when working with the ap-

proximative approa
h, and an iterative 
overing method of the system behaviour ex-

ample set, whi
h penalizes ea
h rule generated by the fuzzy rule generating method

by 
onsidering its 
overing over the examples in the training set and removes the

ones yet 
overed from it. This pro
ess allows us to obtain a set of fuzzy rules with

a 
on
rete semanti
s 
overing the training set in an adequate form.

b) A geneti
 multisimpli�
ation pro
ess for sele
ting rules, based on a bi-

nary 
oded GA with a phenotypi
 sharing fun
tion and a measure of the FRBS
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a

ura
y in the problem being solved. It will save the overlearning that the previ-

ous 
omponent may 
ause due to the existen
e of redundant rules, with the aim of

obtaining a simpli�ed KB presenting the best possible 
ooperation among the fuzzy

rules 
omposing it. This pro
ess will obtain di�erent possibilities for this simpli�ed

KB thanks to a genotypi
 ni
hing s
heme.


) An evolutionary tuning pro
ess based on any kind of real 
oded EA and a

measure of the FRBS performan
e. It will give the �nal KB as output by adjusting

the membership fun
tions for ea
h fuzzy rule in ea
h possible KB obtained from

the geneti
 multisimpli�
ation pro
ess. The type of tuning performed will depend

on the nature of the FRBS being generated, i.e., when generating a des
riptive

FRBS, a global tuning of the fuzzy partition asso
iated to ea
h linguisti
 variable

will be performed, but when working with any of the approximative approa
hes,

the membership fun
tions involved in ea
h fuzzy rule will be adjusted. The most

a

urate KB obtained in this stage will 
onstitute the �nal output of the whole

learning pro
ess.

Properties required for the generated Knowledge Base. Several important

stati
al properties have to be veri�ed by the KB in order to obtain an a

urate

FRBS. The multi-stage GFRBSs obtained from our methodology will 
onsider two

of them, the 
ompleteness and 
onsisten
y, by in
luding some 
riteria in the di�erent

stage �tness fun
tions. These 
riteria will penalize those solutions not verifying

adequatelly both properties. For a wider des
ription, refers to [16,17℄.

3 Con
luding Remarks

In this paper, we have presented the IRL approa
h as an alternative model to

the 
lassi
al Mi
higan and Pittsburgh approa
hes for the design of geneti
 learning

pro
esses, and we have des
ribed how it 
an be applied within a multi-stage learning

pro
ess.
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t

This le
ture gives an introdu
tion to a 
lass of 
lassi�er systems whi
h employ

geneti
 learning in an online pro
ess. Su
h systems are often 
alled 
lassi�er systems

of the Mi
higan type. A simple variant will be dis
ussed in detail | the so-
alled

Holland 
lassi�er system.
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1 Introdu
tion

Classi�er systems of the Pittsburgh type have in 
ommon that (1) the geneti


algorithms operate on whole rulebases, they work with populations of rulebases,

and (2) rulebases are judged globally, i.e., the performan
e of whole rulebases is

evaluated by the �tness fun
tion.

The other approa
h | the so-
alled Mi
higan approa
h | is to observe the behav-

ior of the system throughout a 
ertain period of time adjusting the rules a

ording

to temporal payo� from the environment. While in the Pittsburgh approa
h whole

rulebases are 
onsidered in an o�ine pro
ess, the Mi
higan approa
h operates on

single rules in an online pro
ess or a simulated environment. Obviously, in the Mi
hi-

gan approa
h, te
hniques for judging the performan
e of single rules are ne
essary.

In fa
t, this is, in most 
ases, a nontrivial task, sin
e positive e�e
ts of some rules

are not always observable immediately. Consider, for instan
e, the game of 
hess,

where early moves 
an 
ontribute to a late su

ess.

Figure 8 shows the typi
al ar
hite
ture of Mi
higan type system. The main 
ompo-
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Fig. 8. A 
lassi�er system of the Mi
higan type

nents are:

(1) A produ
tion system 
ontaining a rulebase whi
h pro
esses in
oming messages

from the environment and sends output messages to the environment

(2) An apportionment of 
redit system whi
h re
eives payo� from the environment

and determines whi
h rules had been responsible for that feedba
k.

(3) A geneti
 algorithm whi
h re
ombines existing rules and introdu
es new ones.

Obviously, the learning task is divided into two subtasks | the judgment of already

existing and the dis
overy of new rules.

2 The Holland Classi�er System

A Holland 
lassi�er system is a 
lassi�er system of the Mi
higan type whi
h pro-


esses binary messages of a �xed length through a rulebase whose rules are adapted

a

ording to the response of the environment ([44{46,28℄).

2.1 The Produ
tion System

First of all, the 
ommuni
ation of the produ
tion system with the environment is

done via an arbitrarily long list of messages. The dete
tors translate responses from

the environment into binary messages and pla
e them on the message list whi
h is
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then s
anned and 
hanged by the rulebase. Finally, the e�e
tors translate output

messages into a
tions on the environment, su
h as for
es or movements.

Messages are binary strings of the same length k. More formally, a message belongs

to f0; 1g

k

. The rulebase 
onsists of a �xed number m of rules (
lassi�ers) whi
h


onsist of a �xed number r of 
onditions and an a
tion, where both 
onditions and

a
tions are strings of length k over the alphabet f0; 1; �g. The asterisk plays the

role of a wild
ard, a \don't 
are" symbol.

A 
ondition is mat
hed, if there is a message in the list whi
h mat
hes the 
ondition

in all non-wild
ard positions. Moreover, 
onditions, ex
ept the �rst one, may be

negated by adding a \{" pre�x. Su
h a pre�xed 
ondition is satis�ed if there is no

message in the list whi
h mat
hes the string asso
iated with the 
ondition. Finally,

a rule �res if all the 
onditions are satis�ed, i.e., the 
onditions are 
onne
ted with

AND. Su
h \�ring" rules 
ompete to put their a
tion messages on the message list

(see 2.2).

In the a
tion parts, the wild
ard symbols have a di�erent meaning. They take the

role of \pass through" element. The output message of a �ring rule, whose a
tion

part 
ontains a wild
ard, is 
omposed from the non-wild
ard positions of the a
tion

and the message whi
h satis�es the �rst 
ondition of the 
lassi�er (this is a
tually

the reason why negations of the �rst 
onditions are not allowed). More formally,

the outgoing message ~m is de�ned as

~m[i℄ :=

(

a[i℄ if a[i℄ 6= �

m[i℄ if a[i℄ = �

i = 1; : : : ; k; (5)

where a is the a
tion part of the 
lassi�er and m is the message whi
h mat
hes the

�rst 
ondition. Formally, a 
lassi�er is a string of the form

Cond

1

; [\{"℄Cond

2

; : : : ; [\{"℄Cond

r

/A
tion; (6)

where the bra
kets should express the optionality of the \{" pre�xes.

Moreover, it 
an be of advantage to supply the messages with pre�xes, so-
alled tags,

whi
h identify the origin of the message. Consequently, these pre�xes must also be

appended to the 
onditions and a
tions of the 
lassi�ers. In this 
ase, we must

take spe
ial 
are that no a
tion spe
i�es the pre�x reserved for the input interfa
e.

Tagging o�ers new opportunities to transfer information about the 
urrent step

into the next step. This 
an be a

omplished by pla
ing tagged messages on the list

whi
h are not interpreted by the output interfa
e. These messages, whi
h, obviously,


ontain information about the previous step, 
an support the de
isions in the next

step. So, appropriate use of tags permits rules to be 
oupled to a
t sequentially. In

some sense, su
h messages are the memory of the system.
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To summarize this, a single exe
ution 
y
le of the produ
tion system 
onsists of the

following steps:

(1) Messages from the environment are appended to the message list.

(2) All the 
onditions of all 
lassi�ers are 
he
ked against the message list to obtain

the set of �ring rules.

(3) The message list is erased.

(4) The �ring 
lassi�ers parti
ipate in a 
ompetition to pla
e their messages on

the list (see below).

(5) The winning 
lassi�ers pla
e their a
tions on the list.

(6) The messages dire
ted to the e�e
tors are exe
uted.

This pro
edure is repeated iteratively.

How (6) is done, if these messages are deleted or not, and so on, depends on the


on
rete implementation. It is, on the one hand, possible to 
hoose a representation

su
h that every output message 
an be interpreted by the e�e
tors. On the other

hand, it is possible to dire
t messages expli
itely to the e�e
tors with a spe
ial tag.

In this 
ase, if no messages are dire
ted to the e�e
tors, the system is in a thinking

phase.

If a 
lassi�er R

1

produ
es a message m

0

, whi
h is not dire
ted to the e�e
tors, but

tagged as an internal message, and m

0

satis�es a 
ondition of a 
lassi�er R

2

in the

next timestep, R

2

is 
alled a 
onsumer of R

1

. Reversly, R

1

is 
alled a supplier of R

2

.

2.2 Credit Assignment | The Bu
ket Brigade Algorithm

The purpose of the 
redit assignment system is to assign a strength value to ea
h


lassi�er. This strength value represents the 
orre
tness and importan
e of a 
las-

si�er. On the one hand, the strength value in
uen
es the 
han
e of a 
lassi�er to

pla
e its a
tion on the output list. On the other hand, the strength values are used

by the rule dis
overy system. Let us denote the strength value of 
lassi�er R

i

in

timestep T with u

i;t

.

The 
ompetition for having the right to post an a
tion and the adaptation of the

strength values depending on the feedba
k (payo�) from the environment is 
alled

Bu
ket Brigade Algorithm. It 
an be regarded as a simulated e
onomi
 system in

whi
h various agents, in our 
ase 
lassi�ers, parti
ipate in an au
tion, where the


han
e to buy the right to post the a
tion depends on the strength of the agents.

In one of its simpliest forms, the bid of a 
lassi�er is de�ned as

b

i;t

:= 


L

� u

i;t

� s

i

; (7)
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where 


L

2 [0; 1℄ is a learning parameter, similar to learning rates in arti�
ial neural

nets, and s

i

is the spe
i�ty, the number of non-wild
ard symbols in the 
ondition

part of the 
lassi�er. If 


L

is 
hosen small, the system adapts slowly. If it is 
hosen

too high, the strengths 
an tend to os
illate 
haoti
ally.

Then, depending on the bids, the rules, whi
h are allowed to pla
e their output

messages on the list, the so-
alled winning agents, are sele
ted. In the simpliest 
ase,

this 
an be done by a random experiment. For ea
h bidding 
lassi�er it is de
ided

randomly, if it wins or not, where the probability that it wins is proportional to its

bid:

P[r

i

wins℄ :=

b

i;t

P

j2Sat

t

b

j;t

; (8)

where Sat

t

is the set of indi
es whi
h belong to satis�ed 
lassi�ers at time t.

Obviously, in this approa
h, more than one winning 
lassi�ers are allowed. Of 
ourse,

other sele
tion s
hemes are reasonable, for instan
e the highest bidding agent wins

alone. This 
an be ne
essary to avoid that two winning 
lassi�ers dire
t mutually

ex
luding a
tions to the e�e
tors.

Now let us dis
uss how payment from the environment is distributed and how the

strengths are adapted. For this purpose, let us denote the set of 
lassi�ers, whi
h

have supplied a winning agent R

i

in step t, with S

i;t

. Then the new strength of a

winning agent is redu
ed by its bid and in
reased by its portion of the payo� P

t

re
eived from the environment:

u

i;t+1

:= u

i;t

+

P

t

w

t

� b

i;t

; (9)

where w

t

is the number of winning agents in the a
tual time step. A winning agent

pays its bid to its suppliers, whi
h share the bid among ea
h other, equally in the

simpliest 
ase:

u

l;t+1

:= u

l;t

+

b

i;t

jS

i;t

j

8r

l

2 S

i;t

(10)

If a winning agent has also been a
tive in the previous step and supplies another

winning agent, the value above is additionally in
reased by one portion of the bid

the 
onsumer o�ers. In the extreme 
ase, that two winning agents have supplied ea
h

other mutually, the portions of the bids are ex
hanged in the manner as presented

above. The strengths of all other 
lassi�ers r

n

, whi
h are neither winning agents nor

suppliers of winning agents, are redu
ed by a 
ertain fa
tor (they pay a tax):

u

n;t+1

:= u

n;t

� (1� T ); (11)
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Fig. 9. The bu
ket brigade prin
iple

where T 2 [0; 1℄ is a small value. The intention of taxation is to punish 
lassi�ers

whi
h never 
ontribute anything to the output of the system. With this 
on
ept

redundant 
lassi�ers, whi
h never be
ome a
tive, 
an be �ltered out.

The idea behind 
redit assignment in general and bu
ket brigade in parti
ular is to

in
rease the strengths of rules whi
h have set the stage for later su

essful a
tions.

The problem of determining su
h 
lassi�ers, whi
h were responsible for 
onditions

under whi
h it was later on possible to re
eive a high payo�, 
an be very diÆ
ult.

However, the bu
ket brigade algorithm 
an solve this problem, although, obviously,

strength is only transferred to the suppliers whi
h were a
tive in the previous step.

Ea
h time the same sequen
e is a
tivated, a little bit of the payo� is transferred

one step ba
k in the sequen
e. It is easy to see, that repeated su

essful exe
ution

of a sequen
e 
an in
rease the strengths of all 
oupled 
lassi�ers involved.

Figure 9 shows a simple example how the bu
ket brigade algorithm works. For

simpli
ity, we 
onsider a sequen
e of �ve 
lassi�ers whi
h always bid 20 per
ents of

their strength. Only after the �fth step, after the a
tivation of the �fth 
lassi�er,

a payo� of 60 is re
eived. The further future of this sequen
e would be the one

shown in �gure 10. It is easy to see from this example that the reinfor
ement of

the strengths is slow at the beginning but it a

elerates later. Exa
tly this property


ontributes mu
h to the robustness of 
lassi�er systems | they tend to be 
autious

at the beginning, trying not to rush 
on
lusions, but, after a 
ertain number of

similar situations, the system adopts the rules more and more. Figure 10 also shows

a graphi
al visualization of this fa
t interpreting the table as a two-dimensional

surfa
e.
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Strength after the
3rd 100.00 100.00 101.60 120.80 172.00
4th 100.00 100.32 105.44 136.16 197.60
5th 100.06 101.34 111.58 152.54 234.46
6th 100.32 103.39 119.78 168.93 247.57

.

.

.
10th 106.56 124.17 164.44 224.84 278.52

.

.

.
25th 215.86 253.20 280.36 294.52 299.24

.

.

.
execution of the
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10

20

100

150

200

250

300

100

150

200

250

300

Fig. 10. Repeated bu
ket brigade

2.3 Rule Generation

While the apportionment of 
redit system just judges the rules, the purpose of

the rule dis
overy system is to eliminate low-�tted rules and to repla
e them by

hopefully better performing ones. The �tness of a rule is given by its strength. Sin
e

the 
lassi�ers of a Holland 
lassi�er system themselves are strings, the adaptation

of a geneti
 algorithm to the problem of rule indu
tion is straightforward, though

many variants are reasonable. Almost all variants have in 
ommon that the GA is

not invoked in ea
h time step, but only every n-th step, where n has to be set su
h

that enough information about the performan
e of new 
lassi�ers 
an be obtained

in the meantime.

Furthermore, this pro
ess of a
quiring new rules has an interesting side e�e
t. It

is more than only the ex
hange of parts of 
onditions and a
tions. Sin
e we have

not stated restri
tions for manipulating tags, the geneti
 algorithm 
an re
ombine

parts of established tags to invent new tags. In the following, tags spawn related

tags establishing new 
ouplings. These new tags survive if they 
ontribute to useful

intera
tions. In this sense, the GA additionally 
reates experien
e-based internal

stru
tures.

3 Con
luding Remarks

In this part, the Mi
higan approa
h has been introdu
ed. As one of the most im-

portant representatives, the Holland 
lassi�er system has been studied in detail.

We have seen that the main idea is that single rules are manipulated in an online

pro
ess, whi
h requires a profound analysis of the performan
e of every rule. It is

important to point out that there is no expli
it distin
tion between learning and

regular work of the system. Hen
e, su
h a system 
an adapt to varying environmen-

tal 
ir
umstan
es automati
ally. However, one should not forget that the random

modi�
ation of rules, whi
h is done by a geneti
 algorithm, 
an be a risk in some

appli
ations where se
urity is of spe
ial importan
e. Moreover, the Mi
higan ap-

proa
h is subje
t to fail if the environment is so 
omplex that there is only a low

probability that important state sequen
es are observed repeatedly.
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1 Introdu
tion

While 
lassi�er systems of the Mi
higan type had been introdu
ed by J. H. Holland

in 1976, their fuzzi�
ation awaited dis
overy many years. The �rst fuzzy 
lassi�er

system of the Mi
higan type was introdu
ed by M. Valenzuela-Rend�on ([79,80℄)

and is, more or less, a straightforward fuzzi�
ation of a Holland 
lassi�er system.

An alternative approa
h has been developed by A. Bonarini ([9,10℄), who applies

a di�erent s
heme of 
ompetetion between 
lassi�ers. These two approa
hes have

in 
ommon that they operate only on the rules | the shape of the membership

fun
tions is �xed. A third method, whi
h was introdu
ed by P. Bonelli and A. Parodi

([65℄), tries to optimize even the membership fun
tions and the output weights in

a

ordan
e to payo� from the environment.

2 Fuzzifying Holland Classi�er Systems

2.1 The Produ
tion System

We 
onsider a fuzzy 
ontroller with real-valued input and output. The system has,

unlike ordinary fuzzy 
ontrollers, three di�erent types of variables | input, output,
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Fig. 11. Mat
hing a fuzzy 
ondition

and internal variables. As we will see later, internal variables are for the purpose of

storing information about the near past. They 
orrespond to the internally tagged

messages in Holland 
lassi�er systems. For the sake of generality and simpli
ity,

all the universes of dis
ourse, are transformed to the unit interval [0; 1℄. For ea
h

variable the same number of membership fun
tions n is assumed. These membership

fun
tions are �xed at the beginning. They are not 
hanged throughout the learning

pro
ess. M. Valenzuela-Rend�on took bell-shaped fun
tion whi
h divided the interval

rather equally.

A message is a binary string of length l+ n, where n is the number of membership

fun
tions de�ned above and l is the length of the pre�x (tag), whi
h identi�es the

variable to whi
h the message belongs. A good 
hoi
e for l would be dlog

2

Ke, where

K is the total number of variables we want to 
onsider. To ea
h message an a
tivity

level, whi
h represents a truth value, is assigned. Consider for instan
e the following

message (l = 3, n = 5):

010

|{z}

=2

: 00010! 0:6

Its meaning is \Input no. 2 belongs to fuzzy set no. 4 with a degree of 0:6". On the

message list only so-
alled minimal messages are used, i.e., messages with only one

1 in the part whi
h identi�es the numbers of the fuzzy sets.

Classi�ers again 
onsist of a �xed number r of 
onditions and an a
tion part. Note

that, in this approa
h, no wild
ards and no \{" pre�xes are used. Both 
ondition

and a
tion part are also binary strings of length l + n, where the tag and the

identi�ers of the fuzzy sets are separated by a 
olon. Then the degree to whi
h su
h

a 
ondition is mat
hed is a truth value between 0 and 1. The degree of mat
hing

is 
omputed as the maximal a
tivity of messages on the list, whi
h have the same

tag and whose 1s are a subset of those of the 
ondition. Figure 11 shows a simple

example how this mat
hing is done. The degree of satisfa
tion of the whole 
lassi�er

is then 
omputed as the minimum of mat
hing degrees of the 
onditions. This is

then also the a
tivity level whi
h is assigned to the output message (i.e., Mamdani

inferen
e).
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The whole rulebase 
onsists of a �xed number m of su
h 
lassi�ers. Similarly to

Holland 
lassi�er systems, one exe
ution step of the produ
tion system is done as

follows:

(1) The dete
tors re
eive 
risp input values from the environment and translate

them into minimal messages whi
h are then added to the message list.

(2) The degrees of mat
hing are 
omputed for all 
lassi�ers.

(3) The message list is erased.

(4) The output messages of some mat
hed 
lassi�ers (see below) are pla
ed on the

message list.

(5) The output messages are translated into minimal messages. For instan
e, the

message 010 : 00110 ! 0:9 is split into the two messages 010 : 00010 ! 0:9

and 010 : 00100 ! 0:9.

(6) The e�e
tors dis
ard the output messages (referring to output variables) from

the list and translate them into instru
tions to the environment.

From point 2 it 
an be seen easily that it is of advantage to use fuzzy sets with lo
al

support instead of bell-shaped ones, be
ause, if bell-shaped fuzzy sets are used,

every rule �res in ea
h time step.

Step 6 is done by a modi�ed Mamdani inferen
e: The sum (instead of the maximum

or another t-
onorm) of a
tivity levels of messages, whi
h refer to the same fuzzy

set of a variable, is 
omputed. The membership fun
tions are then s
aled with these

sums. Finally, the 
enter of gravity of the \union" (i.e. maximum) of these fun
tions,

whi
h belong to one variable, is 
omputed (Sum-Prod inferen
e).

2.2 Credit Assignment

Sin
e fuzzy systems have been designed to model transitions, a probabilisti
 au
tion

pro
ess as dis
ussed in 
onne
tion with Holland 
lassi�er systems, where only a

small number of rules is allowed to �re, is not desirable. Of 
ourse, we again assign

strength values to the 
lassi�ers.

If we are dealing with a one-stage system, in whi
h payo� for a 
ertain a
tion is

re
eived immediately, where no long-term strategies must be evolved, we 
an suÆ
e

with allowing all mat
hed rules to post their outputs and sharing the payo� among

the rules, whi
h were a
tive in the last step, a

ording to their a
tivity levels in this

step. For example, if R

t

is the set of 
lassi�ers, whi
h have been a
tive at time t,

and P

t

is the payo� re
eived after the t-th step, the modi�
ation of the strengths

of �ring rules 
an be de�ned as

u

i;t+1

:= u

i;t

+ P

t

�

a

i;t

P

r

i

2R

t

a

i;t

8r

i

2 R

t

; (12)
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where a

i;t

denotes the a
tivity level of the 
lassi�er r

i

at time t. It is again possible

to redu
e the strength of ina
tive 
lassi�ers by a 
ertain tax.

In the 
ase, that the problem is so 
omplex that long-term strategies are indis-

pensable, a fuzzi�
ation of the bu
ket brigade me
hanism must be found. While

Valenzuela-Rend�on only provides a few vague ideas, we state one possible variant,

where the �ring rules pay a 
ertain value to their suppliers whi
h depends on the

a
tivity level. The strength of a 
lassi�er, whi
h has re
ently been a
tive in time step

t is then in
reased by a portion of the payo� as de�ned in (12), but it is additionally

de
reased by a value

b

i;t

:= 


L

� u

i;t

� a

i;t

; (13)

where 


L

2 [0; 1℄ is again the learning rate. Of 
ourse, it is again possible to in
or-

porate terms whi
h depend on the spe
i�ty of the 
lassi�er.

This \bid" is then shared among the suppliers of su
h a �ring 
lassi�er a

ording to

the amount they have 
ontributed to the mat
hing of the 
onsumer. If we 
onsider

an arbitrary but �xed 
lassi�er r

j

whi
h has been a
tive in step t and if we denote

the set of 
lassi�ers supplying r

j

, whi
h have been a
tive in step t�1, with S

j;t

, the


hange of the strengths of these suppliers 
an be de�ned as

u

k;t+1

:= u

k;t

+ b

j;t

�

a

k;t�1

P

r2S

j;t

a

r;t�1

8r

k

2 S

j;t

: (14)

It is easy to see, that this 
an be an appropriate generalization of the bu
ket brigade

algorithm as des
ribed in the previous le
ture.

2.3 Rule Dis
overy

The adaptation of a geneti
 algorithm to the problem of manipulating 
lassi�ers

in our system is again straightforward. We only have to take spe
ial 
are that tags

in 
onditional parts must not refer to output variables and that tags in the a
tion

parts of the 
lassi�ers must not refer to input variables of the system.

Analogously to our previous 
onsiderations, if we admit a 
ertain number of in-

ternal variables, the system tends to build up internal 
hains, 
oupled sequen
es,

autonomously. If we admit internal variables, a 
lassi�er system of this type not only

learns stupid input-output a
tions, it also tries to dis
over 
ausal interrelations.

55



3 Bonarini's ELF Method

In [9℄, A. Bonarini presents his ELF (=evolutionary learning of fuzzy rules) method

and applies it to the problem of guiding an autonomous robot. The key issue of

ELF is to �nd a small rulebase whi
h only 
ontains important rules. While he takes

over many of M. Valenzuela-Rend�on's ideas, his way of modifying the rulebase

di�ers strongly from Valenzuela-Rend�on's straightforward fuzzi�
ation of Holland's

te
hnique.

Bonarini 
alls the modi�
ation s
heme \
over-dete
tor algorithm". The number of

rules 
an be varied in ea
h timestep depending on the number of rules whi
h mat
h

the a
tual situation. This is done by two mutually ex
lusive operations:

(1) If the rules, whi
h mat
h the a
tual situation, are too many, the worst of them

is deleted.

(2) If there are too few rules mat
hing the 
urrent inputs, a new rule, whose

ante
ents 
over the 
urrent state, with randomly 
hosen 
onsequent value, is

added to the rulebase.

The geneti
 operations are only applied to the 
onsequent values of the rules. Sin
e

the ante
edents are generated on demand in the di�erent timesteps, no taxation is

ne
essary.

Seemingly, su
h a simple modi�
ation s
heme 
an only be applied to so-
alled one-

stage problems, where the e�e
t of ea
h rule 
an be observed in the next timestep.

For appli
ations where this is not valid, e.g., ba
king up a tru
k, Bonarini introdu
ed

a modi�
ation of his ELF algorithm | the 
on
ept of an episode, whi
h is a given

number of subsequent 
ontrol a
tions, after whi
h the rea
hed state is evaluated.

4 Online Modi�
ation of the Whole Knowledge Base

While the last two methods only manipulate rules and work with �xed member-

ship fun
tions, there is at least one variant of fuzzy 
lassi�er systems where also

the membership fun
tions are involved in the learning pro
ess. This variant was

introdu
ed by A. Parodi and P. Bonelli in [65℄.

The main idea is that an approximative knowledge base is used instead of a de-

s
riptive one as in the two previous examples. So, a fuzzy rule is not represented as

a linguisti
 expression whi
h refers only to labels of fuzzy sets, but a fuzzy relation

on X�Y , where X is the input and Y is the output domain. More spe
i�
ally, ea
h

rule is represented as a pair 
onsisting of a fuzzy subset of X and a fuzzy subset of

Y .
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Sin
e, in many appli
ations, X and Y are themselves 
ross produ
ts, i.e., X =

X

1

� � � ��X

n

and Y = Y

1

� � � �� Y

m

, rules in a approximative knowledge base 
an

be written as

A

i1

� � � � � A

in

� B

i1

� � � � �B

im

(15)

where i is the index of the rule.

If one restri
ts to 
ertain 
lass of fuzzy subsets, su
h as triangular or bell-shaped

membership fun
tions, it is possible to en
ode a rule as

(a

i1

; : : : ; a

in

; b

i1

; : : : ; b

im

)

where a

ij

and b

ij

are parameters uniquely identifying a fuzzy subset of X

j

or Y

j

,

respe
tively.

Moreover, in this approa
h, ea
h rule is additionally equipped with a strength fa
tor,

whi
h is taken as a s
aling fa
tor of the output set. This strength fa
tor is also used

as �tness measure by the geneti
 algorithm whi
h modi�es the knowledge base and

modi�ed a

ording to payo� from the environment.

5 Con
luding Remarks

The advantage of M. Valenzuela-Rend�on's method is generality. Its appli
ability is

not limited to one-stage systems. However, the use of internal variables 
an lead to

diÆ
ultly interpretable fuzzy systems.

Bonarini's ELF method is suitable for one-stage systems and multi-stage systems,

where the duration of e�e
ts of rules 
an be assumed as limited (length of episode).

The advantage of this approa
h is that also the size of the rulebase is optimized.

Parodi's and Bonelli's approa
h has the advantage that the membership fun
tions

need not to be �xed in the design phase of the system. Therefore, the system 
an

learn to emphasize 
ertain regions of the input and output domains. The disadvan-

tage is that, in general, approximative representations are mu
h more 
ompli
ated

and 
an result in diÆ
ultly interpretable knowledge bases.
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t

In this part, a few other ways, in whi
h geneti
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be 
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1 O�ine Optimization of a Table-Based TSK Controller

In [53,77℄, M. Lee and H. Takagi introdu
e a method for �nding an optimal TSK


ontroller. In general, a Sugeno 
ontroller (see [75℄) is a rulebase 
onsisting of rules

of the form

IF x is A

j

THEN y is f

j

(x);

where j is the index of the rule, A

j

is a fuzzy subset of the input domain, y is

the 
risp (real-valued) output variable, and f

j

(x) is an arbitrary mapping from the

input to the output domain. If there is at least one �ring rule, the output of su
h a


ontroller 
an be 
omputed as

y =

N

P

j=1

�

A

j

(x) � f

j

(x)

N

P

j=1

�

A

j

(x)

;

where N is the total number of rules.



In most re
ent appli
ations, the fun
tions f

j

are 
onstants. A Sugeno 
ontroller with

polynomials of degree 1, i.e., aÆne linear mappings, on the right hand side is 
alled

Takagi-Sugeno-Kang (TSK) 
ontroller.

If the input domain is a 
ross produ
t of two real intervals [a

1

; b

1

℄ and [a

2

; b

2

℄ whi
h

are de
omposed by N

1

and N

2

fuzzy subsets, respe
tively, the whole 
ontroller 
an

be represented as an N

1

� N

2

matrix (table), where ea
h entry 
ontains the three

parameters (�

ij

; �

ij

; 


ij

) of f

ij

(x

1

; x

2

) = �

ij

� x

1

+ �

ij

� x

2

+ 


ij

.

In order to �nd an optimal TSK 
ontroller with a geneti
 algorithm, Lee and Takagi

�rst �xed the numbers of fuzzy setsN

1

andN

2

in advan
e. In their model, triangular-

shaped fuzzy sets with three degrees of freedom | 
enter, left o�set, and right

o�set | were 
hosen. Then, ea
h fuzzy set was en
oded by 
oding ea
h of the three

parameters ex
ept that not the 
enters were en
oded but their o�sets. The reason

for 
oding the o�sets of the 
enters instead of the 
enters themselves was to avoid

that unreasonable overlappings o

ur and to guarantee a 
anoni
al ordering of the

fuzzy sets. Finally, a whole 
ontroller is represented by a binary string 
omposed of

the parameters of the fuzzy subsets of the two input domains and a binary 
oding of

the table 
ontaining the 
onsequent values. Apparently, this is a des
riptive model.

In the optimization step, a geneti
 algorithm, whi
h operates on a population of


ontrollers, was applied to �nd the optimal one in an o�ine optimization pro
ess

(
f. Pittsburgh approa
h) with respe
t to a 
ertain �tness fun
tion.

The generalization of the te
hniques presented above to the 
ase of 
ontrollers with

more than two inputs is, apparently, straightforward. However, it is easy to see that

the length of the strings depends exponentially on the dimension.

2 The Nagoya Approa
h

The se
ond idea goes ba
k to T. Furuhashi, K. Nakaoka, and Y. U
hikawa from the

university of Nagoya, Japan. In their approa
h, a modi�ed kind of geneti
 algorithm

is used. Pretentiously, they have 
alled their idea \Nagoya Approa
h". It 
an be

found in [27℄.

The three authors applied a geneti
 algorithm to the optimization of a Mamdani


ontroller with �ve inputs and two outputs for guiding a robot to a 
ertain goal

through a room whi
h 
ontains one moving obsta
le.

For the input variables they used bell-shaped fuzzy sets whi
h were additionally

s
aled with a fa
tor. For the output variables ordinary triangular membership fun
-

tions were used with the modi�
ation that only one o�set was used for both left

and right.
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In this approa
h, it was assumed that the whole system is 
ontrollable with a 
ertain

�xed number N (
on
retely 15 in this appli
ation) of rules. Hen
e, the 
oding of

a whole 
ontroller 
onsisted of N binary representations of rules, where ea
h rule

was en
oded by en
oding the parameters of the �ve input and the two output sets

(approximative model).

The most interesting novelty of this paper is that a new modi�
ation of an ordinary

geneti
 algorithm is introdu
ed. It provides a better lo
al improvement of single

rules. The idea is the following: The whole individual is divided into N

p

parts whi
h


an be judged independently (the parts and how they 
an be judged depends on

the 
on
rete appli
ation). In the mutation step, for ea
h individual of the a
tual

population, a 
ertain number M of 
lones of ea
h part is produ
ed. M � 1 of them

are mutated. The best 
lone of ea
h part is then implanted into the new individual.

After this step, normal sele
tion and 
rossing over are performed. Normally, mu-

tation yields bad individuals very often, be
ause one modi�
ation 
an deteriorate

the �tness of the whole individual. In this approa
h, various lo
al phenomena are

judged independently whi
h 
an result in better lo
al improvement.

3 Optimizing Hierar
hi
al Stru
tures of Fuzzy Systems

Consider for instan
e a fuzzy system with 14 inputs, ea
h represented by three fuzzy

sets, and one output with �ve verbal values. Then the total number of di�erent

premises, whi
h spe
ify ea
h variable in the premise, is 3

14

= 4782969 and the total

number of rules with premises of su
h a kind is even 5

4782969

. Obviously, this is a size

whi
h is diÆ
ult to survey for a human and impossibly large for an optimization

algorithm. This entails the ne
essity either to use generalizing rules with wild
ards in

their premises or to prepare a hierar
hi
al stru
ture, whi
h bundles the information

su
h that the de
isions are divided into a 
ertain number of subde
isions.

In many appli
ations, where the relationships between the di�erent sets of data are

unknown, the preparation of an appropriate hierar
hy is a very diÆ
ult task. Of


ourse, it is desireable to have methods whi
h 
an help to �nd su
h a hierar
hy.

One approa
h for �nding an appropriate hierar
hi
al stru
ture by means of geneti


algorithms was introdu
ed by T. Fukuda, Y. Hasegawa, and K. Shimojima ([26,73℄).

These four resear
hers have presented a 
oding te
hnique for hierar
hies whi
h 
an

be integrated in a geneti
 optimization pro
ess. The appli
ability of this 
oding is

limited to tree stru
tures, whi
h is not a serious restri
tion.

Starting point is a binary tree whi
h 
onsists of a 
ertain number of units, i.e.,

rulebases, whi
h are enumerated from the root to the leaves. In [26,73℄, 2

n�2

is

re
ommended, where n is the total number of input variables. Then the numbers of

the units, to whi
h the input variables are 
onne
ted, 
an be en
oded. Of 
ourse, a
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Fig. 12. Example for 
oding a hierar
hi
al stru
ture

few simpli
ations have to be done:

(1) Only units, whi
h are 
onne
ted to input variables, and the units above are


onsidered. Units below are removed.

(2) If, after step (1) a bottommost unit has only one input, it is removed.

Figure 12 shows an example for six inputs whi
h illustrates the 
oding and how the

stru
ture is simpli�ed:

� Units 8, 4, and 9{14 are removed, sin
e none of them or of their prede
essors is


onne
ted to an input variable.

� Units 3, 7, 15, 5, and 6 are removed sin
e they only have one input. Consequently,

input No. 1 is 
onsidered to be 
onne
ted to unit 1, No. 5 and No. 6 are 
onne
ted

to unit 2.

Note that, due to the simplif
ations, the de
oding fun
tion is not inje
tive | dif-

ferent strings 
an result in the same hierar
hies.

The 
on
ept of 
oding a hierar
hy 
an now be in
orporated in a optimization pro-


ess. In [73℄, the hierar
hy is tuned before the rulebases. The pro
ess of tuning the

hierar
hi
al stru
ture 
an be outlined as follows:

(1) The 
omplete tree is prepared. For ea
h input of ea
h unit, a 
ertain number

of fuzzy sets is assumed. Initially, they are set equal for all variables, su
h that

they divide the input spa
e rather equally.

(2) Hierar
hies are 
hosen randomly. The 
onsequent parameters of the rules are

initially set to 0.

(3) The 
onsequent parameters (we have a Sugeno 
ontroller with 
onstants on the

right hand side) are tuned with a gradient method, where the desired output

of an intermediate unit is 
omputed using ba
kpropagation.

(4) Sele
tion, 
rossing over, and mutation are applied to the population.

(5) If the stopping 
ondition is not ful�lled, return to (3).

Apparently, this is only a raw sear
h for an optimal fuzzy system, be
ause the fuzzy
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sets are �xed, but it 
an be a way for a
quiring a fairly good hierar
hi
al stru
ture.

In order to optimize all the parameters involved, it is, after �nding an appropriate

stru
ture, re
ommendable to apply further optimization te
hniques.

4 Fuzzy Geneti
 Programming

A 
omparatively new idea is to apply geneti
 programming to the a
quistation of

optimal rulebases. Mu
h of the theory goes ba
k to A. Geyer-S
hulz ([28℄) who also

implemented the �rst appli
ation, where he tried to improve sto
k management

strategies with fuzzy geneti
 programming ([29℄).

Within this promising approa
h, all kinds of 
onstru
ts for representing fuzzy know-

ledge, su
h as adverbs (hedges), di�erent 
onne
tives, et
. 
an be used. The one and

only indispensable thing is a rule language whose grammar is given in Ba
kus-Naur

form (re
ursive de�nition).

An example of su
h a rule language 
ould be the following:

hrulei := \IF" hpremisei \THEN" h
on
lusioni;

hpremisei := h
onditionali j

\(" hunaryi hpremisei \)" j

\(" hpremisei h
onne
tivei hpremisei \)" ;

h
onditionali := \x

1

" \is" hexpr

1

i j � � � j \x

n

" \is" hexpr

n

i ;

hunaryi := \NOT" ;

h
onne
tivei := \AND" j \OR" ;

h
on
lusioni := \y" \is" hexpr

y

i ;

where the expressions hexpr

1

i . . . hexpr

n

i and hexpr

y

i are verbal values of the lin-

guisti
 variables x

1

. . .x

n

and y, respe
tively. Of 
ourse, these values 
an also be

built up re
ursively of adverbs, adje
tives, and 
onne
tives.

For 
oding a whole rulebase, two methods are reasonable:

(1) Fixing the number of rules m:

<rulebase> := \(" hrulei \," . . . \," hrulei

| {z }

m times

\)" ;

(2) Allow an arbitrary number of rules:

hrulebasei := \(" hrulelisti \)" ;

hrulelisti := hrulei j \," hrulelisti ;

Furthermore, if the set of verbal values of the linguisti
 variable y is a �nite set of

adje
tives, it is, under some additional assumptions, possible to suÆ
e with a �nite

number of rules (see [7, se
tion 5.1.2℄).
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Geneti
 operations 
an be applied as usual in geneti
 programming. However, it


an be of advantage to in
orporate me
hanisms into the �tness fun
tion whi
h

additionally take the 
omplexity and the number of the rules into a

ount. Moreover,

it is useful to simplify the expressions after ea
h generation in order to avoid wild

growth of the premises and 
on
lusions. If simpli�
ation is desired, the operations

(t-norms and t-
onorms) should be 
hosen su
h that some derivation laws, su
h as

the De-Morgan law, are ful�lled.

More, espe
ially theoreti
al details on fuzzy geneti
 programming 
an be found in

[28℄, where also a global 
onvergen
e proof is provided.

5 Con
luding Remarks

One of the most important advantages of fuzzy systems is that the fun
tions are

parameterized in a way whi
h is interpretable for humans. More spe
i�
ally, it is

possible to translate human knowledge into fuzzy rules and fuzzy sets, but, on the


ontrary, not every system, whi
h is formally a fuzzy system, is really interpretable.

In fa
t, the probability, that diÆ
ultly interpretable 
on�gurations are obtained,

is rather high when representations with lots of degrees of freedom are tried to be

optimized. An alternative, whi
h 
an help to over
ome this problem, is to en
ode

whole fuzzy partitions as shown in the �fth le
ture. Obviously, this approa
h allows

less degrees of freedom, whi
h 
an also speed up 
onvergen
e.

There have been a lot of publi
ations 
on
erning with geneti
 optimization of fuzzy

systems (see [1,19,20℄ for re
ent bibliographies). Ea
h of these approa
hes | many

of them are rather similar | has only been applied to a few ben
hmark problems.

So far, there are no proofs (neither theoreti
al nor empiri
al) whi
h methods are

suitable for whi
h problems.
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