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Abstract. This contribution is concerned with a review of linearity axioms for
fuzzy orderings with respect to three fundamental correspondences from the classi-
cal case—linearizability of partial orderings, intersection representation, and one-to-
one correspondence between linearity and maximality. We obtain that it is virtually
impossible to simultaneously preserve all these three properties in the fuzzy case. If
we do not require a one-to-one correspondence between linearity and maximality,
however, we obtain that an implication-based definition appears to constitute a
sound compromise, in particular, if  Lukasiewicz-type logics are considered.

1 Introduction

Orderings are fundamental concepts in mathematics, among which linear
orderings play an outstanding role [17]. Beside the context of orderings, in
a more general setting, the linearity property also has a great importance in
modeling of preferences by relational constructs, since it corresponds to the
important property of full comparability (often called completeness) or, in
other words, absence of incomparability.

Fuzzy relations have been introduced in order to provide more flexible
models for expressing relationships [9,10,14–16,21]. The appropriate defini-
tion of completeness/linearity, however, is by far not as straightforward as in
the classical Boolean case. Several different approaches appear in literature; a
systematic formal study with respect to deep logical and algebraic properties,
however, has not yet been conducted so far.

The aim of this paper is to investigate three existing definitions of com-
pleteness of fuzzy relations in detail. For that purpose, we consider the most
fundamental relations for which completeness plays a role—fuzzy orderings—
and evaluate the different notions of linearity with respect to fundamental
deep results that hold in the crisp case. The final goal is to gain deeper insight
into the principles of existing linearity axioms in order to have clear argu-
ments pro and contra their use, not only in connection with fuzzy orderings,
but also in more general settings in fuzzy preference modeling.

Note that the given paper is a short version of a longer treatise to be
published in [3]. The reader is referred to this upcoming paper for proofs and
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background details. The paper makes wide use of results on triangular norms
and related operations. The reader is referred to the appropriate original
literature [9–11,13,18] or the corresponding full paper [3, Section 4].

2 Fundamental Properties in the Crisp Case

In order to clear up notation, let us briefly recall classical orderings (we syn-
onymously use the term crisp for Boolean, classical, or non-fuzzy). Through-
out the whole paper, assume that the symbol X denotes an arbitrary non-
empty set.

Definition 1. A binary relation . on the set X is called (partial) ordering
if and only if it fulfills the following three axioms (for all x, y, z ∈ X):

Reflexivity: x . x
Antisymmetry: (x . y ∧ y . x) ⇒ x = y
Transitivity: (x . y ∧ y . z) ⇒ x . z

Definition 2. A binary relation ♦ on X is called complete if and only if

x ♦ y ∨ y ♦ x (1)

holds for any pair x, y ∈ X. An ordering fulfilling completeness is called linear
ordering.

Since this will be important in the following, let us briefly note that (1)
is equivalent to

x 6♦ y ⇒ y ♦ x. (2)

Completeness is just a simple axiomatization of a property which has a
much deeper meaning in logical and algebraic terms. In particular, there are
three essential aspects of relationship between (partial) orderings and linear
orderings:

[SZP] Any partial ordering can be linearized (Szpilrajn’s Theorem) [19]:
For any partial ordering ., there exists a linear ordering � which
extends . in the sense that, for all x, y ∈ X,

x . y ⇒ x � y. (3)

[INT] Any partial ordering can be represented as an intersection of linear
orderings [8]: For any partial ordering ., there exists a family of
linear orderings (�i)i∈I such that . can be represented as (for all
x, y ∈ X)

x . y ⇔
∧
i∈I

x �i y.
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[MAX] There is a one-to-one correspondence between linearity and maxi-
mality: An ordering . is linear if and only if there exists no non-
trivial extension, i.e. the only linear ordering � fulfilling (3) is .
itself.

These three fundamentally important correspondences will serve as the cri-
teria for evaluating fuzzy linearity/completeness axioms in this paper.

3 Fuzzy Orderings

Binary fuzzy relations were proposed to provide additional freedom for ex-
pressing complex preferences that can rarely be modeled in the rigid setting
of bivalent logic [9,10,14–16,21]. This is accomplished—as usual in fuzzy set
theory—by allowing intermediate degrees of relationship. This paper assumes
that the domain of truth values is the common unit interval [0, 1].

This paper addresses the so far most general notion of fuzzy orderings,
which—in contrast to earlier approaches—takes an underlying concept of
equality/equivalence into account [1,2,12]. This equality/equivalence is mod-
eled by a fuzzy equivalence relation.

Definition 3. A binary fuzzy relation E on X is called fuzzy equivalence re-
lation with respect to T , for brevity T -equivalence, if and only if the following
three axioms are fulfilled for all x, y, z ∈ X:

Reflexivity: E(x, x) = 1
Symmetry: E(x, y) = E(y, x)
T -transitivity: T

(
E(x, y), E(y, z)

)
≤ E(x, z)

Fuzzy relations only fulfilling reflexivity and T -transitivity are called pre-
orderings with respect to t-norm T , for short, T -preorderings.

Definition 4. Let L : X2 → [0, 1] be a binary fuzzy relation. L is called
fuzzy ordering with respect to T and a T -equivalence E, for brevity T -E-
ordering, if and only if it is T -transitive and additionally fulfills the following
two axioms for all x, y ∈ X:

E-Reflexivity: E(x, y) ≤ L(x, y)
T -E-antisymmetry: T

(
L(x, y), L(y, x)

)
≤ E(x, y)

Before the general concept above was introduced, fuzzy orderings were
rather commonly understood as T -preorderings that additionally fulfill T -
antisymmetry [10,21], i.e., for all x, y ∈ [0, 1],

x 6= y ⇒ T
(
L(x, y), L(y, x)

)
= 0.

In order to avoid misunderstandings, let us call this class of fuzzy orderings T -
orderings. As easy to observe, Definition 4 still accommodates T -orderings if
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we define E to be the crisp equality. It turned out that basing fuzzy orderings
on the crisp equality is too restrictive and practically not feasible. Detailed
arguments supporting this viewpoint are elaborated in [1,2,12].

Already in Zadeh’s very first paper on fuzzy orderings [21], the fundamen-
tal property [SZP] is addressed. If the minimum t-norm TM is considered for
modeling transitivity and antisymmetry (as usual in Zadeh’s early works),
[SZP] is guaranteed to be satisfied. The proof of this result is simple by us-
ing the classical Szpilrajn theorem [19]. A straightforward generalization of
this theorem to t-norms without zero divisors was later proved by Gottwald
[10]. Although these results seem encouraging at first glance, they do not
provide much insight. Nonchalantly speaking, T -orderings, in particular if T
does not have zero divisors, are almost crisp concepts. Consequently, [SZP]
follows instantly. However, this result relies on the crispness of the concepts
under investigation and is by no means applicable if we admit a non-trivial
concept of fuzzy equivalence in the sense of Definition 4.

A first serious attempt to investigate [SZP] and [INT] for fuzzy orderings
in the sense of Definition 4 was made by Höhle and Blanchard [12]. This
paper provides a specific definition of linearity/completeness that has neither
become common nor widely known, as it unfortunately remained unknown
to the vast majority of the fuzzy set community.

The given paper puts the few dispersed attempts and approaches existing
in literature into a common perspective. It considers three major approaches
to modeling linearity/completeness—two common in fuzzy preference model-
ing and the one due to Höhle and Blanchard. All three concepts are checked
against the three fundamental properties. In any case, we say that a given con-
cept of linearity/completeness fulfills one of the three fundamental properties
if and only if the property is satisfied for all domains X and all T -equivalences
E—as a restriction to specific domains or T -equivalences would contradict
the generic nature of the fundamental properties in the crisp case. The choice
of the logical operators and connectives, however, is crucial for the specific
logical framework under investigation. Where possible, characterizations are
provided which conditions the logical operators and connectives have to sat-
isfy in order to guarantee that a concept of linearity/completeness fulfills a
particular fundamental property.

4 Extensions and the Role of Left-Continuity

All three properties [SZP], [INT], and [MAX] consider extensions of a given
fuzzy ordering. This section is devoted to basic definitions and properties
that will be essential in the following.

Definition 5. Consider two T -E-orderings L1 and L2. We say that L1 ex-
tends L2 if and only if, for all x, y ∈ X, L2(x, y) ≤ L1(x, y) holds. For brevity,
we denote this L2 ⊆ L1. We call L1 a non-trivial extension of L2 if there ex-
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ists at least one pair (x, y) ∈ X2 for which L2(x, y) < L1(x, y) holds, for
brevity L2 ⊂ L1.

Definition 6. We denote the up-set, the set of elements larger than or equal
to (i.e. extending) a given T -E-ordering L, with

ext(L) = {L′ | L′ is a T -E-ordering and L ⊆ L′}.

A T -E-ordering L is called maximal if and only if it does not have a non-trivial
extension, equivalently, ext(L) = {L}.

As the next theorem demonstrates, the applicability of Zorn’s Lemma in
the context of extensions is strictly dependent on the left-continuity of the
underlying t-norm.

Theorem 1. Consider a T -E-ordering L. If T is left-continuous, the set
ext(L) has at least one maximal element.

Now we turn to the opposite questions, how severe the difficulties are that
arise if left-continuity is not satisfied.

Proposition 1. Provided that the set X has at least two elements and that T
is not left-continuous, there exists a T -equivalence E and a linearly ordered
sequence of T -E-orderings which does not have a supremum in the set of
T -E-orderings on X.

Proposition 1 particularly implies that we may run into a situation where
Zorn’s Lemma is not applicable if we consider a t-norm which is not left-
continuous. Since, as we will see later, Zorn’s Lemma is most often the key
to extension theorems à la Szpilrajn, it is unavoidable to restrict to left-
continuous t-norms for the remaining parts of the paper. It is worth to men-
tion that this is not a serious restriction in logical and practical terms, as
t-norms which are not left-continuous fail to fulfill most basic logical proper-
ties.

5 Strong Completeness

A simple concept of completeness of fuzzy relations which is common in fuzzy
preference modeling [5,6,9] is based on replacing the crisp disjunction in (1)
by the maximum t-conorm.

Definition 7. A binary fuzzy relation R on X is called strongly complete if
and only if the following holds for all x, y ∈ X:

max
(
R(x, y), R(y, x)

)
= 1

A unique characterization of T -E-orderings fulfilling strong completeness
is available, which we repeat first.
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Definition 8. Let . be a crisp ordering on X and let E be a fuzzy equiva-
lence relation on X. E is called compatible with ., if and only if the following
implication holds for all x, y, z ∈ X:

x . y . z ⇒ E(x, z) ≤ min
(
E(x, y), E(y, z)

)
Compatibility between a crisp ordering . and a fuzzy equivalence relation

E can be interpreted as follows: The two outer elements of a three-element
chain are at least as distinguishable as any two inner elements.

Theorem 2. [1] Consider a fuzzy relation L on a domain X and a T -equiv-
alence E on the same domain. Then the following two statements are equiv-
alent:

(i) L is a strongly complete T -E-ordering.
(ii) There exists a linear ordering . the relation E is compatible with such

that L can be represented as follows:

L(x, y) =
{

1 if x . y
E(x, y) otherwise (4)

As an important consequence of Theorem 2, we obtain that strong com-
pleteness implies maximality.

Proposition 2. For any T -equivalence E, all strongly complete T -E-order-
ings are maximal.

Now the question is whether the reverse implication holds, too. The an-
swer, however, is negative, at least if we consider a t-norm which is smaller
than the minimum t-norm TM.

Proposition 3. Assume that T 6= TM, Then, for any set X with at least
two elements, there exists a T -equivalence E and a T -E-ordering L for which
no strongly complete extension exists.

Proposition 3 states that [SZP] is not fulfillable for strong completeness if
T 6= TM. Trivially, if we have a T -E-ordering L for which no strongly complete
extension exists, [INT] cannot hold either, since it is not possible to represent
L as the intersection of strongly complete extensions if such extensions do
not exist. Moreover, [MAX] does not hold either, since a maximal extension
exists for all L (by Theorem 1), even for those for which no strongly complete
extension exists.

It remains open so far whether the same problems occur if T = TM is
considered. The following fundamental lemma provides the basis for a full
answer.

Lemma 1. Consider a TM-equivalence E. A T -E-ordering is maximal if and
only if it is strongly complete.
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Lemma 1 proves [MAX] for strong completeness for the special case T =
TM. As a direct consequence, we obtain that [SZP] holds as well.

Theorem 3 (Szpilrajn Theorem for TM-E-orderings). Suppose that E
is a TM-equivalence. Then any TM-E-ordering has a strongly complete ex-
tension.

The above Szpilrajn-like theorem makes inherent use of Zorn’s Lemma,
therefore, the result is purely existential.

The question remains whether [INT] can be fulfilled for the case T =
TM. The following theorem gives a unique characterization of those TM-
E-orderings which can be represented as intersections of strongly complete
extensions.

Theorem 4. Let E be a TM-equivalence and let L be a TM-E-ordering. Then
the following two statements are equivalent:

(i) There exists a family of strongly complete TM-E-orderings (Li)i∈I such
that the following representation holds:

L(x, y) = inf
i∈I

Li(x, y)

(ii) For all x, y ∈ X, L(x, y) ∈ {E(x, y), 1} holds.

Note that condition (ii) in Theorem 4 directly corresponds to the fact
that L is representable like in (4), however, without assuming linearity of the
crisp ordering ..

It is easy, for any X, to construct an example of a TM-equivalence E and
a TM-E-ordering L such that condition (ii) in Theorem 4 is violated. Hence,
[INT] does not hold for strong completeness in the case T = TM either.

6 T-Linearity

In this section, we consider a type of fuzzy completeness which is based on
the idea of generalizing by replacing the Boolean complement by the negation
induced by the residual implication of the underlying left-continuous t-norm
T [12]. The residual implication of a left-continuous t-norm T is defined as

T
→

(x, y) = sup{z ∈ [0, 1] | T (x, z) ≤ y}.

Then the corresponding negation is defined as

NT (x) = T
→

(x, 0) = sup{z ∈ [0, 1] | T (x, z) = 0}.

Definition 9. A binary fuzzy relation is called T -linear if and only if

NT

(
L(x, y)

)
≤ L(y, x)

holds for all x, y ∈ X.
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Note that NT

(
L(x, y)

)
≤ L(y, x) is equivalent to

T
→(

NT

(
L(x, y)

)
, L(y, x)

)
= 1,

therefore, the direct correspondence to (2) is evident.
The following fundamental theorem provides the basis for proving that

[SZP] and [INT] are preserved for T -linearity.

Theorem 5. [12] Consider a T -equivalence E and a T -E-ordering L. Then,
for any pair (a, b) ∈ X2, there exists a T -linear extension La,b ⊇ L which
fulfills L(a, b) = La,b(a, b).

As a trivial consequence, we obtain an appropriate linearization theorem,
i.e. a result showing that [SZP] holds for T -linearity.

Corollary 1 (Szpilrajn Theorem for T -linearity). [12] Given a T -equiv-
alence E, any T -E-ordering has a T -linear extension.

Moreover, as another consequence of Theorem 5, we can also show that
[INT] holds for T -linearity, too.

Corollary 2. [12] Consider a T -equivalence E. Then, for any T -E-ordering
L, there exists a family of T -linear T -E-orderings (Li)i∈I such that L can be
represented as the intersection of all Li, i.e., for all x, y ∈ X,

L(x, y) = inf
i∈I

Li(x, y).

It remains to clarify the correspondence between T -linearity and maxi-
mality.

Corollary 3. Let E be a T -equivalence and L be a T -E-ordering L. If L is
maximal, then L is T -linear.

As we will see next, however, the reverse does not hold in general which
implies that the fundamental property [MAX] cannot be preserved for T -
linearity.

Proposition 4. For all domains X with at least two elements, there exists
a T -equivalence E and a T -E-ordering L which fulfills T -linearity, but which
is not maximal.

Nonchalantly speaking, this means that T -linearity is, in any case, a prop-
erty that is “strictly weaker” than maximality. This is particularly true if the
t-norm T does not have zero divisors. In such a case, T -linearity only means
that, for a fixed pair (x, y) ∈ X2, L(x, y) = 0 implies L(y, x) = 1; however,
if min

(
L(x, y), L(y, x)

)
> 0, L(x, y) and L(y, x) may take any values from

]0, 1] without violating T -linearity.
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7 S-Completeness

Now we study a generalization of strong completeness which is also well-
known in fuzzy preference modeling [9]. It is simply based on replacing the
disjunction in (1) by a general t-conorm.

Definition 10. Let S be a t-conorm. A binary fuzzy relation R on X is
called S-complete if and only if the following holds for all x, y ∈ X:

S
(
R(x, y), R(y, x)

)
= 1 (5)

In principle, it is possible to consider any t-conorm S. Since we are exam-
ining the completeness axioms in the framework of fuzzy orderings, it seems
reasonable (and this is also usual even in more general settings in fuzzy pref-
erence modeling) to assume a certain structural compatibility between the
underlying t-norm T and the t-conorm under consideration. For the remain-
ing section, therefore, assume that (T, S, N) is a de Morgan triple for some
strong negation N .

As the first important result, we obtain a full answer to all our questions
for the case that T does not have zero divisors.

Lemma 2. Provided that T does not have zero divisors, S-completeness is
equivalent to strong completeness.

Theorem 6. Assume that T does not have zero divisors. In the case T =
TM, the properties [SZP] and [MAX] hold for S-completeness. If T 6= TM,
none of the three fundamental properties holds.

In particular, this entails that S-completeness does not allow any of the
three fundamental properties for strict t-norms—including the important
product TP. Now let us approach t-norms with zero divisors. In the first
step, we consider t-norms inducing a strong negation.

Lemma 3. Consider a t-norm T such that NT is a strong negation. Provided
that S is chosen as

S(x, y) = NT

(
T (NT (x), NT (y))

)
,

then S-completeness is equivalent to T -linearity.

Theorem 7. Under the assumption that NT is a strong negation and that
we use N = NT , the fundamental properties [SZP] and [INT] hold for S-
completeness.

The class of t-norms inducing a strong negation includes all nilpotent t-
norms, most importantly the  Lukasiewicz t-norm TL. Moreover, Theorem 7 is
also applicable to so-called nilpotent Zadeh triples [4], i.e. de Morgan triples
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(TN , SN , N) where N is a strong negation and where TN and SN are defined
as follows:

TN (x, y) =
{

min(x, y) if y > N(x)
0 otherwise

SN (x, y) =
{

max(x, y) if x < N(y)
1 otherwise

This class also comprises the nilpotent minimum TnM for N(x) = 1− x.
It remains to study what happens if T does have zero divisors and if N 6=

NT (N = NT can only be fulfilled if T induces a strong negation, anyway).
The following theorem provides a sufficient condition for the fulfillment of
[SZP] and [INT].

Theorem 8. Consider a T -equivalence E. If N ≤ NT holds, i.e. N(x) ≤
NT (x) for all x ∈ [0, 1], S-completeness fulfills [SZP] and [INT].

Now let us study whether N ≤ NT is also a necessary condition for the
fulfillment of [SZP] and [INT] by S-completeness.

Lemma 4. Assume that X has at least two elements. If there is an α ∈]0, 1[
such that N(α) > NT (α) and additionally NT (NT (α)) = α holds, there exists
a T -equivalence E and a maximal T -E-ordering L which is not S-complete.

Theorem 9. Let X have at least two elements. If there is an α ∈]0, 1[ such
that N(α) > NT (α) and additionally NT (NT (α)) = α holds, S-completeness
fulfills none of the three fundamental properties.

The additional requirement NT (NT (α)) = α in Lemma 4 and Theorem 9
is not as strong as it might appear at first glance. First of all, if the underlying
t-norm T induces a strong negation, this requirement is fulfilled anyway. This
also implies that [SZP] and [INT] are fulfilled for  Lukasiewicz triples if and
only if N ≤ NT . The same is true for nilpotent Zadeh triples.

Moreover, if T is a continuous t-norm with zero divisors that is not nilpo-
tent, the conditions of Lemma 4 and Theorem 9, respectively, can be satisfied
which implies that none of the three fundamental properties can hold.

We can summarize these findings in the following way:

• If T = TM, S-completeness is equivalent to strong completeness and the
fundamental properties [SZP] and [MAX] are fulfilled.

• If T induces a strong negation NT (including the case of  Lukasiewicz
triples and nilpotent Zadeh triples), S-completeness fulfills [SZP] and
[INT] if and only if N ≤ NT .

• For all other continuous t-norms, none of the three fundamental proper-
ties can be fulfilled.

Some questions remain open for non-continuous, but left-continuous, t-norms
that have zero divisors and do not induce a strong negation. Such t-norms
exist of course [13], but they can be considered rather exotic objects of minor
practical relevance.
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8 Maximality

We are now in the following situation: strong completeness implies maximal-
ity, but not vice versa (except for T = TM; cf. Propositions 2 and 3 and
Lemma 1); maximality implies T -linearity, but not vice versa (cf. Corollary
3 and Proposition 4). On the one hand, this entails that strong complete-
ness is too strong a property to fulfill any fundamental properties (except
for T = TM). On the other hand, T -linearity fulfills [SZP] and [INT], but
is too weak a property to fulfill [MAX]. It remains unclear whether there
is an appropriate concept of fuzzy linearity/completeness “between” strong
completeness and T -linearity which maintains all three fundamental proper-
ties. As fulfillment of [MAX] would be nothing else but the equivalence of
maximality with this respective property, we can now treat maximality as a
concept of fuzzy linearity/completeness in its own right. It is clear then by
Theorem 1 that [SZP] is guaranteed to be fulfilled. The only problem remains
whether maximality has a reasonable axiomatization, i.e. a simple criterion
which allows to check whether a given T -E-ordering is maximal or not.

The following theorem provides a negative result. We obtain that maxi-
mality cannot be axiomatized in the usual way by considering pairs or triples
of elements only.

Theorem 10. Consider a domain X with at least four elements and assume
that there exists a value α ∈]0, 1[ such that

α = T
→(

α, T (α, α)
)
. (6)

Then there exists a T -equivalence E such that maximality of T -E-orderings
is not decidable by considering pairs or triples of elements only.

The condition that a value α ∈]0, 1[ fulfilling (6) exists is a merely tech-
nical prerequisite for the construction of counterexamples in the proof of
Theorem 10. Note that (6) is fulfilled by all continuous t-norms T 6= TM and
all left-continuous t-norms whose induced negation NT has a fixed point (e.g.
including all t-norms TN ).

Theorem 10 states that the fundamental property [MAX] cannot be main-
tained if we consider completeness axioms like (1) of (2) which both consider
pairs of elements only, except for strong completeness in case T = TM. Max-
imality is a kind of “global” property. In the crisp case, fortunately, maxi-
mality remains characterizable by a “local” axiom which only involves pairs
of elements. Theorem 10 shows that this nice characterization is lost in the
fuzzy case except for the minimum t-norm.

9 Summary and Conclusion

This paper has been concerned with evaluating three concepts of fuzzy lin-
earity/completeness with respect to the three fundamental properties [SZP],
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[INT], and [MAX]. The findings can be summarized as follows (see Table 1
for a tabular overview):

Strong completeness: this variant provides reasonable results for the min-
imum t-norm TM. In this case, [SZP] and [MAX] are fulfilled. A charac-
terization of those TM-E-orderings which admit a representation as in-
tersection of strongly complete TM-E-orderings in the sense of the [INT]
property has been given. If T 6= TM, none of the fundamental proper-
ties is preserved. Strong completeness, therefore, can only serve as an
appropriate fuzzy concept of linearity/completeness if T = TM.

T -linearity: the approach proposed by Höhle and Blanchard provides preser-
vation of [SZP] and [INT] for all left-continuous t-norms. [MAX], however,
cannot be satisfied.

S-completeness: in case that T does not have zero divisors, S-completeness
coincides with strong completeness (see above). If T is a continuous t-
norm that is not nilpotent, none of the three fundamental properties is
preserved. In case that T induces a strong negation, [SZP] and [INT]
are preserved if and only if N ≤ NT . If N = NT , S-completeness and
T -linearity are equivalent. The mechanisms underlying these findings are
always the results for T -linearity. From that point of view, S-completeness
does not provide an essential added value compared to T -linearity.

The first important conclusion that can be drawn from these results if we
restrict to commonly used t-norms (continuous t-norms and left-continuous
t-norms with strong negation): the three fundamental properties cannot be
preserved simultaneously, no matter which t-norm we choose.

Secondly, as there is no compact axiomatization of maximality in case
T 6= TM, the property [MAX] is not achievable anyway. As this is the prop-
erty that usually has the least practical relevance compared to [SZP] and
[INT], T -linearity constitutes a reasonable compromise that preserves these
two properties. However, T -linearity is a very weak, non-intuitive, and poorly
expressive concept if T does not induce a strong negation. If T does have a
strong negation, T -linearity is not just a compromise, but an almost perfect
choice, as T -linearity is equivalent to S-completeness for N = NT . This is
not just a nice interpretation, it particularly means that even the two in-
dependent fuzzifications of the classical linearity concepts (1) and (2) are
equivalent. This result can also be understood as another argument support-
ing the viewpoint that t-norms inducing strong negations are fundamentally
important and beneficial in fuzzy preference modeling [4,7,20].
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Table 1. An overview of the results achieved in this paper

strong
completeness

S-completeness
where (T, S, N)
is a de Morgan

triple

T -linearity

TM [SZP], [MAX] [SZP], [MAX] [SZP], [INT]

other t-norms
without zero

divisors (e.g. TP)
none none [SZP], [INT]

t-norms inducing
a strong negation
(e.g. TL, TnM)

none
[SZP], [INT],
iff N ≤ NT

[SZP], [INT]

other continuous
t-norms

none none [SZP], [INT]

other
left-continuous

t-norms

none ??? [SZP], [INT]
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