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Abstract. This contribution presents a fuzzy method for a particular kind of pixel
classification. It is one of the most important results of the development of an inspec-
tion system for a silk-screen printing process. The classification algorithm is applied
to a reference image in the initial step of the printing process in order to obtain
regions which are to be checked by applying different criteria. Tight limitations in
terms of computation speed have necessitated very specific, efficient methods which
operate locally. These methods are motivated and described in detail in the follow-
ing. Furthermore, the optimization of the parameters of the classification system
with genetic algorithms is discussed. Finally, the genetic approach is compared with
other probabilistic optimization methods.

Keywords. Fuzzy system, genetic algorithm, pixel classification, print inspection.

1 Introduction

The main goal of this project was to design an automatic inspection system
which does not sort out every print with defects, but only those with visible
defects which are really unacceptable for the consumer. It is clear that the
visibility of a defect depends on the structure of the print in its neighborhood.
While little spots can hardly be recognized in very chaotic areas, they can be
disturbing in rather homogeneous areas. So, the first step towards a sensitive
inspection is to partition the print into areas of different sensitivity which,
consequently, should be treated differently.



Homogeneous Edge Halftone Picture

Fig. 1. Magnifications of typical representatives of the four types.

For certain reasons which can be explained with the special principles of
this particular kind of silk-screen printing process it is sufficient to consider
only the following four types:

Homogeneous area: uniformly colored area;

Edge area: pixels within or close to visually significant edges;

Halftone: area which looks rather homogeneous from a certain distance,
although it is actually obtained by printing small raster dots of two or
more colors;

Picture: rastered area with high, chaotic deviations, in particular small
high-contrasted details.

The magnifications in Fig. 1 show how these areas typically look like at
the pixel level. Of course, transitions between two or more of these areas are
possible; hence, a fuzzy model is recommendable.

First of all, we should define precisely what, in our case, an image is:

Definition 1. An N x M matrix of the form

j=1,....M

((ur(i,3), g6, ), w3, 9)))

i=1,...,N

with three-dimensional entries (additive RGB model)

(ur(i,7),uy(i, §), up(i, 5)) € {0,...,255}3

is a model of a 2/ bit color image of size N x M. A coordinate pair (i, )
stands for a pizel, where i is the row index and j is the column index; the
values (ur(7,7),uq(i,7), up(i, j)) are called the gray values of the pixel (i, 7).

It is near at hand to use something like the variance of gray values in the
neighborhood of the pixels or an other measure for deviations to distinguish
between areas which show only low deviations, such as, homogeneous areas
and halftone areas, and areas with rather high deviations, such as, edges or
pictures.



On the contrary, it is intuitively clear that such a measure can never be
used to separate edge areas from picture areas, because any geometrical infor-
mation is ignored. Experiments have shown that well-known standard edge
detectors, such as, the Laplacian or the Mexican Hat, but also many other
locally operating filter masks [10], cannot distinguish sufficiently if deviations
are chaotic or anisotropic. Another possibility we also took into consideration
was to use wavelet transforms [3,13] or more sophisticated image segmenta-
tion methods [2,10]. Since we had to cope with serious restrictions in terms
of computation speed, such highly advanced methods, although they are effi-
cient, would require too much time. Finally, we found a fairly good alternative
which is based on the discrepancy norm. This approach uses only, like the
simplest filter masks, the closest neighborhood of a pixel. Figure 2 shows how
the neighbors of pixel (i,7) are enumerated for the algorithm.
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Fig. 2. Enumeration of the neighborhood of a pixel.

For an arbitrary but fixed pixel (i, j) we can define the enumeration map-
ping [ as shown in Table 1. If we plot one color extraction of the eight neigh-
bor pixels with respect to this enumeration, i.e (um(l(k)))ke{1 s} Where

x € {r,g,b}, we typically get curves like those shown in Fig. 3.
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Fig. 3. Typical gray value curves of the form u,(I(.)).




k l(k)

1( { 7j_1)
2(i—1,7—-1)
3(i—=1, 7 )
4/(i—1,741)
5(( i ,574+1)
6/1(i+1,7+1)
TW(i+1, 7 )
81(i+1,57—1)

Table 1. The enumeration mapping I(.).

From these sketches, it can be seen easily that a measure for the devia-
tions can be used to distinguish between homogeneous areas, halftones, and
the other two types. On the other hand, the most eye-catching difference
between the curves around pixels in pictures and edge areas is that, in the
case of an edge pixel, the peaks appear to be more connected while they are
mainly chaotic and narrow for a pixel in a picture area. So, a method which
judges the shape of the peaks should be used in order to separate edge areas
from pictures. A simple but effective method for this purpose is the so-called
discrepancy norm.

2 The Discrepancy Norm

Definition 2. The mapping

IIllp : R* — R
B

> T

1=

r —— max
1<a<f<n

is called discrepancy norm on R™.

In words, ||z||p is the absolute value of the maximal sum of consecutive
entries of the vector x. Obviously, unlike conventional norms, the signs and
the order of the entries play an essential role. Nevertheless, one easily verifies
that the mapping ||.||p is a norm on R”.

The connection to the concept of discrepancy in measure theory can be
motivated as follows: The discrepancy between two measures p and v on R
is usually defined as

D(,v) = sup |u([a,b]) — v ([a, b])] -
a<b



If we have two discrete measures 7z and 7 on the set {1,...,n} and if we
write z; = fi(i) and y; = (i), then D(, 7) equals || — y||p [8,15]. Thus, it
is reasonable to call ||.||p a discrepancy norm in R™.

Obviously, the computation of |.||p by strictly using the definition re-
quires O(n?) operations. The following theorem allows us to compute ||.|[p
with linear speed:

Theorem 1. For all x € R® we have

lzllp = opax Xp— min X,

where the values X; = ZZ:1 x; denote the partial sums (with the additional
setting Xo = 0).
Proof. If we assign 0 to xp and x,4; we obtain

B

C!
|lz||p =  max ‘ E zz‘ = ‘ E T — a:i
1<a<p<n+1 1<B<n+11<a<n+1
i= C!

i=1
Zrz >

1

max max
1<p<n 1<a<nl*

= maX max
1<p<n1<a<n

X5 — X,

= max Xg— min X,,
1<B<n 1<a<n

which completes the proof. |
The following theorem clarifies the relationship between the discrepancy

norm and conventional {, vector norms and, by this way, provides a motiva-
tion why the discrepancy norm can be useful for our classification problem.

Theorem 2. For all p € [1,00) and for all x € R* we have
_1 1—1
n"e -zl <llzllp <n' 77 - flzllp, (1)

where ||x||, denotes the classical l,-norm, i.e.,

n 1

P

il = (D Ll "
i=1

In the case p = 0o, we obtain

[#][c0 = max [z;] <|lz[|p <7 - max |z (2)
1<i<n 1<i<n



Proof. Trivially,

n
o < llellp < Yo
1=

Then the assertion follows from the relations

_1
n=r - lzlly < o,
St
n'Tw ey > (el
which can be proved using the Hoelder inequality. O

For the vectors

T = (17 _17 1a tee (_l)n_27 (_l)n_l)a
zy = (1,1,1,...,1),

we obtain the following:

l@1]lp =1
@2l =nr  [l@2flp =n

From these results, it can be seen easily that, for x; and xs, in the inequal-
ities (1) and (2), we indeed have equalities and that there is no monotonic
relationship between the discrepancy norm and any [,-norm with p € (1, 00).
Furthermore, it can be seen that the more entries with equal signs appear suc-
cessively, the higher the discrepancy norm is. On the contrary, for sequences
with alternating signs it is close to the supremum norm ||.||. Therefore, ||.||p
can be used for judging the connectedness of the peaks with equal signs.

3 The Fuzzy System

For each pixel (i,j), we consider its nearest eight neighbors enumerated as
defined in Table 1 which yields three vectors of gray values with 8 entries —
one for each color extraction. If we denote the mean values of all three gray
value curves as

8
Finj) = - > un(i(k),
k=1

0| =

9i,0) = g+ D ug(U(k)),
k=1

~ 1 S
k=1



the sums of quadratic deviations of the gray values can be computed as

8

iy ) =Y (ur(U(k)) = 7(i, 5))°,

k=1
8
ve(i, ) = Z (ug(1(k)) — g(i, )%,
k=1
(i, ) = Y (up(I(k)) = b(i, j))’.
k=1

Now we can take the sum of these three values as a measure for the size of
the deviations in the neighborhood of the pixel:

U(Zaj) = U'r‘(iaj) +’U!](i7j) +’Ub(i7j)

On the other hand, the sum of the discrepancy norms of the vectors,
where we subtract each entry by the mean value of all entries, can be used as
a criterion whether the pixel is within or close to a visually significant edge:

e(i, ) =llur((.)) = (7, ,P)llp + llug(1()) = (G, 9o +
lus(1(.)) = (b, , b)lIp

Of course, e itself can be used as an edge detector. Figure 4 shows how good
it works compared with the commonly used Mexican Hat filter mask.

The fuzzy decision is then carried out for each pixel (4, j) independently:
First of all, the characteristic values v(i, ) and e(i, j) are computed. These
values are taken as the input of a small fuzzy system with two inputs and one
output. Let us denote the linguistic variables on the input side with v and e.
Since the position of the pixel is of no relevance for the decision in this specific
application, indices can be omitted here. The input space of the variable v
is covered by three fuzzy sets which are labeled “low”, “med”, and “high".
Analogously, the input space of the variable e is covered by two fuzzy sets
which are labeled “low” and “high”. Experiments have shown that [0,600]
and [0,200] are appropriate universes of discourse for v and e, respectively.
For the decomposition of the input domains simple Ruspini partitions [11]
consisting of trapezoidal fuzzy subsets were chosen, where a family of fuzzy
subsets (u1, ... ,u) of a domain X is called Ruspini partition if and only if,
for all z € X, the equation

k
Zui(w) =1

holds. The typical shape of these partitions is shown in Fig. 5.

The output space is a set of linguistic labels, namely “Ho", “Ed", “Ha",
and “Pi", which are, of course, just abbreviations of the names of the four
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Fig. 4. Comparison between e and a standard 3 x 3 filter mask.
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Fig. 5. The fuzzy variables v and e.

types. Let us denote the output variable itself with ¢. Finally, the output of the
system for each pixel (i, j) is a fuzzy subset of {“Ho", “Ed", “Ha", “Pi"}. This
output set is computed by processing the values v(i, j) and e(i,j) through a
rule base with five rules, which cover all the possible combinations:

IF v is low THEN ¢ = Ho
IF v is med AND e is high THEN ¢ = Ed
IF v is high AND e is high THEN ¢ = Ed
IF v is med AND ¢ is low THEN ¢ = Ha
IF v is high AND e is low THEN t = Pi

In this application, ordinary Mamdani min/max-inference is used. Finally,
the degree to which “Ho", "Ed", "Ha", or “Pi" belong to the output set



can be regarded as the degree to which the particular pixel belongs to area
Homogeneous, Edge, Halftone, or Picture, respectively.

In our application, the images are taken by an RGB video camera with
a resolution of 720x576 pixels. We consider a clipping with approximately
250000 pixels. The A/D converter provides a resolution of 8 bit in each color
channel (compare with Def. 1). For such an image, the classification takes at
most two seconds on the hardware which had to be used (standard worksta-
tions with RISC CPUs, clock rates between 133MHz and 200MHz).

In this specific application, the raster dots and the pixels are of about
equal size and the images are, due to expensive high-end camera equipment,
remarkably sharp. If these conditions are not fulfilled, the performance of the
algorithm in terms of the quality of the decision can be considerably weaker.
The proposed methods are especially suited for the needs of this concrete
application — the price to be paid for the applicability of the methods under
such heavy time constraints is a certain loss of universality.

4 The Integration of the Classification System in the
Inspection Procedure

The speed of the printing machine is approximately one print per second.
The process can be stopped for at most four seconds. Our implementation
takes the first four prints to compute a reference from them, then the machine
is stopped for four cycles in order to have time for computing the classifi-
cation and for doing the other preparatory work, where the purpose of the
classification is twofold:

e It determines regions which can be interpreted with different criteria in
the further printing process.

e The second purpose, which has not yet been mentioned at all, is that
the classification of a pixel is used for computing a tolerance interval.
Such a tolerance interval determines to which extent the gray values of
a print image at a certain pixel may deviate from the reference image.
If the difference between a gray value of the reference and the image,
which should be checked, is bigger than the tolerance interval in at least
one of the three colors, a pixel is marked as suspicious and has then to
be looked at more carefully (by applying techniques which also take the
classification into account).

For the first point, a fuzzy classification seems to be unnecessary. The reason
why a fuzzy classification is used stems from the second point. The tolerance
interval of a certain pixel o (7, ) is computed as the sum of predefined default
intervals oo, 0E4, OHa, and op; for the four types of areas weighted with the



degree to which the pixel belongs to the respective area. Specifically,

tx(i,j) ox
X €{Ho,Ed,Ha,Pi}

(3)

X €{Ho,Ed,Ha,Pi}

which is, in some sense, a kind of Sugeno inference. Since Ruspini partitions
are used for the decomposition of the input domains and since traditional
Mamdani min/max inference is used for the evaluation of the rule base, the
equation

S ) =1 (4)

X €{Ho,Ed,Ha,Pi}

holds, and (3) simplifies to

oi,j)= Y. tx(i,5) ox.

X €{Ho,Ed,Ha,Pi}

Experiments have shown that, if crisp thresholds are used for the classifi-
cation instead of the fuzzy transitions above, the quality of the decision can
be unstable in transitional areas where at least one of the values v(i,j) or
e(i,7) is close to a threshold value. Obviously, the tolerance intervals can flip
abruptly in such areas. As a consequence, it can happen — in real printing,
this is often the case — that pixels in transitional areas are either checked
too tolerantly or too rigidly. In the fuzzy case, however, pixels in transitional
areas are supplied with transitional tolerance intervals. From these consider-
ations it might be clear that the fuzzy model is indispensable.

After computing the reference and its classification, the regular prints of
the printing order are checked within the regular cycle time of one second
mentioned above (see [1] for more details).

5 The Optimization of the Classification System

As apparent from Fig. 5, the behavior of the fuzzy system depends on six
parameters, which determine the shape of the two fuzzy partitions. In the
first step, these parameters were tuned manually. Of course, we have also
taken into consideration the use of (semi)automatic methods for finding the
optimal parameters.

The general problem is not to find an appropriate algorithm for doing that
task, the difficulty is how to judge such a classification. Since the specification
of the four types of areas is given in a vague, verbal form, no mathematical
criterion is available for that. Hence, a model-based optimization process is,



because of the lack of a model, not applicable. The alternative is a knowledge-
based approach, which poses the question how to generate this knowledge —
the examples from which the algorithm should learn.

Our optimization procedure consists of a painting program which offers
tools, such as, a pencil, a rubber, a filling algorithm, and many more, which
can be used to make a classification of a given representative image by hand.
Then an optimization algorithm can be used to find that configuration of
parameters which yields the maximal degree of matching between the desired
result and the output actually obtained by the classification system.

Assume that we have N sample pixels for which the pairs of input val-
ues (ﬁkaék)ke{17...,N} are computed and that we already have a reference
classification of these pixels

H(k) = (Bno(k), tea(k), tna(k), Boi(k)), ke {l,...,N}.

Since, as soon as the values v and € are computed, the geometry of the image
plays no role anymore, we can switch to one-dimensional indices here. Then
one possibility to define the performance (fitness) of the fuzzy system would
be

1 & N
& 2 dlt(k), (k) (5)
k=1

where

t(k) = (tho(k), tea(k), tHa(k), tri(k))

are the classifications actually obtained by the fuzzy system for the input
pairs (g, €x) with respect to the parameters vy, v2, vs, v4, €1, and es; d(.,.)
is an arbitrary (pseudo-)metric on [0,1]%. The problem of this brute force
approach is that the output of the fuzzy system has to be evaluated for each
pair (vg, er), even if many of these values are similar or even equal. In order
to keep the amount of computation low, we “simplified” the procedure by a
“clustering process” as follows:

1. Choose a partition (Py, ... , Px) of the input space and count the number
(n1,-..,nKk) of sample points {pi,...,p;,.} each part contains.

2. Then the desired classification of a certain part (cluster) can be defined
as

s I &,
tx(Pi) = — > ix(p)),
(2 J:1
where X € {Ho, Ed, Ha, Pi}. Due to Eq. (4), we can conclude that, for all
ied{l,..., K},
> ix(P) = 1. (6)

X €{Ho,Ed,Ha,Pi}



3. If ¢ is a function which maps each cluster to a representative value (e.g.,
its center of gravity), we can define the fitness (objective) function as

K
100 1
f(Uly---,U4,€1,€2)—T;ni'<1—5'di>, (7)

with
di = > (Ix(P) — tx(6(P)))".

X €{Ho,Ed,Ha,Pi}

Note that, since Eqs. (4) and (6) hold, the value d; always lies between 0
and 2.

If the number of parts is chosen moderately (e.g. a rectangular 64 x 32 net
which yields K = 2048) the evaluation of the fitness function takes consider-
ably less time than a direct application of Eq. (5).

In Eq. (7), the fitness is already transformed such that it can be regarded
as a degree of matching between the desired and the actually obtained clas-
sification measured in percent. This value is always positive and has to be
maximized.

Figure 6 shows cross sections of such a fitness function, where, in each
case, five parameters are kept, constant and only one is varied. From this figure
it seems obvious that f is continuous but not necessarily differentiable — a
fact which can proved easily — and that there can be a lot of local maxima.
As a consequence, all conventional continuous optimization methods, which
make fundamental use of derivatives, such as, gradient descent, Newton or
Quasi-Newton methods, cannot be applied. So, it was near at hand to use a
probabilistic optimization method. This, first of all, requires a (binary) coding
of the parameters. We decided to use a coding which maps the parameters
vy, Vs, U3, U4, €1, and ey to a string of six 8-bit integers s1, ... , s¢ which range
from 0 to 255. The following table shows how the encoding and decoding is
done:

S1 = U1 U1 = 81

S2 = V2 —V1 V2 =581+ 82

§3 = V3 —V2 Uz =81+ S2+ 83

S4 = VU4 — V3 Vg = 81+ 83+ 83+ 84
S5 = €1 €1 = S5

S¢ = ez —e1 ez = S5+ Sg

If fuzzy sets of a more general shape are used, this coding is not applicable.
Codings for such cases can be found for instance in [12] or [14].

A class of probabilistic optimization methods which has come into fashion
in the last years are genetic algorithms (GAs). They can be regarded as sim-
plified simulations of an evolution process, based on the principles of genetic
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Fig. 6. Cross sections of functions of type (7).

reproduction employing mechanisms, such as, selection, mutation, and sexual
reproduction. Another important difference between GAs and conventional
optimization algorithms is that GAs do not operate on single points but on
whole populations of points (which are, in this case, binary strings).

We first tried a standard GA [5,6] with proportional (standard roulette
wheel) selection, one-point crossing over with uniform selection of the crossing
point, bitwise mutation, and full replacement of the parent generation by its
offsprings. The size of the population m was constant, the length of the strings
was 48 (compare with the coding above, see [4] or [5] for an overview of more
sophisticated variants of GAs). The following algorithm shows schematically
how such a procedure works.

Algorithm 1.

t:=0;
Compute initial population By = (b1,0,... ,bm0);

WHILE stopping condition not fulfilled DO
BEGIN
FOR i:=1TO m DO
select an individual b; 11 from By;

FORi:=1TO m—1STEP 2DO
IF Random|0, 1] < pc THEN
cross bjpy1 with biy1 ¢41;

FOR i:=1TO m DO
eventually mutate b; ¢4 1;

t:=t+1
END



As apparent from Alg. 1, crossing over is only done with a probability
pc- Figure 7 shows graphically how standard one-point crossing over works.
In the mutation step each bit is negated with a fixed, yet small, probability
pm-

Parents Children

o0TT0T00TTI  [000TT0T01100

110011001100 11001100011 1]

Fig. 7. One-point crossing over of binary strings.

Roulette wheel selection, more specifically, selects an individual with a
probability proportional to its normalized fitness (i.e., the sum of fitness
values of all individuals is scaled such that their sum is 1). This type of
selection is, of course, only applicable if all fitness values are greater than
zero, which is guaranteed in this application.

Algorithm 2.

x := Random|[0, 1];
1:=1

WHILE i <m & z < 5, f(bje)/ X, f(bje) DO
=1+ 1;

select b; t;

In order to compare the performance of the GAs with other well-known
probabilistic optimization methods, we additionally considered the following
methods:

Hill climbing: always moves to the best-fitted neighbor of the current string
until a local maximum is reached; the initial string is generated randomly.

Simulated annealing: powerful, often used probabilistic method which is
based on the imitation of the solidification of a crystal under slowly de-
creasing temperature (see [7,9] for a detailed description)



Each one of these methods requires only a few binary operations in each step.
Most of the time is consumed by the evaluation of the fitness function. So, it
is near at hand to take the number of evaluations as a measure for the speed
of the algorithms.

Results

All these algorithms are probabilistic methods, therefore their results are not
well-determined, they can differ randomly within certain boundaries. In order
to get more information about their average behavior, we tried each one of
them 20 times for one certain problem. For the given problem we found out
that the maximal degree of matching between the reference classification and
the classification actually obtained by the fuzzy system was 94.3776% . Table
2 shows the results in more detail, where fi,ax is the fitness of the best and
fein is the fitness of the worst solution; f denotes the average fitness of the
20 solutions, oy denotes the standard deviation of the fitness values of the 20
solutions, and # stands for the average number of evaluations of the fitness
function which was necessary until the stopping criterion (i.e. that a local
maximum is reached in case of hill climbing or that no further improvement
can be observed for 100 iterations in case of simulated annealing or genetic
algorithms) was fulfilled.

The hill climbing method with a random selection of the initial string
converged rather quickly. Unfortunately, it was always trapped in a local
maximum, but never reached the global solution (at least in these 20 trials).

The simulated annealing algorithm showed similar behavior at the very
beginning. After tuning the parameters involved, the performance improved
remarkably.

The raw genetic algorithm was implemented with a population size of 20;
pc was set to 0.15, pn was 0.005. It behaved pretty well from the beginning,
but it seemed inferior to the improved simulated annealing.

Next, we tried a hybrid GA, where we kept the genetic operations and pa-
rameters of the raw GA, but every 50th generation the best-fitted individual
was taken as initial string for a hill climbing method. Although the perfor-
mance increased slightly, the hybrid method still seemed to be worse than the
improved simulated annealing algorithm. The reason, that the effects of this
modification were not so dramatic, might be that the probability is rather
high that the best individual is already a local maximum. So we modified
the procedure again. This time, a randomly chosen individual of every 25th
generation was used as initial solution of the hill climbing method. The re-
sult exceeded the expectations by far. The algorithm was, in all cases, nearer
to the global solution than the improved simulated annealing was (compare
with Table 2), but, surprisingly, sufficed with less invocations of the fitness
function.



fmax | fmin f af #

Hill Climbing 94.3659(89.6629(93.5536|1.106| 862

Simulated Annealing|94.3648|89.6625(93.5639(1.390| 1510

Improved Simulated

. 94.3773(93.7056|94.2697|0.229|21968
Annealing

GA 94.3760(93.5927|94.2485|0.218| 9910

Hybrid GA (elite) 94.3760(93.6299|94.2775|0.207| 7460

Hybrid GA (random)|94.3776(94.3362|94.3693|0.009|18631

Table 2. Some results

Figure 8 shows a graphical visualization of the results. Each line in this
graph corresponds to one algorithm. The curve shows, for a given fitness
value z, how many of the 20 different solutions had a fitness higher or equal
to . It can be seen easily from this graph that the hybrid GA with random
selection led to the best results. Note that the z-axis is not a linear scale in
this figure. It was transformed in order to make small differences visible.

6 Conclusion

In the first part of this paper, we demonstrated the synergy which lies in
the combination of fuzzy systems with, more or less, conventional methods.
This combination is in particular suitable for designing specific algorithms
for time-critical problems. This specifity, however, often results in a loss of
universality.

In the second part, we showed the suitability of genetic algorithms for
finding the optimal parameters of a fuzzy system, especially if the analytical
properties of the objective function are bad. Moreover, hybridization has been
discovered as an enormous potential for improvements of genetic algorithms.

Acknowledgement

Ulrich Bodenhofer is working in the framework of the Kplus Competence
Center Program which is funded by the Austrian Government, the Provincial
Government of Upper Austria, and the Chamber of Commerce of Upper
Austria.



20 20
E
18 # 18
E
16 16
E
14 14
E
12 4 12
10 H 10
8 - 8
[ - 6
4 -4
2 - 2
- T T T T T T T N
90.0000 94.2006 94.2759 94.3206 94.3526 94.3776
x  Hill Climbing < Genetic Algorithm
e Simulated Annealing o Hybrid GA (elite)

o Improved Simulated Annealing % Hybrid GA (random)

Fig. 8. A graphical representation of the results.
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