
Geneti Optimization of FuzzyClassi�ation Systems |A Case StudyUlrih Bodenhofer� and Erih Peter Klementy�Software Competene Center HagenbergA-4232 Hagenberg, AustriayFuzzy Logi Laboratorium Linz-HagenbergInstitut f�ur Algebra, Stohastik und wissensbasierte math. SystemeJohannes Kepler Universit�at, A-4040 Linz, AustriaAbstrat. This ontribution presents a fuzzy method for a partiular kind of pixellassi�ation. It is one of the most important results of the development of an inspe-tion system for a silk-sreen printing proess. The lassi�ation algorithm is appliedto a referene image in the initial step of the printing proess in order to obtainregions whih are to be heked by applying di�erent riteria. Tight limitations interms of omputation speed have neessitated very spei�, eÆient methods whihoperate loally. These methods are motivated and desribed in detail in the follow-ing. Furthermore, the optimization of the parameters of the lassi�ation systemwith geneti algorithms is disussed. Finally, the geneti approah is ompared withother probabilisti optimization methods.Keywords. Fuzzy system, geneti algorithm, pixel lassi�ation, print inspetion.1 IntrodutionThe main goal of this projet was to design an automati inspetion systemwhih does not sort out every print with defets, but only those with visibledefets whih are really unaeptable for the onsumer. It is lear that thevisibility of a defet depends on the struture of the print in its neighborhood.While little spots an hardly be reognized in very haoti areas, they an bedisturbing in rather homogeneous areas. So, the �rst step towards a sensitiveinspetion is to partition the print into areas of di�erent sensitivity whih,onsequently, should be treated di�erently.



Homogeneous Edge Halftone Piture
Fig. 1. Magni�ations of typial representatives of the four types.For ertain reasons whih an be explained with the speial priniples ofthis partiular kind of silk-sreen printing proess it is suÆient to onsideronly the following four types:Homogeneous area: uniformly olored area;Edge area: pixels within or lose to visually signi�ant edges;Halftone: area whih looks rather homogeneous from a ertain distane,although it is atually obtained by printing small raster dots of two ormore olors;Piture: rastered area with high, haoti deviations, in partiular smallhigh-ontrasted details.The magni�ations in Fig. 1 show how these areas typially look like atthe pixel level. Of ourse, transitions between two or more of these areas arepossible; hene, a fuzzy model is reommendable.First of all, we should de�ne preisely what, in our ase, an image is:De�nition 1. An N �M matrix of the form�(ur(i; j); ug(i; j); ub(i; j))�j=1;::: ;Mi=1;::: ;Nwith three-dimensional entries (additive RGB model)(ur(i; j); ug(i; j); ub(i; j)) 2 f0; : : : ; 255g3is a model of a 24 bit olor image of size N �M . A oordinate pair (i; j)stands for a pixel, where i is the row index and j is the olumn index; thevalues (ur(i; j); ug(i; j); ub(i; j)) are alled the gray values of the pixel (i; j).It is near at hand to use something like the variane of gray values in theneighborhood of the pixels or an other measure for deviations to distinguishbetween areas whih show only low deviations, suh as, homogeneous areasand halftone areas, and areas with rather high deviations, suh as, edges orpitures.



On the ontrary, it is intuitively lear that suh a measure an never beused to separate edge areas from piture areas, beause any geometrial infor-mation is ignored. Experiments have shown that well-known standard edgedetetors, suh as, the Laplaian or the Mexian Hat, but also many otherloally operating �lter masks [10℄, annot distinguish suÆiently if deviationsare haoti or anisotropi. Another possibility we also took into onsiderationwas to use wavelet transforms [3,13℄ or more sophistiated image segmenta-tion methods [2,10℄. Sine we had to ope with serious restritions in termsof omputation speed, suh highly advaned methods, although they are eÆ-ient, would require too muh time. Finally, we found a fairly good alternativewhih is based on the disrepany norm. This approah uses only, like thesimplest �lter masks, the losest neighborhood of a pixel. Figure 2 shows howthe neighbors of pixel (i; j) are enumerated for the algorithm.
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y(i; j)12 3 458 7 6Fig. 2. Enumeration of the neighborhood of a pixel.For an arbitrary but �xed pixel (i; j) we an de�ne the enumeration map-ping l as shown in Table 1. If we plot one olor extration of the eight neigh-bor pixels with respet to this enumeration, i.e �ux(l(k))�k2f1;::: ;8g, wherex 2 fr; g; bg, we typially get urves like those shown in Fig. 3.6 - 6 - 6 - 6 -
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Fig. 3. Typial gray value urves of the form ux(l(:)).



k l(k)1 ( i ; j � 1 )2 ( i� 1 ; j � 1 )3 ( i� 1 ; j )4 ( i� 1 ; j + 1 )5 ( i ; j + 1 )6 ( i+ 1 ; j + 1 )7 ( i+ 1 ; j )8 ( i+ 1 ; j � 1 )Table 1. The enumeration mapping l(:).From these skethes, it an be seen easily that a measure for the devia-tions an be used to distinguish between homogeneous areas, halftones, andthe other two types. On the other hand, the most eye-athing di�erenebetween the urves around pixels in pitures and edge areas is that, in thease of an edge pixel, the peaks appear to be more onneted while they aremainly haoti and narrow for a pixel in a piture area. So, a method whihjudges the shape of the peaks should be used in order to separate edge areasfrom pitures. A simple but e�etive method for this purpose is the so-alleddisrepany norm.2 The Disrepany NormDe�nition 2. The mappingk:kD : Rn �! R+x 7�! max1�����n��� �Pi=� xi���is alled disrepany norm on Rn .In words, kxkD is the absolute value of the maximal sum of onseutiveentries of the vetor x. Obviously, unlike onventional norms, the signs andthe order of the entries play an essential role. Nevertheless, one easily veri�esthat the mapping k:kD is a norm on Rn .The onnetion to the onept of disrepany in measure theory an bemotivated as follows: The disrepany between two measures � and � on Ris usually de�ned asD(�; �) = supa�b j� ([a; b℄)� � ([a; b℄)j :



If we have two disrete measures � and � on the set f1; : : : ; ng and if wewrite xi = �(i) and yi = �(i), then D(�; �) equals kx� ykD [8,15℄. Thus, itis reasonable to all k:kD a disrepany norm in Rn .Obviously, the omputation of k:kD by stritly using the de�nition re-quires O(n2) operations. The following theorem allows us to ompute k:kDwith linear speed:Theorem 1. For all x 2 Rn we havekxkD = max0���nX� � min0���nX�;where the values Xj =Pji=1 xi denote the partial sums (with the additionalsetting X0 = 0).Proof. If we assign 0 to x0 and xn+1 we obtainkxkD = max1�����n+1��� �Xi=� xi��� = max1���n+1 max1���n+1��� �Xi=1 xi � ��1Xi=1 xi���= max1���n max1���n��� �Xi=1 xi � �Xi=1 xi��� = max1���n max1���n���X� �X����= max1���nX� � min1���nX�;whih ompletes the proof. 2The following theorem lari�es the relationship between the disrepanynorm and onventional lp vetor norms and, by this way, provides a motiva-tion why the disrepany norm an be useful for our lassi�ation problem.Theorem 2. For all p 2 [1;1) and for all x 2 Rn we haven� 1p � kxkp � kxkD � n1� 1p � kxkp; (1)where kxkp denotes the lassial lp-norm, i.e.,kxkp = � nXi=1 jxijp� 1p :In the ase p =1, we obtainkxk1 = max1�i�n jxij � kxkD � n � max1�i�n jxij: (2)



Proof. Trivially, max1�i�n jxij � kxkD � nXi=1 jxij:Then the assertion follows from the relationsn� 1p � kxkp � kxk1;n1� 1p � kxkp � kxk1;whih an be proved using the Hoelder inequality. 2For the vetors x1 = �1;�1; 1; : : : ; (�1)n�2; (�1)n�1�;x2 = �1; 1; 1; : : : ; 1�;we obtain the following:kx1kp = n 1p kx1kD = 1kx2kp = n 1p kx2kD = nFrom these results, it an be seen easily that, for x1 and x2, in the inequal-ities (1) and (2), we indeed have equalities and that there is no monotonirelationship between the disrepany norm and any lp-norm with p 2 (1;1).Furthermore, it an be seen that the more entries with equal signs appear su-essively, the higher the disrepany norm is. On the ontrary, for sequeneswith alternating signs it is lose to the supremum norm k:k1. Therefore, k:kDan be used for judging the onnetedness of the peaks with equal signs.3 The Fuzzy SystemFor eah pixel (i; j), we onsider its nearest eight neighbors enumerated asde�ned in Table 1 whih yields three vetors of gray values with 8 entries |one for eah olor extration. If we denote the mean values of all three grayvalue urves as �r(i; j) = 18 � 8Xk=1 ur(l(k));�g(i; j) = 18 � 8Xk=1 ug(l(k));�b(i; j) = 18 � 8Xk=1 ub(l(k));



the sums of quadrati deviations of the gray values an be omputed asvr(i; j) = 8Xk=1 �ur(l(k))� �r(i; j))2;vg(i; j) = 8Xk=1 �ug(l(k))� �g(i; j))2;vb(i; j) = 8Xk=1 �ub(l(k))� �b(i; j))2:Now we an take the sum of these three values as a measure for the size ofthe deviations in the neighborhood of the pixel:v(i; j) = vr(i; j) + vg(i; j) + vb(i; j)On the other hand, the sum of the disrepany norms of the vetors,where we subtrat eah entry by the mean value of all entries, an be used asa riterion whether the pixel is within or lose to a visually signi�ant edge:e(i; j) =kur(l(:))� (�r; : : : ; �r)kD + kug(l(:)) � (�g; : : : ; �g)kD +kub(l(:))� (�b; : : : ;�b)kDOf ourse, e itself an be used as an edge detetor. Figure 4 shows how goodit works ompared with the ommonly used Mexian Hat �lter mask.The fuzzy deision is then arried out for eah pixel (i; j) independently:First of all, the harateristi values v(i; j) and e(i; j) are omputed. Thesevalues are taken as the input of a small fuzzy system with two inputs and oneoutput. Let us denote the linguisti variables on the input side with v and e.Sine the position of the pixel is of no relevane for the deision in this spei�appliation, indies an be omitted here. The input spae of the variable vis overed by three fuzzy sets whih are labeled \low", \med", and \high".Analogously, the input spae of the variable e is overed by two fuzzy setswhih are labeled \low" and \high". Experiments have shown that [0; 600℄and [0; 200℄ are appropriate universes of disourse for v and e, respetively.For the deomposition of the input domains simple Ruspini partitions [11℄onsisting of trapezoidal fuzzy subsets were hosen, where a family of fuzzysubsets (�1; : : : ; �k) of a domain X is alled Ruspini partition if and only if,for all x 2 X , the equation kXi=1 �i(x) = 1holds. The typial shape of these partitions is shown in Fig. 5.The output spae is a set of linguisti labels, namely \Ho", \Ed", \Ha",and \Pi", whih are, of ourse, just abbreviations of the names of the four
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Withoutnoise

Withaddednois
e
Fig. 4. Comparison between e and a standard 3� 3 �lter mask.6 -\\\\���� \\\\����low med highv1 v2 v3 v4 6 -lowe1lllll,,,,, highe2Fig. 5. The fuzzy variables v and e.types. Let us denote the output variable itself with t. Finally, the output of thesystem for eah pixel (i; j) is a fuzzy subset of f\Ho"; \Ed"; \Ha"; \Pi"g. Thisoutput set is omputed by proessing the values v(i; j) and e(i; j) through arule base with �ve rules, whih over all the possible ombinations:IF v is low THEN t = HoIF v is med AND e is high THEN t = EdIF v is high AND e is high THEN t = EdIF v is med AND e is low THEN t = HaIF v is high AND e is low THEN t = PiIn this appliation, ordinary Mamdani min/max-inferene is used. Finally,the degree to whih \Ho", \Ed", \Ha", or \Pi" belong to the output set



an be regarded as the degree to whih the partiular pixel belongs to areaHomogeneous, Edge, Halftone, or Piture, respetively.In our appliation, the images are taken by an RGB video amera witha resolution of 720�576 pixels. We onsider a lipping with approximately250000 pixels. The A/D onverter provides a resolution of 8 bit in eah olorhannel (ompare with Def. 1). For suh an image, the lassi�ation takes atmost two seonds on the hardware whih had to be used (standard worksta-tions with RISC CPUs, lok rates between 133MHz and 200MHz).In this spei� appliation, the raster dots and the pixels are of aboutequal size and the images are, due to expensive high-end amera equipment,remarkably sharp. If these onditions are not ful�lled, the performane of thealgorithm in terms of the quality of the deision an be onsiderably weaker.The proposed methods are espeially suited for the needs of this onreteappliation | the prie to be paid for the appliability of the methods undersuh heavy time onstraints is a ertain loss of universality.4 The Integration of the Classi�ation System in theInspetion ProedureThe speed of the printing mahine is approximately one print per seond.The proess an be stopped for at most four seonds. Our implementationtakes the �rst four prints to ompute a referene from them, then the mahineis stopped for four yles in order to have time for omputing the lassi�-ation and for doing the other preparatory work, where the purpose of thelassi�ation is twofold:� It determines regions whih an be interpreted with di�erent riteria inthe further printing proess.� The seond purpose, whih has not yet been mentioned at all, is thatthe lassi�ation of a pixel is used for omputing a tolerane interval.Suh a tolerane interval determines to whih extent the gray values ofa print image at a ertain pixel may deviate from the referene image.If the di�erene between a gray value of the referene and the image,whih should be heked, is bigger than the tolerane interval in at leastone of the three olors, a pixel is marked as suspiious and has then tobe looked at more arefully (by applying tehniques whih also take thelassi�ation into aount).For the �rst point, a fuzzy lassi�ation seems to be unneessary. The reasonwhy a fuzzy lassi�ation is used stems from the seond point. The toleraneinterval of a ertain pixel �(i; j) is omputed as the sum of prede�ned defaultintervals �Ho, �Ed, �Ha, and �Pi for the four types of areas weighted with the



degree to whih the pixel belongs to the respetive area. Spei�ally,�(i; j) = PX2fHo;Ed;Ha;Pig tX (i; j) � �XPX2fHo;Ed;Ha;Pig tX(i; j) (3)whih is, in some sense, a kind of Sugeno inferene. Sine Ruspini partitionsare used for the deomposition of the input domains and sine traditionalMamdani min/max inferene is used for the evaluation of the rule base, theequation XX2fHo;Ed;Ha;Pig tX(i; j) = 1 (4)holds, and (3) simpli�es to�(i; j) = XX2fHo;Ed;Ha;Pig tX(i; j) � �X :Experiments have shown that, if risp thresholds are used for the lassi�-ation instead of the fuzzy transitions above, the quality of the deision anbe unstable in transitional areas where at least one of the values v(i; j) ore(i; j) is lose to a threshold value. Obviously, the tolerane intervals an ipabruptly in suh areas. As a onsequene, it an happen | in real printing,this is often the ase | that pixels in transitional areas are either hekedtoo tolerantly or too rigidly. In the fuzzy ase, however, pixels in transitionalareas are supplied with transitional tolerane intervals. From these onsider-ations it might be lear that the fuzzy model is indispensable.After omputing the referene and its lassi�ation, the regular prints ofthe printing order are heked within the regular yle time of one seondmentioned above (see [1℄ for more details).5 The Optimization of the Classi�ation SystemAs apparent from Fig. 5, the behavior of the fuzzy system depends on sixparameters, whih determine the shape of the two fuzzy partitions. In the�rst step, these parameters were tuned manually. Of ourse, we have alsotaken into onsideration the use of (semi)automati methods for �nding theoptimal parameters.The general problem is not to �nd an appropriate algorithm for doing thattask, the diÆulty is how to judge suh a lassi�ation. Sine the spei�ationof the four types of areas is given in a vague, verbal form, no mathematialriterion is available for that. Hene, a model-based optimization proess is,



beause of the lak of a model, not appliable. The alternative is a knowledge-based approah, whih poses the question how to generate this knowledge |the examples from whih the algorithm should learn.Our optimization proedure onsists of a painting program whih o�erstools, suh as, a penil, a rubber, a �lling algorithm, and many more, whihan be used to make a lassi�ation of a given representative image by hand.Then an optimization algorithm an be used to �nd that on�guration ofparameters whih yields the maximal degree of mathing between the desiredresult and the output atually obtained by the lassi�ation system.Assume that we have N sample pixels for whih the pairs of input val-ues (~vk; ~ek)k2f1;::: ;Ng are omputed and that we already have a referenelassi�ation of these pixels~t(k) = (~tHo(k); ~tEd(k); ~tHa(k); ~tPi(k)); k 2 f1; : : : ; Ng:Sine, as soon as the values ~v and ~e are omputed, the geometry of the imageplays no role anymore, we an swith to one-dimensional indies here. Thenone possibility to de�ne the performane (�tness) of the fuzzy system wouldbe 1N NXk=1 d(t(k); ~t(k)); (5)where t(k) = (tHo(k); tEd(k); tHa(k); tPi(k))are the lassi�ations atually obtained by the fuzzy system for the inputpairs (~vk; ~ek) with respet to the parameters v1, v2, v3, v4, e1, and e2; d(:; :)is an arbitrary (pseudo-)metri on [0; 1℄4. The problem of this brute foreapproah is that the output of the fuzzy system has to be evaluated for eahpair (vk; ek), even if many of these values are similar or even equal. In orderto keep the amount of omputation low, we \simpli�ed" the proedure by a\lustering proess" as follows:1. Choose a partition (P1; : : : ; PK) of the input spae and ount the number(n1; : : : ; nK) of sample points fpi1; : : : ; pinig eah part ontains.2. Then the desired lassi�ation of a ertain part (luster) an be de�nedas ~tX(Pi) = 1ni niXj=1 ~tX(pij);where X 2 fHo;Ed;Ha;Pig. Due to Eq. (4), we an onlude that, for alli 2 f1; : : : ;Kg, XX2fHo;Ed;Ha;Pig ~tX(Pi) = 1: (6)



3. If � is a funtion whih maps eah luster to a representative value (e.g.,its enter of gravity), we an de�ne the �tness (objetive) funtion asf(v1; : : : ; v4; e1; e2) = 100N KXi=1 ni ��1� 12 � di� ; (7)with di = XX2fHo;Ed;Ha;Pig�~tX(Pi)� tX(�(Pi))�2:Note that, sine Eqs. (4) and (6) hold, the value di always lies between 0and 2.If the number of parts is hosen moderately (e.g. a retangular 64 � 32 netwhih yields K = 2048) the evaluation of the �tness funtion takes onsider-ably less time than a diret appliation of Eq. (5).In Eq. (7), the �tness is already transformed suh that it an be regardedas a degree of mathing between the desired and the atually obtained las-si�ation measured in perent. This value is always positive and has to bemaximized.Figure 6 shows ross setions of suh a �tness funtion, where, in eahase, �ve parameters are kept onstant and only one is varied. From this �gureit seems obvious that f is ontinuous but not neessarily di�erentiable | afat whih an proved easily | and that there an be a lot of loal maxima.As a onsequene, all onventional ontinuous optimization methods, whihmake fundamental use of derivatives, suh as, gradient desent, Newton orQuasi-Newton methods, annot be applied. So, it was near at hand to use aprobabilisti optimization method. This, �rst of all, requires a (binary) odingof the parameters. We deided to use a oding whih maps the parametersv1, v2, v3, v4, e1, and e2 to a string of six 8-bit integers s1; : : : ; s6 whih rangefrom 0 to 255. The following table shows how the enoding and deoding isdone: s1 = v1 v1 = s1s2 = v2 � v1 v2 = s1 + s2s3 = v3 � v2 v3 = s1 + s2 + s3s4 = v4 � v3 v4 = s1 + s2 + s3 + s4s5 = e1 e1 = s5s6 = e2 � e1 e2 = s5 + s6If fuzzy sets of a more general shape are used, this oding is not appliable.Codings for suh ases an be found for instane in [12℄ or [14℄.A lass of probabilisti optimization methods whih has ome into fashionin the last years are geneti algorithms (GAs). They an be regarded as sim-pli�ed simulations of an evolution proess, based on the priniples of geneti
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v1 �! e1 �!Fig. 6. Cross setions of funtions of type (7).reprodution employing mehanisms, suh as, seletion, mutation, and sexualreprodution. Another important di�erene between GAs and onventionaloptimization algorithms is that GAs do not operate on single points but onwhole populations of points (whih are, in this ase, binary strings).We �rst tried a standard GA [5,6℄ with proportional (standard roulettewheel) seletion, one-point rossing over with uniform seletion of the rossingpoint, bitwise mutation, and full replaement of the parent generation by itso�springs. The size of the populationm was onstant, the length of the stringswas 48 (ompare with the oding above, see [4℄ or [5℄ for an overview of moresophistiated variants of GAs). The following algorithm shows shematiallyhow suh a proedure works.Algorithm 1.t := 0;Compute initial population B0 = (b1;0; : : : ; bm;0);WHILE stopping ondition not ful�lled DOBEGINFOR i := 1 TO m DOselet an individual bi;t+1 from Bt;FOR i := 1 TO m� 1 STEP 2 DOIF Random[0; 1℄ � pC THENross bi;t+1 with bi+1;t+1;FOR i := 1 TO m DOeventually mutate bi;t+1;t := t+ 1END



As apparent from Alg. 1, rossing over is only done with a probabilitypC. Figure 7 shows graphially how standard one-point rossing over works.In the mutation step eah bit is negated with a �xed, yet small, probabilitypM. Parents Children6? -1 1 0 0 1 1 0 0 1 1 0 0
0 0 0 1 1 0 1 0 0 1 1 1

1 1 0 0 1 1 0 0 0 1 1 1
0 0 0 1 1 0 1 0 1 1 0 0

Fig. 7. One-point rossing over of binary strings.Roulette wheel seletion, more spei�ally, selets an individual with aprobability proportional to its normalized �tness (i.e., the sum of �tnessvalues of all individuals is saled suh that their sum is 1). This type ofseletion is, of ourse, only appliable if all �tness values are greater thanzero, whih is guaranteed in this appliation.Algorithm 2.x := Random[0; 1℄;i := 1WHILE i < m & x <Pij=1 f(bj;t)=Pmj=1 f(bj;t) DOi := i+ 1;selet bi;t;In order to ompare the performane of the GAs with other well-knownprobabilisti optimization methods, we additionally onsidered the followingmethods:Hill limbing: always moves to the best-�tted neighbor of the urrent stringuntil a loal maximum is reahed; the initial string is generated randomly.Simulated annealing: powerful, often used probabilisti method whih isbased on the imitation of the solidi�ation of a rystal under slowly de-reasing temperature (see [7,9℄ for a detailed desription)



Eah one of these methods requires only a few binary operations in eah step.Most of the time is onsumed by the evaluation of the �tness funtion. So, itis near at hand to take the number of evaluations as a measure for the speedof the algorithms.ResultsAll these algorithms are probabilisti methods, therefore their results are notwell-determined, they an di�er randomly within ertain boundaries. In orderto get more information about their average behavior, we tried eah one ofthem 20 times for one ertain problem. For the given problem we found outthat the maximal degree of mathing between the referene lassi�ation andthe lassi�ation atually obtained by the fuzzy system was 94.3776% . Table2 shows the results in more detail, where fmax is the �tness of the best andfmin is the �tness of the worst solution; �f denotes the average �tness of the20 solutions, �f denotes the standard deviation of the �tness values of the 20solutions, and # stands for the average number of evaluations of the �tnessfuntion whih was neessary until the stopping riterion (i.e. that a loalmaximum is reahed in ase of hill limbing or that no further improvementan be observed for 100 iterations in ase of simulated annealing or genetialgorithms) was ful�lled.The hill limbing method with a random seletion of the initial stringonverged rather quikly. Unfortunately, it was always trapped in a loalmaximum, but never reahed the global solution (at least in these 20 trials).The simulated annealing algorithm showed similar behavior at the verybeginning. After tuning the parameters involved, the performane improvedremarkably.The raw geneti algorithm was implemented with a population size of 20;pC was set to 0:15, pM was 0:005. It behaved pretty well from the beginning,but it seemed inferior to the improved simulated annealing.Next, we tried a hybrid GA, where we kept the geneti operations and pa-rameters of the raw GA, but every 50th generation the best-�tted individualwas taken as initial string for a hill limbing method. Although the perfor-mane inreased slightly, the hybrid method still seemed to be worse than theimproved simulated annealing algorithm. The reason, that the e�ets of thismodi�ation were not so dramati, might be that the probability is ratherhigh that the best individual is already a loal maximum. So we modi�edthe proedure again. This time, a randomly hosen individual of every 25thgeneration was used as initial solution of the hill limbing method. The re-sult exeeded the expetations by far. The algorithm was, in all ases, nearerto the global solution than the improved simulated annealing was (omparewith Table 2), but, surprisingly, suÆed with less invoations of the �tnessfuntion.



fmax fmin �f �f #Hill Climbing 94.3659 89.6629 93.5536 1.106 862Simulated Annealing 94.3648 89.6625 93.5639 1.390 1510Improved SimulatedAnnealing 94.3773 93.7056 94.2697 0.229 21968GA 94.3760 93.5927 94.2485 0.218 9910Hybrid GA (elite) 94.3760 93.6299 94.2775 0.207 7460Hybrid GA (random) 94.3776 94.3362 94.3693 0.009 18631Table 2. Some resultsFigure 8 shows a graphial visualization of the results. Eah line in thisgraph orresponds to one algorithm. The urve shows, for a given �tnessvalue x, how many of the 20 di�erent solutions had a �tness higher or equalto x. It an be seen easily from this graph that the hybrid GA with randomseletion led to the best results. Note that the x-axis is not a linear sale inthis �gure. It was transformed in order to make small di�erenes visible.6 ConlusionIn the �rst part of this paper, we demonstrated the synergy whih lies inthe ombination of fuzzy systems with, more or less, onventional methods.This ombination is in partiular suitable for designing spei� algorithmsfor time-ritial problems. This spei�ty, however, often results in a loss ofuniversality.In the seond part, we showed the suitability of geneti algorithms for�nding the optimal parameters of a fuzzy system, espeially if the analytialproperties of the objetive funtion are bad. Moreover, hybridization has beendisovered as an enormous potential for improvements of geneti algorithms.AknowledgementUlrih Bodenhofer is working in the framework of the Kplus CompeteneCenter Program whih is funded by the Austrian Government, the ProvinialGovernment of Upper Austria, and the Chamber of Commere of UpperAustria.
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