PIXEL CLASSIFICATION: A FUZZY-GENETIC APPROACH
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Abstract. In this paper a fuzzy method for pixel classification is proposed. It is one of the most important results of
the development of an inspection system for a silk-screen printing process. The classification algorithm is applied
to a reference image in the initial step of the printing process in order to obtain regions which are to be checked
by applying different criteria. Tight limitations in terms of computation speed have necessitated very specific,
efficient methods which operate locally. These methods are motivated and presented in detail in the following.
Furthermore, the optimization of the parameters of the classification system with genetic algorithms is discussed.

Finally, the genetic approach is compared with other probilistic optimization methods.
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1 Introduction

The main goal of this project was to design an au-
tomatic inspection system which does not sort out
every print with defects, but only those which have
visible defects in a way which is really unaccept-
able for the consumer. It is clear that the visibility
of a defect depends on the structure of the print in
its neighborhood. While little spots can hardly be
recognized in very chaotic areas, they can be dis-
turbing in rather homogeneous areas. So, the first
step towards a sensitive inspection is to partition
the print into areas of different sensitivity which,
consequently, should be treated differently.

The following types were specified by experts
of our partner company. For certain reasons, which
can be explained with the special principles of the
silk-screen printing process, it is sufficient to con-
sider only these four types:

Homogeneous area: uniformly colored area;

Edge area: pixels within or close to visually sig-
nificant edges;

Halftone: area which looks rather homogeneous
from a certain distance, although it is actu-
ally obtained by printing small raster dots of
two or more colors;

Picture: rastered area with high, chaotic devia-
tions, in particular small high-contrasted de-
tails.

The magnifications in Figure 1 show how these ar-
eas typically look like at the pixel level. Of course,
transitions between two or more of these areas are
possible, hence a fuzzy model is recommendable.

First of all, we should define precisely what, in
our case, an image is:

Definition 1 An N x M matrix of the form
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is a model of a 24 bit color image of size N x M.
A coordinate pair (4, 7) stands for a pixel; the val-
ues (ur(%,7),uq(%,7), us(i, 7)) are called the gray
values of pixel (¢, 7).

It is near at hand to use something like the vari-
ance or an other measure for deviations to distin-
guish between areas which show only low devia-
tions, such as homogeneous areas and halftone ar-
eas, and areas with rather high deviations, such as
edges or pictures.

On the contrary, it is intuitively clear that such
a measure can never be used to separate edge areas
from picture areas, because of the neglection of any
geometrical information.

Experiments have shown that well-known stan-
dard edge detectors, such as the Laplacian or the
Mexican Hat, but also many other locally operat-
ing filter masks (see e.g. [7]), cannot distinguish
sufficiently if deviations are chaotic or anisotropic.
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Figure 1. Magnifications of typical representatives of the four types

Another possibility we also took into considera-
tion was to use wavelet transforms or more sophis-
ticated image segmentation methods (see for in-
stance [7] or [3]). Since we had to cope with se-
rious restrictions in terms of computation speed,
such highly advanced methods, although they are
efficient, would require too much time. Finally, we
found a fairly good alternative which is based on
the discrepancy norm. This approach uses only,
like the simpliest filter masks, the closest neigh-
borhood of a pixel.

For an arbitrary but fixed pixel (4, j) we defined
the enumeration mapping [ as follows:
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If we plot one color extraction of the eight
neighbor pixels with respect to this enumeration,
ie. (us(I(k)))geqr,.. 5y, Where o € {r,g,b}, we
typically get curves like those shown in Figure 2.

From these sketches it can be seen easily that
a measure for the deviations can be used to distin-
guish between homogeneous areas, halftones, and
the other two types. On the other hand, the most
eyecatching difference between the curves around
pixels in pictures and edge areas is that, in the case
of an edge pixel, the peaks appear to be more con-
nected while they are mainly chaotic and narrow
for a pixel in a picture area. So, a method which
judges the shape of the peaks should be used in or-
der to separate edge areas from pictures. A sim-
ple but effective method for this purpose is the so-
called discrepancy norm, for which there are al-
ready other applications in pattern recognition (cf.

(6.

2 The Discrepancy Norm

Definition 2 The mapping

l-lp: R — RF
B
I —  max [ @)
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is called discrepancy norm on R*.

In words, ||Z]|p is the absolute value of the max-
imal sum of consecutive coordinates of the vector
Z. Obviously, unlike conventional norms, the signs
and the order of the entries play an essential role.
Nevertheless, the mapping ||.|| p is a norm on R*.

It can be seen easily that the more entries with
equal signs appear successively, the higher the dis-
crepancy norm is. On the contrary, for sequences
with alternating signs it is close to the supremum
norm. Therefore, ||.||p can be used for judging the
connectedness of the peaks with equal signs.

Obviously, the computation of ||.||p by strictly
using the definition requires O(n?) operations.
The following theorem allows us to compute ||.|| p
with linear speed:

Theorem 1 For all £ € RX we have

3)
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where the values X; = S7_, z; denote the partial
sums.

A more detailed analysis of the discrepancy
norm can be found in [2].

3 The Fuzzy System

For each pixel (i,7) we consider its nearest eight
neighbors enumerated as described above, which
yields three vectors of gray values with 8 entries
— one for each color extraction. As already men-
tioned, the sum of the variances of the three vectors
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Figure 2: Typical gray value curves of the form (uw(l(k)))ke{l,...,S}

can be taken as a measure for the size of the devi-
ations in the neighborhood of the pixel. Let us de-
note this value with v(7, j). On the other hand, the
sum of the discrepancy norms of the vectors, where
we subtract each entry by the mean value of all en-
tries, can be used as a criterion whether the pixel is
within or close to a visually significant edge.

Of course, ¢ itself can be used as an edge detec-
tor. Figure 3 shows how good it works compared
with the commonly used Mexican Hat filter mask.

The fuzzy decision is then carried out for each
pixel (7,7) independently: First of all, the char-
acteristic values v(4,5) and e(i,7) are computed.
These values are taken as the input of a small fuzzy
system with two inputs and one output. Let us de-
note the linguistic variables on the input side with
v and e. Since the position of the pixel is of no
relevance for the decision in this concrete applica-
tion, indices can be omitted here. The input space
of the variable v is represented by three fuzzy sets
which are labeled “low”, “med”, and “high”. Anal-
ogously, the input space of the variable ¢ is repre-
sented by two fuzzy sets, which are labeled “low”
and “high”. Experiments have shown that [0, 600]
and [0, 200] are appropriate universes of discourse
for v and e, respectively. For the decomposition
of the input domains simple Ruspini partitions (see
[8]) consisting of trapezoidal fuzzy subsets were
chosen:
high

low med

1 V2 V3 V4

low high

ey es

The output space is a set of linguistic labels,
namely “Ho”, “Ed”, “Ha”, and “Pi", which are, of
course, just abbreviations of the names of the four
types. Let us denote the output variable itself with

t. Finally, the output of the system for each pixel
(¢,7) is a fuzzy subset of {“Ho”,“Ed”, “Ha", “Pi"}.
This output set is computed by processing the val-
ues v(i, ) and e(4, j) through a rulebase with five
rules, which cover all the possible combinations:

IF  wvislow THEN t=Ho
IF vismed AND eishigh THEN ¢=Ed
IF wvishigh AND eishigh THEN ¢=Ed
IF vismed AND eislow THEN t¢=Ha
IF wvishigh AND eislow THEN ¢=Pi

In this application ordinary Mamdani min/max-
inference is used. Finally, the degree to which
“Ho”, “Ed”, “Ha”, or “Pi” belong to the output set
can be regarded as the degree to which the par-
ticular pixel belongs to area Homogeneous, Edge,
Halftone, or Picture, respectively.

4 Experimental Results

In our concrete application we consider a clipping
of approximately 200000 pixels. For such an im-
age the classification takes at most three seconds
on the hardware which had to be used (a standard
workstation with a 150MHz RISC CPU). For the
given requirements the classifications are satisfac-
tory in almost all cases which appear in every day
printing.

The classification is done in the setup phase
of the printing process, which may take at most
four seconds. As already mentioned, the proposed
methods are especially suited for the needs of this
specific application. The price to be paid for the
applicability of the methods under such heavy time
constraints is a certain loss of universality.

For more details on the integration of the classi-
fication algorithm into the printing process see [1].

5 The Optimization of the Classification Sys-
tem

The behavior of the fuzzy system depends on six
parameters, v1,...,vq, €1, and eg, which deter-
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Figure 3: Comparison between e and a standard 3 x 3 filter mask

mine the shape of the two fuzzy partitions. In the
first step these parameters were tuned manually. Of
course, we have also taken into consideration the
use of (semi)automatic methods for finding the op-
timal parameters.

The general problem is not to find an appro-
priate algorithm for doing that task, the difficulty
is how to judge such a classification. Since the
specification of the four types of areas is given in
a vague, verbal form, no mathematical criterion is
available for that. Hence, a model-based optimiza-
tion process is, because of the lack of a model, not
applicable. The alternative is a knowledge-based
approach, which poses the question how to gener-
ate this knowledge — the examples from which the
algorithm should learn.

Our optimization procedure consists of a paint-
ing program which offers tools, such as a pencil, a
rubber, a filling algorithm, and many more, which
can be used to make a classification of a given rep-
resentative image by hand. Then an optimization
algorithm can be used to find that configuration
of parameters which yields the maximal degree of
matching between the desired result and the output
actually obtained by the classification system.

Assume that we have N sample pixels for
which the pairs of input values (9, €)1, N}
are computed and that we already have a ref-
erence classification of these pixels #(k) =
(tHo(k),tEd(k),tHa(k}),tPi(k})), where k& €
{1,...,N}. Since, as soon as the values v and é
are computed, the geometry of the image plays no
role anymore, we can switch to one-dimensional

indices here. Then one possibility to define the per-
formance (fitness) of the fuzzy system would be

N
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where t(k) = (tHo(k),tgq(k),tqa(k), tpi(k))
are the classifications actually obtained by the
fuzzy system for the input pairs (o, éx) with re-
spect to the parameters vy, vo, v3, v4, €1, and es;
d(.,.) is an arbitrary (pseudo-)metric on [0,1]%.
The problem of this brute force approach is that the
output of the fuzzy system has to be evaluated for
each pair (vg, e), even if many of these values are
similar or even equal. In order to keep the amount
of computation low, we “simplified” the procedure
by a “clustering process” as follows:

We choose a partition (P, ..., Px) of the input
space and count the number (n1,...,ng) of sam-
ple points {p%,...,p}.} each part contains. Then
the desired classification of a certain part (cluster)
can be defined as

()

where X € {Ho, Ed, Ha, Pi}.

If ¢ is a function which maps each cluster to a
representative value (e.g., its center of gravity), we
can define the fitness (objective) function as
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(6)
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If the number of parts is chosen moderately (e.g. a
rectangular 64 x 32 net which yields K = 2048)
the evaluation of the fitness function takes consid-
erably less time than a direct application of formula
4).

Note that in (6) the fitness is already trans-
formed such that it can be regarded as a degree
of matching between the desired and the actually
obtained classification measured in percent. This
value has then to be maximized.

In fact, fitness functions of this type are, in al-
most all cases, continuous but not differentiable
and have a lot of local maxima. Therefore, it is
more reasonable rather to use probabilistic opti-
mization algorithms than to apply continuous op-
timization methods, which make excessive use of
derivatives. This, first of all, requires a (binary)
coding of the parameters. We decided to use a cod-
ing which maps the parameters vy, v, vs, v4, €1,
and e, to a string of six 8-bit integers si, ..., sg
which range from 0 to 255. The following table
shows how the encoding and decoding is done:

s$1 = w1 v = S

S2 = v2—U1 v2 = 81+ 82

s3 = vz — v v3 = S1+ 82+ s3

S4 = Vg4 — U3 vg = S1+82+83+34
S5 = e1 €1 = S5

Sg = ez —eq ez = S5+ S¢

A class of probabilistic optimization methods
which has come into fashion in the last years are
genetic algorithms (GAs). They can be regarded
as simplified simulations of an evolution process,
based on the principles of genetic reproduction em-
ploying mechanisms, such as selection, mutation,
and sexual reproduction. Another important differ-
ence between GAs and conventional optimization
algorithms is that GAs do not operate on single
points but on whole populations of points (which,
in this case, are binary strings).

We first tried a standard GA (see [4] or [5])
with proportional (standard roulette wheel) selec-
tion, one-point crossing over with uniform selec-
tion of the crossing point, and bitwise mutation.
The size of the population m was constant, the
length of the strings was 48 (compare with the cod-
ing above, see [4] for an overview of more sophis-
ticated variants of GAS).

In order to compare the performance of the GAs
with other well-known probabilistic optimization
methods, we additionally considered the following
methods:

Hill climbing: always moves to the best-fitted
neighbor of the current string until a local
maximum is reached; the initial string is gen-
erated randomly.

Simulated annealing: powerful, often used prob-
abilistic method which is based on the imi-
tation of the solidification of a crystal under
slowly decreasing temperature (see [9] for a
detailed description)

Each one of these methods requires only a few bi-
nary operations in each step. Most of the time is
consumed by the evaluation of the fitness function.
So, it is near at hand to take the number of evalua-
tions as a measure for the speed of the algorithms.

Results

All these algorithms are probabilistic methods,
therefore their results are not well-determined, they
can differ randomly within certain boundaries. In
order to get more information about their average
behavior, we tried out each one of them 20 times
for one certain problem. For the given problem we
found out that the maximal degree of matching be-
tween the reference classification and the classifi-
cation actually obtained by the fuzzy system was
94.3776% . See the table in Figure 4. In this table
fmax IS the fitness of the best and fiin, is the fitness
of the worst solution; f denotes the average fitness
of the 20 solutions, o denotes the standard devia-
tion of the fitness values of the 20 solutions, and #
stands for the average number of evaluations of the
fitness function which was necessary to reach the
solution.

The hill climbing method with a random selec-
tion of the initial string converged rather quickly.
Unfortunately, it was always trapped in a local
maximum, but never reached the global solution (at
least in these 20 trials).

The simulated annealing algorithm showed
similar behavior at the very beginning. After tun-
ing the parameters involved, the performance im-
proved remarkably.

The raw genetic algorithm was implemented
with a population size of 20; the crossing over
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Figure 4: A comparison of the results of various probabilistic optimization methods

probability was set to 0.15, the mutation probabil-
ity was 0.005 for each byte. It behaved pretty well
from the beginning, but it seemed inferior to the
improved simulated annealing.

Next, we tried a hybrid GA, where we kept
the genetic operations and parameters of the raw
GA, but every 50th generation the best-fitted indi-
vidual was taken as initial string for a hill climb-
ing method. Although the performance increased
slightly, the hybrid method still seemed to be worse
than the improved simulated annealing algorithm.
The reason that the effects of this modification
were not so dramatic might be that the probabil-
ity is rather high that the best individual is already
a local maximum. So we modified the procedure
again. This time a randomly chosen individual of
every 25th generation was used as initial solution
of the hill climbing method. The result exceeded
the expectations by far. The algorithm was, in all
cases, nearer to the global solution than the im-
proved simulated annealing was (compare with ta-
ble in Figure 4) but, surprisingly, sufficed with less
invocations of the fitness function. The graph in
Figure 4 shows the results graphically. Each line in
this graph corresponds to one algorithm. The curve
shows, for a given fitness value x, how many of the
20 different solutions had a fitness higher or equal
to x. It can be seen easily from this graph that the
hybrid GA with random selection led to the best
results. Note that the z-axis is not a linear scale
in this figure. It was transformed in order to make
small differences visible.

6 Conclusion

In the first part of this paper we demonstrated the
synergy which lies in the combination of fuzzy
systems with, more or less, conventional methods.

This combination is in particular suitable for de-
signing specific algorithms for time-critical prob-
lems. However, this specifity often results in a loss
of universality.

In the second part we showed the suitability of
genetic algorithms for finding the optimal parame-
ters of a fuzzy system, especially if the analytical
properties of the objective function are bad. More-
over, hybridization has been discovered as an enor-
mous potential for improvements of genetic algo-
rithms.
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