
Technical Report
SCCH–TR–0056

Regularized Optimization of Fuzzy Controllers

Martin Burger
SFB013 and Industrial Mathematics Institute

Johannes Kepler Universität Linz
burger@indmath.uni-linz.ac.at

Josef Haslinger, Ulrich Bodenhofer
Software Competence Center Hagenberg

josef.haslinger@scch.at
ulrich.bodenhofer@scch.at

Abstract — This paper is devoted to the mathematical analysis and the numerical solution of
the problem of designing fuzzy controllers. We show that for a special class of controllers (so-
calledSugeno controllers), the design problem is equivalent to a nonlinear least squares problem,
which turns out to beill-posed. Therefore we investigate the use of regularization methods in
order to obtain stable approximations of the solution. We analyze a smoothing method, which is
common in spline approximation, as well as Tikhonov regularization with respect to stability and
convergence.

In addition, we develop an iterative method for the regularized problems, which uses the spe-
cial structure of the problem and test it in some typical numerical examples. We also compare the
behavior of the iterations for the original and the regularized least squares problems. It turns out
that the regularized problem is not only more robust but also favors solutions that are interpretable
easily, which is an important criterion for fuzzy systems.

Key words — fuzzy control, regularization, stability, nonlinear least squares, optimization, ill-
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2 1 Introduction

1 Introduction

Fundamentally, the idea of fuzzy sets and systems, dated back to Zadeh [31, 32], is to provide a
mathematical model that can present and process vague, imprecise and uncertain knowledge. It
has been modeled on human thinking and the ability of humans to perform approximate reasoning,
so that precise and yet significant statements can be made on the behavior of a complex system.
Successful applications of fuzzy logic control include automatic train operation systems, eleva-
tor control, temperature control, power plant control, fuzzy refrigerators, washing machines, etc.
The main advantage of fuzzy controllers in comparison with other adaptive systems like neural
networks is the linguistic interpretability of the controller’s function.

1.1 Fuzzy Control

Basically, a fuzzy logic controller consists of three components [1,7,16]:

1. The rules, i.e. a verbal description of the relationships usually of a form as the following (n
is the number of rules):

if x is Ai thenu is Bi (i = 1, . . . , n)

2. The fuzzy sets (membership functions), i.e. the semantics of the vague expressionsAi, Bi

used in the rules. More precisely (cf. [2]): Given a universe of discourseX a fuzzy subset
A of X is characterized by its membership function

µA : X → [0, 1] (1.1)

where forx ∈ X the numberµA(x) is interpreted as the degree of membership ofx in the
fuzzy setA.

3. An inference machine, i.e. a mathematical methodology for processing a given input through
the rule base. The general inference process proceeds in three (or four) steps.

(a) UnderFuzzification, the membership functions defined on the input variables are ap-
plied to their actual values, to determine the degree of truth for each rule premise.

(b) UnderInference, the truth value for the premise of each rule is computed, and applied
to the conclusion part of each rule. This results in one fuzzy subset to be assigned
to each output variable for each rule. Usually only minimum or product are used as
inference rules as special cases of a triangular norm (t-norm, [2]).

(c) UnderComposition, all of the fuzzy subsets assigned to each output variable are com-
bined together to form a single fuzzy subset for each output variable. Usually maxi-
mum or summation are used.

(d) Finally is the (optional)defuzzification, which is used to convert the fuzzy output set
to a crisp number. Two of the more common defuzzification methods are the centroid
(center of gravity) and the maximum method.
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In the following we assume that a reasonable inference scheme—a Sugeno controller [27], where
the output membership functions are crisp values—is given. For a complete definition of a Sugeno
controller, see Section 2.

There are still two components left which have to be specified in order to design a fuzzy
controller—the rules and the fuzzy sets. Recent effort has been concentrated on developing new
techniques which may be able to design the membership functions and rule base automatically.
Genetic algorithms have played a special role in fuzzy control design as well as methods treating
fuzzy systems as artificial neural networks to adjust membership functions using back propagation.
For references see the article of Tan and Hu [28]. Also classical optimization algorithms, such as
the method of steepest descent have been applied in tuning small and medium sized controllers.

Under the quite natural assumptions that product is used as fuzzy inference rule, summation
as the composition scheme, and center of gravity as the defuzzification method, the tuning of a
Sugeno controller reduces to fitting a set of data{(xi, yi)}i=1,...,m by a linear combination of mem-
bership functions in the least squares sense, i.e. seeking a solution of the minimization problem

m∑
i=1

yi −
n∑

j=1

αjbj(xi; t)

2

= min
(α,t)

, (1.2)

wherebj represents the membership functions andα = (α1, α2, . . . , αn)T the coefficients. The
concrete shape of the membership functions depends on the knot sequencet, which is also in-
cluded in the optimization procedure. Therefore, the minimization problem (1.2) is nonlinear.

Among the wide range of possible membership functions for Sugeno controllers, we will con-
centrate on two different kinds: trapezoidal and B-spline membership functions, firstly for the
one-dimensional case (see Section 2). The more general class of B-spline membership functions
for Sugeno controllers, including the often used triangular membership functions, were proposed
in Zhang and Knoll [33].

1.2 Ill-posedness and Regularization

Assuming for the moment that the knot sequencet is fixed, we end up with a linear least squares
problem

1
2
‖y −B(t)α‖2 = min

α
, (1.3)

whereB(t) := (bj(xi, t))i=1,...,m; j=1...,n is the so-called observation matrix. (1.3) has a unique
solution, if and only if the observation matrixB has full rank which is equivalent to the—in ap-
proximation theory well-known—Schoenberg-Whitney condition [6]. In case of a rank-deficient
observation matrixB (i.e.,r :=rank(B) < n), the least squares problem (1.3) is no longer uniquely
solvable. The set of solutions consists of the linear manifold

x† + N(B).

x† denotes the unique least squares solution of minimal (Euclidean) norm, given byx† = B†y (B†

the Moore-Penrose inverse or pseudo inverse) andN(B) denotes the nullspace ofB with dimen-
sionn − r. Because of roundoff errors any numerical scheme for computing the Moore-Penrose
inverse of a matrixB will, at best, produce the Moore-Penrose inverse of a perturbed matrixB+E.
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However, it is well known that if a matrixB +E is close toB, but is of different rank thanB, then
its Moore-Penrose inverse(B + E)† will be different fromB†, and the smallerE is, the greater
the difference will be. Generally, problems the solution of which does not depend continuously
on the data belong to the class of so-calledill-posed problems. In our case, we also have to take
into account data errors. Usually, the datay is the result of measurements contaminated by noise.
Often, the exact positionxi of the measurement is only known approximately, i.e. we get a set
of noisy data(xγ , yδ) with error boundsγ andδ. Hence, we have to use so-called regularization
techniques to obtain a stable solution to our problem.

We note that an analogous ill-posed problem arises in the problem of function approximation
with neural networks. In this case the problem is also given by (1.2), the basis functions are usually
of the form

bj(x;a,b) = σ(aT
j x + bj), (1.4)

with aj ∈ RN andbj ∈ R. The so-called activation functionσ is usually chosen to be asigmoidal
function, i.e., a monotone and piecewise continuous function onR, which satisfies

lim
t→−∞

σ(t) = 0 lim
t→∞

σ(t) = 1.

Similar to our problem in fuzzy control, the minimization is performed with respect to the weights
and also with respect to the parametersaj andbj on which the output depends in a nonlinear way.
The main difference is that in the approximation with neural networks one is not interested in
the behaviour of the parametersaj andbj , since they do not have a particular meaning, but one
rather wants to achieve convergence of the approximating outputfn :=

∑n
j=1 αjbj(x;a,b) to the

function from which the samplesyi are taken. For this reason the results obtained in the sequel
cannot be transferred directly to neural networks, but there are several techniques that could be
carried over to that field in future work. For further details we refer the reader to the monograph
by Bishop [4] and also to [5,10,25].

In the case of linear ill-posed problems, the regularization theory is very well developed [8].
The ill-posed problem is replaced with a family of similar well-posed problems through the in-
troduction of a regularization operator and a regularization parameter. For a problem to be well-
posed, it must satisfy the requirements of existence, uniqueness, and the solution must depend
continuously on the data. The regularization parameter is chosen dependent on the noise level and
possibly on the data. The regularized solution approaches the true solution as the noiselevels tends
to zero only if certain conditions upon the choice of the regularization parameter are satisfied [8].

It is shown by a simple example in Section 2, that the full nonlinear minimization problem (1.2)
is indeed ill-posed in the sense that solutions do not necessarily depend on the data in a continuous
way. Generally, the theory for nonlinear ill-posed problems (cf. [8], Chapter 10) involves more
technical problems as the linear case. The case of an ill-posed nonlinear least squares problem,
where no ”attainability assumption” is fulfilled, is even more complicated and by far not so well
developed [3].

Consider the nonlinear ill-posed problem

F (x) = y0, (1.5)

whereF is an operator from a (subset of) a Hilbert space to another Hilbert space. We assume
that a-priori information about a suitable solution of (1.5) has been incorporated into a vectorx∗.
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The choice ofx∗ is very crucial; in the case of multiple solutionsx∗ plays the role of a selection
criterion. We are searching for ax∗ minimum-norm least squares solution, that is a least squares
solution of (1.5) which minimizes the distance tox∗ over all least squares solutions.

Among several regularization methods for obtaining a stable approximation to ax∗ minimum-
norm least squares solution, Tikhonov regularization is one of them. Minimizing the Tikhonov
functional

JTIK(x) := ‖F (x)− y0‖2 + β‖x− x∗‖2 (1.6)

whereβ > 0 is the regularization parameter, is a trade-off between matching the data and stabi-
lizing the solution. A large value ofβ produces a stable solution; however it may not adequately
satisfy the original data. For a small value ofβ, we could expect to approximate the minimum of
(1.5) well; however, the problem is then approaching the original ill-posed problem, and becomes
unstable. In Section 3 we discuss the problem of choosingβ appropriately.

Another possibility to stabilize an ill-posed problem is regularization with differential opera-
tors, i.e., we minimize the functional

JL
TIK(x) := ‖F (x)− y0‖2 + β‖Lx‖2 (1.7)

or even
JL

STATE(x) := ‖F (x)− y0‖2 + β‖L(F (x))‖2, (1.8)

whereL represents a differential operator. Especially in classical approximation theory, instead
of the spline approximation problem, a spline smoothing problem is often considered, where the
smoothing termL(F (x)) characterizes the smoothness of the spline (cf. [6] for fixed knots). It
should be mentioned that in practical applications, the smoothness of the controller output is one
of the most important design requirements.

1.3 Approximation Properties of Sugeno Controllers

It has been shown by several authors ( [14], [15], [29]), that fuzzy controllers are universal approx-
imators in the sense that it is possible to construct such rule bases that approximate uniformly any
continuous function defined on a compact subset ofRm with arbitrary accuracy. Proofs are based
upon the Stone-Weierstrass Theorem and purely existential in nature. From a practical—fuzzy
control oriented—point of view, these theorems suffer from the fact that the number of rules in the
base is not bounded, in addition to that even the supports of the terms in the rules are not bounded
(e.g. Gaussian membership functions).

As already mentioned, the tuning of a Sugeno controller reduces to a data fitting problem by
a linear combination of membership functions. From a purely mathematical point of view, we
now let both the number of membership functions and data points tend to infinity and examine
the approximation power. We consider the case of B-spline membership functions, where a wide
range of convergence results ( [6], [24]) exists.

It is well known, that sequences of polynomials interpolating a predetermined sequence of
points in an interval[a, b] may not converge (Theorem of Faber, [24]). If polynomials are forced
to follow points in an interval, they may respond by oscillating wildly. This tendency to oscillate
becomes increasingly pronounced as the order of the polynomial is increased. The situation is
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completely different for spline approximation. Here, we are not interested in large order polyno-
mials. To get accurate approximations we would prefer to keep the order of piecewise polynomials
between two knots fixed at a rather low value, and increase the number of knots. Not surprisingly,
convergence results were obtained for wide classes of functions relating the approximation error
to the number of knots or, in our case, to the number of membership functions. Especially, we can
approximate a large class of functions arbitrarily well by splines of a fixed order if we are willing
to use many knots. The order of approximation attainable will increase with the smoothness of the
class of functions being approximated. Additionally, it will turn out, that substantial gains in the
rate of convergence can be achieved when using the knots as free parameters that can be adjusted
to the particular function being approximated (cf. [24], Chapters 6-7).

Let W k
p [a, b] := {u : u(r) ∈ Lp[a, b];∀ r ≤ k} denote a Sobolev space of orderk, p on

[a, b], Lp[a, b] the Lebesgue space of orderp, ‖ · ‖W k
p

the usual Sobolev norm,d(f, Sm,`)X :=
infs∈Sm,`

‖f − s‖X the distance of a functionf to the spline spaceSm,` defined bỳ knots and
piecewise polynomials of orderm. Assuming a fixed knot sequence (equally spaced knots, for
example), Shumaker [24] cites the following convergence rate result, where1 ≤ p ≤ q ≤ ∞:

∀ (1 ≤ s ≤ m) ∀ f ∈ W s
p [a, b] d(f, Sm,`)Lq [a, b] = O(`−(s+1/q−1/p)). (1.9)

When using free knots

∀ (1 ≤ s ≤ m) ∀ f ∈ W s
1 [a, b] d(f, Sm,`)Lq [a, b] = O(`−s). (1.10)

Indeed, it was shown that orderm convergence is the maximum that can be obtained for smooth
functions. Consider the uniform norm (q = ∞). Then, using splines with equally spaced knots, for
example, the maximal order of convergence ism− 1/p. On the other hand, a free knot sequence
leads to maximal convergence ratem.

1.4 Organization of the paper

The paper is organized as follows: In Section 2, we give mathematically precise definitions of a
Sugeno controller and membership functions. The optimization of a Sugeno controller is treated
as a nonlinear least squares problem, as not only the coefficients but also the position of knots
defining the shape of membership functions is sought for. It is also shown that solving the min-
imization problem is indeed ill-posed by a rather simple finite dimensional example. In Section
3, two different approaches of regularizing the least squares problem are investigated: the first
one is spline smoothing—commonly used in the area of spline approximation—where additional
constraints are introduced to avoid coalescing knots; the other one is the classical Tikhonov regu-
larization. We develop existence, stability, and convergence results. Finally, in Section 4 we give
a short description of the numerical optimization algorithm—a generalized Gauss-Newton like
algorithm—and prove that the results of reconstructing a-priori given functions from noisy data
are in agreement with theoretical results obtained in Section 3.



7

2 Optimization of Sugeno Controllers

2.1 Basic definitions of Sugeno controller and membership functions

If we look at a Sugeno controller from the point of view of mappings which assign to each crisp
observation a crisp value (vector) in the output space, i.e., there is a functionFs : X → Rdo

associating to each inputx its corresponding outputy, it is possible to construct an explicit formula
substituting the fuzzy control system completely.

Definition 2.1. Let X be an input space, letA1, A2, . . . , An be normalized fuzzy subsets ofX
with

∑
µAi(x) > 0 for all x ∈ X, andf1, f2, . . . , fn be functions fromX to Rdo , and consider

the rulebase(i = 1, 2, . . . , n)

if x is Ai thenu = fi(x).

Then the Sugeno controller defines the following input-output functionFs : X → Rdo

Fs(x) =
∑

µAi(x) fi(x)∑
µAi(x)

. (2.1)

In the following we consider the special case, that fori = 1, 2, . . . , n the functionsfi are
constant, that isfi(x) ≡ αi. In a first step, we restrict ourselves to the one-dimensional case,
i.e., a single input-single output controller. However, for the output variable this is no restriction.
If the number of output variables is higher than one, it can easily be shown that in every case
it is possible to decompose the controller into as many independent controllers as many output
variables we have [14].

Among the class of membership functions, we consider first the classical trapezoidal ones. Let
the knot sequencet = {ti}, where

a = t1 ≤ t2 ≤ ... ≤ t2n−1 ≤ t2n = b (2.2)

be a partition of the universe of an input variable defined over[a, b], corresponding to n linguis-
tic terms. Then the mathematical formulation of the trapezoidal membership functionsbj (j ∈
{1, . . . , n}) is as follows:
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Figure 1: Trapezoidal membership functions

b1(x, t) :=


1 if x ∈ [t1, t2]
−x+t3
t3−t2

if x ∈ (t2, t3)
0 otherwise

bj(x, t) :=



x−t2j−2

t2j−1−t2j−2
if x ∈ (t2j−2, t2j−1)

1 if x ∈ [t2j−1, t2j ]
−x+t2j+1

t2j+1−t2j
if x ∈ (t2j , t2j+1)

0 otherwise

bn(x, t) :=


x−t2n−2

t2n−1−t2n−2
if x ∈ (t2n−2, t2n−1)

1 if x ∈ [t2n−1, t2n]
0 otherwise

Figure 1 shows a typical example.

Now we turn to the more general class of B-spline membership functions for Sugeno con-
trollers.

Assume thatx is an input variable of a Sugeno controller that is defined on the interval[a, b].
Given a sequence of ordered knotst = {ti}, where

t1 = . . . = tk = a < tk+1 ≤ ... ≤ tn < b = tn+1 = . . . = tn+k (2.3)

thej-th normalized B-spline basis functionBj,k of orderk for the knot sequencet is recursively
defined as

Bj,1(x, t) :=

{
1 if tj ≤ x < tj+1,

0 otherwise

Bj,k(x, t) := ωj,k(x) Bj,k−1(x, t) + (1− ωj+1,k(x))Bj+1,k−1(x, t) for k > 1



2.1 Basic definitions of Sugeno controller and membership functions 9

where

ωj,k(x) :=

{
x−tj

tj+k−1−tj
if tj < tj+k−1,

0 otherwise
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Figure 2: B-spline basis functions of order 1 - 4 for a non-uniform knot sequence

The complete knots consist of two parts, the interior knots that lie within the universe of
discourse, and extended knots that are generated at both ends of the universe for a unified definition
of B-splines (leading to the so-called marginal linguistic terms in [33]).

In the following, we summarize some properties of B-splines, where especially the positivity,
local support, and partition of unity qualify them as membership functions.

Positivity: Bj,k(x, t) ≥ 0 for all x ∈ [a, b]

Local support:Bj,k(x, t) = 0 if x 6∈ [tj , tj+k)

Ck−2 continuity: if the knotstk, . . . tn+1 are pairwise different from each other, thenBj,k(x, t)
is (k − 2) times continuously differentiable.

Partition of unity:
n∑

j=1

Bj,k(x, t) = 1 (2.4)

From the point of view of fuzzy control, B-spline membership functions suffer from the draw-
back that they are not—except for orders less than three—normalized membership functions, i.e.
the largest membership grade is not necessarily one, but a smaller value in the interval[0, 1). Ad-
ditionally for higher order B-splines, the linguistic interpretation of membership degree is rather
complicated.
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2.2 Tuning of Sugeno controllers as an ill-posed least squares problem

Assume(x,y) is a set of so-called training data, wherex = (x1, x2, . . . , xm)T is the training data
vector, andy = (y1, y2, . . . , ym)T the desired output forx. It follows immediately from (2.1), and
the partition of unity (2.4), that designing a Sugeno controller from training data, is then equivalent
to the least squares problem

m∑
i=1

yi −
n∑

j=1

αjbj(xi; t)

2

= min
((α1,α2,...,αn),t)∈Rn×[a,b]`

, (2.5)

where(bj)j=1,...,n is one of the membership functions introduced above. The concrete shape of the
membership functions is determined by the`-dimensional knot vectort. ` represents the number
of free knots.

As already mentioned, we have to consider data errors iny andx, i.e., instead

‖x− xγ‖`2 ≤ γ (2.6)

‖y − yδ‖`2 ≤ δ, (2.7)

where‖x‖`2 :=
√∑m

i=1 x2
i denotes the usual`2 norm.

The following example shows that the problem of finding a minimum to (2.5) is ill-posed, even
if we have complete information about the functionf , from which the samplesy are taken.

Example 2.2. Let n = 2, k ∈ N, k ≥ 2, a = tk1 = 0, tk2 = k−3 andtk3 = 2k−3, tk4 = b = 1, and
chooseαk

1 = k, αk
2 = 0. The fuzzy membership functionsb1 andb2 are defined by

b1(x; t) =


1 if x ≤ t2
t3−x
t3−t2

if t2 < x < t3
0 if t3 ≤ x

(2.8)

b2(x; t) = 1− b1(x; t). (2.9)

Thenfk = αk
1b1(x; tk) + αk

2b2(x; tk) converges to zero inL2([0, 1]), but αk has no bounded
subsequence. Hence, the optimization problem is unstable with respect to perturbations in the
data.

2.3 Tuning of Sugeno controllers - The multiple input single output case

Under the assumptions of the previous sections, the input-output functionFs of a Sugeno con-
troller with d-dimensional input variable is given by

Fs(x1, x2, . . . , xd) =

αj1,j2,...,jd

n1∑
j1=1

n2∑
j2=1

. . .

nd∑
jd=1

bj1(x1, t1) · bj2(x2, t2) · . . . · bjd
(xd, td). (2.10)

Fs represents ad−dimensional tensor product spline. Only, if the data is given on a regular
grid (e.g. a rectangular grid in the 2D case), then thed−dimensional tuning problem splits up
into d one-dimensional problems. For irregular data, it is hard to define a Schoenberg-Whitney
like condition; practical examples show that the observation matrixB is very often rank-deficient.
Hence, regularization is strongly recommendable or even a must.
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3 Regularization

In the following we want to investigate two different approaches to the regularization of the least
squares problem (2.5). The first one is a common method for spline approximation (cf e.g. [21])
and consists of replacing (2.5) by

m∑
i=1

yi −
n∑

j=1

αjbj(xi; t)

2

+ β|
n∑

j=1

αjbj(.; t)|2Hk(Ω) = min
(α,t)

, (3.1)

where|.|Hk(Ω) denotes the norm or seminorm in the Sobolev spaceHk(Ω) := W k
2 (Ω). In addition

we impose the constraints

tj+1 − tj ≥ ε, j = 1, . . . , `− 1, (3.2)

which are necessary to remove the possible instabilities caused by two equal or almost equal
knots. For notational simplicity, we do not bother with multiple knots at the end of the intervals
(cf. the definition of the knot sequences (2.2), (2.3)). In the subsequent Section 3.1 we will see that
(3.1) subject to (3.2) is a well-posed problem and its solution will converge to a minimizer of the
original problem with the additional constraint (3.2) for fixedε and appropriately chosenβ → 0
asγ, δ → 0. However, we cannot show convergence asε → 0, which is a serious disadvantage.

The second approach under investigation is classical Tikhonov regularization in the parameter
spaceRn ×R`, it consists of minimizing the functional

m∑
i=1

yδ
i −

n∑
j=1

αjbj(x
γ
i ; t)

2

+ β1

n∑
j=1

α2
j + β2

∑̀
j=1

(tj − t∗j )
2 = min

(α,t)
(3.3)

for appropriately chosenβ1 andβ2 (in dependence ofδ andyδ), wheret∗ is a prior fort, e.g. the
uniform grid points. In this case we can show convergence for appropriate choice ofβ1 → 0 as
the noise level tends to zero even forβ2 = 0.

In both cases we will assume that the functionsbj satisfy the Lipschitz-estimate

|bj(x, t)− bj(x̃, t)| ≤ L|x− x̃|, ∀ x, x̃, ∀t ∈ [a, b]`

with some nonnegative real constantL.

3.1 Smoothing

Now we turn our attention to the stabilized problem (3.1) supplemented by (3.2). For the sake
of simplicity we restrict our analysis to the case ofΩ = (0, 1), trapezoidal functionsbj and the
H1-norm defined by

‖u‖2
H1(Ω) =

∫
Ω

(
|u|2 + |∇u|2

)
dx

as the stabilizer. Obviously, the number of inner grid points must be even in this case to ensure
that the output equals one in the intervals(0, t1) and(t`, 1). The number of basis functions is then
given byn = `

2 + 1. We note that a similar but technically much more complicated reasoning is
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possible for other spline basis functions, but the technical details would shadow the basic concepts.
Therefore, they are omitted here.

The stabilizing term can be transformed to a bilinear expression in terms of the variableα via

‖
n∑

j=1

αjbj(.; t)‖2
H1(Ω) = αT A(t)α + αT B(t)α, (3.4)

where the symmetric, positive definite matricesA(t) andB(t) are defined by

A(t) =
(∫ 1

0
bi(x; t)bj(x; t) dx

)
i,j=1,...,n

(3.5)

B(t) =
(∫ 1

0
b′i(x; t)b′j(x; t) dx

)
i,j=1,...,n

. (3.6)

Now we define a new gridsj , which does not include the intervals(t2j , t2j+1), on whichb′i = 0
for all i, more precisely,

s1 = t1, sj+1 = sj + t2j − t2j−1, j = 1, . . . ,
`

2
. (3.7)

This allows us to find an equivalent definition for the matrixB(t):

Lemma 3.1. Let{φj}j=1,..., `
2

denote the usual piecewise affinely linear finite elements on the grid

{sj}j=1,..., `
2
, i.e.,

φj |(si,si+1) is affinely linear, φj(si) = δij ,∀ i, j,

whereδij denotes the Kronecker delta symbol. Then the matrixB̃(t) defined by

B̃(t) =
(∫

φ′i(s)φ
′
j(s) ds

)
i,j=1,..., `

2

equalsB(t) defined by(3.6). Furthermore, the matrixA(t) can be represented in the form

A(t) =
(∫

φi(s)φj(s) ds

)
i,j=1,..., `

2

+ A0(t), (3.8)

whereA0(t) is a positive semidefinite matrix.

Proof. Sinceb′j = 0 on (t2i, t2i+1) for all i, j andb′j(x; t) = φ′j(Si(x)) on (t2i−1, t2i), whereSi

is the unique transformation of the formSi(x) = x + σi that maps(t2i−1, t2i) onto(si, si+1) we
obtain ∫ 1

0
b′i(x; t)b′j(x; t) dx =

∫
φ′i(s)φ

′
j(s) ds

and consequentlỹB(t) = B(t).

An analogous argument yields the decomposition

A(t) =
(∫

φi(s)φj(s) ds

)
i,j=1,...,n

+

(∫
(0,1)−S

bi(s)bj(s) ds

)
i,j=1,...,n

,
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whereS =
⋃

(t2i−1, t2i). We now defineA0(t) as the second term in the previous identity and
since

bi(s)bj(s) =
{

1 if i = j, s ∈ (t2i−2, t2i−1)
0 else fors ∈ (0, 1)− S

,

A0 is a diagonal matrix with nonnegative entries and therefore positive semidefinite.

To carry out the stability analysis we will use the following result adapted from stability esti-
mates in finite element theory:

Lemma 3.2. For eachc0 > 0 there exists a positive real numberc1 such that for allt satisfying

inf
j∈{1,...,`−1}

{tj+1 − tj} ≥
c0

`

the estimate
n∑

j=1

α2
j ≤ c1`‖

n∑
j=1

αjbj(x; t)‖2
H1(Ω) (3.9)

holds.

Proof. Lemma 3.1 and (3.4) yield the identity

‖
n∑

j=1

αjbj(x; t)‖2
H1(Ω) = αT Φα + αT A0(t)α ≥ αT Φα,

where

Φ =
(∫ [

φi(s)φj(s) + φ′i(s)φ
′
j(s)

]
ds

)
i,j=1,...,n

.

A standard argument from finite-element theory (cf. [26]) implies that the minimal eigenvalue of
the symmetric matrixΦ is bounded below byc1`, wherec1 depends only onc02 , which is a lower
bound for the length of the interval(s1, sn).

Now we are able to show that the stabilized problem 3.1 is well-posed, i.e., a minimizer ex-
ists and the dependence of the minimizers on the data is stable (in a set-valued way), which is
expressed in the following propositions:

Proposition 3.3 (Existence of a minimizer).For all y ∈ Rm and x ∈ [0, 1]m there exists a
minimizer of(3.1), if ε > 0 andβ > 0.

Proof. Since a minimizer must yield an output less or equal than the one fromα = 0, we may add
the additional constraint (using Lemma 3.2,ε = c0

` and the notationC = c1
c0

)

n∑
j=1

α2
j ≤

C

βε

m∑
i=1

y2
i .

The resulting set of admissible points is compact inRn×R` and since the objective functional is
continuous, the existence of a minimizer follows from a standard principle in optimization.
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Proposition 3.4 (Stability). Let β > 0, ε > 0, yk → y and xk → x. Then the according
sequence of minimizers of(3.1) has a convergent subsequence and the limit of every convergent
subsequence is a minimizer of(3.1).

Proof. As in the proof of Proposition 3.3 we obtain the estimate

n∑
j=1

|αk
j |2 ≤

C

βε

m∑
i=1

|yk
i |2.

Consequently, the sequence(αk, tk) is bounded, which implies the existence of a convergent
subsequence. Let(αk` , tk`) be a convergent subsequence with limit(α, t), then the continuity of
the objective functional together with the definition of(αk, tk) implies that(α, t) is a minimizer
of (3.1).

Finally, we want to investigate the question of convergence of minimizers of the regularized
problem as the noise level(γ, δ) and the regularization parameterβ tend to zero. Of course,
it would be of interest to letε tend to zero, too, but in this case one cannot guarantee that the
minimizers are uniformly bounded.

Theorem 3.5 (Convergence under Constraints).Let ε > 0 be fixed, let(γk, δk) be a monotone
sequence convergent to(0, 0) and let(xγk

, yδk
) be a corresponding data sequence satisfying(2.6),

(2.7)with (γ, δ) = (γk, δk). Moreover, let the regularization parameterβk be chosen such that

βk → 0,
max{γk, δk}

βk
→ 0.

If a minimizer of(2.5)with exact data exists, then each sequence of minimizers(αk, tk) of (3.1),
(3.2) with noisy data(xγk

, yδk
) andβ = βk has a convergent subsequence and the limit of each

convergent subsequence is a minimizer of the least squares problem(2.5)subject to(3.2).

Proof. Let (α̂, t̂) be a minimizer of the problem with exact data, then the definition of(αk, tk)
implies

m∑
i=1

yδk

i −
n∑

j=1

αk
j bj(x

γk

i , tk)

2

+ βk ε

C

n∑
j=1

(αk
j )

2

≤
m∑

i=1

yδk

i −
n∑

j=1

αk
j bj(x

γk

i , tk)

2

+ βk(αk)T [A(tk) + B(tk)]αk

≤
m∑

i=1

yδk

i −
n∑

j=1

α̂jbj(x
γk

i , t̂)

2

+ βkα̂T [A(t̂) + B(t̂)]α̂

≤
m∑

i=1

yi −
n∑

j=1

α̂jbj(xi, t̂)

2

+ c1(δk + L‖α̂‖`1γ
k) + c2β

k
n∑

j=1

α̂2
j
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for some constantsc1, c2. The noisy residual can be estimated by

m∑
i=1

yδk

i −
n∑

j=1

αk
j bj(x

γk

i , tk)

2

≥
m∑

i=1

yi −
n∑

j=1

αk
j bj(xi, tk)

2

− c1(δk + L‖αk‖`1γ
k)

≥
m∑

i=1

yi −
n∑

j=1

α̂jbj(xi, t̂)

2

− c1(δk + L‖αk‖`1γ
k),

and hence, ∑
(αk

j )
2 ≤ c1C

εβk
(2δk + L[‖α̂‖`1 + ‖αk‖`1 ]γ

k) +
c2C

ε

∑
α̂2

j .

Finally, with the standard estimate‖αk‖`1 ≤
√

n‖αk‖`2 we conclude that

∑
(αk

j )
2 ≤ c1C

ε

(
4
δk

βk
+ 2L‖α̂‖`1

γk

βk

)
+ L2 c2

1C
2

ε2

(
γk

βk

)2

+ 2
c2C

ε

∑
α̂2

j ,

which implies

lim sup
∑

(αk
j )

2 ≤ 2
c2C

ε

∑
α̂2

j .

Thus, the sequence(αk
j , t

k) is bounded and therefore there exists a convergent subsequence. The
fact that the limit of a convergent subsequence is a mininizer of (2.5) follows from

lim sup
m∑

i=1

yδk

i −
n∑

j=1

αk
j bj(x

γk

i , tk)

2

≤
m∑

i=1

yi −
n∑

j=1

α̂jbj(xi, t̂)

2

.

3.2 Tikhonov Regularization

In this section we investigate the Tikhonov regularization applied to (2.5), i.e., the minimization
problem (3.3). We restrict our attention again to the caseΩ = (0, 1), but we note that the method
and all proofs can be carried out in the same way (but with vectorstj). In the general theory (cf.
e.g. [3, 8, 9]), the existence of a minimizer of problem (3.3) can be shown ifβ1 > 0 andβ2 > 0.
In our special case, the positivity of the second regularization parameterβ2 is not necessary to
guarantee the existence as we will show in the following proposition:

Proposition 3.6 (Existence of a minimizer).For all y ∈ Rm and x ∈ [0, 1]m there exists a
minimizer of(3.3), if β1 > 0.
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Proof. As in the proof of Proposition 3.3 it suffices to show that the set of admissibleα can be
restricted to a compact set by an a-priori estimate. Again a comparison with the output functional
at the pointα = 0, we may conclude that a minimizer(α, t) of (3.3) must satisfy

n∑
j=1

α2
j ≤

1
β1

m∑
i=1

|yδ
i |2.

We note that the stability and convergence analysis of Tikhonov regularization with respect
to the perturbation in the outputy can be carried over directly from [8, 22]. Since we are also
interested in perturbations in the positionsx, we need some modifications, which we will prove in
the following:

Proposition 3.7 (Stability). Let β1 > 0, yk → y andxk → x. Then the according sequence
of minimizers(αk, tk) of (3.3) has a convergent subsequence and the limit of every convergent
subsequence is a minimizer of(3.3).

Proof. Again we compare the value of the objective functional achieved at(αk, tk) for the data
xk andyk with the one achieved with(0, tk) and obtain the a-priori estimate

n∑
j=1

α2
j ≤

1
β1

m∑
i=1

|yk
i |2.

Sinceyk → y, the right-hand side is uniformly bounded ask → ∞ and therefore the set of
minimizers is bounded, which implies the existence of a weakly convergent subsequence.

A convergent subsequence (without restriction of generality(αk, tk) itself and limit (α, t))
satisfies

m∑
i=1

yi −
n∑

j=1

αjbj(xi; t)

2

+ β1

n∑
j=1

α2
j + β2

∑̀
j=1

(tj − t∗j )
2

≤ lim inf
m∑

i=1

yk
i −

n∑
j=1

αk
j bj(xk

i ; t
k)

2

+ β1

n∑
j=1

|αk
j |2 + β2

∑̀
j=1

(tkj − t∗j )
2

≤ lim inf
m∑

i=1

yk
i −

n∑
j=1

αjbj(xk
i ; t)

2

+ β1

n∑
j=1

|αj |2 + β2

∑̀
j=1

(tj − t∗j )
2

=
m∑

i=1

yi −
n∑

j=1

αjbj(xi; t)

2

+ β1

n∑
j=1

|αj |2 + β2

∑̀
j=1

(tj − t∗j )
2

for all admissible(α, t) and thus, the limit is again a minimizer of (3.3).

The convergence result in this case holds for the full problem (2.5), not only for a constrained
version:
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Theorem 3.8 (Convergence).Assume that a minimizer of problem(3.3) exists. Moreover, let
(γk, δk) be a sequence converging to(0, 0) and denote by(αk, tk) the according sequence of
minimizers of(3.3) with data (xγ ,yδ), satisfying(2.6), (2.7). Then(αk, tk) has a convergent
subsequence and the limit of every convergent subsequence is a minimizer of(3.3)with exact data
(x,y) if the regularization parameters satisfy

βk
1 → 0, βk

2 → 0 (3.10)

max{γk, δk}
βk

1

→ 0 (3.11)

∃ε > 0 :
βk

1

βk
2

≥ ε. (3.12)

Proof. By similar reasoning to the proof of Theorem 3.5 we can deduce that

lim sup
∑

(αk
j )

2 ≤
∑

α̂2
j + lim sup

βk
2

βk
1

∑
(t̂j − t∗j )

2

for a minimizer(α̂, t̂) of (2.5). The remaining steps of the proof are the same as for Theorem
3.5.

Finally, we want to investigate the rate of convergence of the regularized solutions asδ → 0.
For this sake we need additional smoothness of theparameter-to-output map, which we will define
and analyze in the following Lemma:

Lemma 3.9. Letbj ∈ C([0, 1]`+1) for all j ∈ {1, . . . , n}, then the nonlinear parameter-to-output
operatorF defined by

F : Rn × [0, 1]` → Rm

(α, t) 7→
(∑n

j=1 αjbj(xi; t)
)

i=1,...,m

(3.13)

is continuous. Moreover, if the partial derivatives∂bj

∂tk
exist and are continuous functions for

all j ∈ {1, . . . , n}, k ∈ {1, . . . , `}, thenF is continuously Frèchet-differentiable with partial
derivatives

∂

∂αk
F (α, t) = (bk(xi; t))i=1,...,m (3.14)

∂

∂tk
F (α, t) =

 n∑
j=1

αj
∂bj

∂tk
(xi; t)


i=1,...,m

. (3.15)

If the partial derivatives above are all Lipschitz-continuous, thenF ′ is Lipschitz-continuous, too.

For convergence rates, we restrict our attention to the case ofγ = 0, which enables the ap-
plication of the standard theory of Tikhonov regularization. As usual for ill-posed problems, the
convergence can be arbitrarily slow in general (cf. e.g. [19]), rates can only be achieved under
additional conditions on the solution. A standard condition of this kind is thesource condition

∃ w ∈ Rm : (α, t− t∗) = F ′(α, t)∗w, (3.16)
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which is an abstract smoothness condition. The adjoint of the operatorF ′ defined in (3.13) is
given by

F ′(α, t)∗(u, v) =

( ∑n
i=1 bk(xi; t)ui∑n

i=1

∑m
j=1 αj

∂bj

∂tk
(xi; t)vi

)
(3.17)

Theorem 3.10 (Rate of Convergence).Let yδ ∈ Rm satisfy(2.7) and letα0, t0 be a solution
of minimal distance (in the product space`2 × `2) to the prior (0, t∗). Furthermore, let the
metric projection of the exact datay ontoR(F ) be unique and equal the projection ofR(F ) ∩
Bε(F (α0, t0)). Finally, let bj ∈ C1,1([0, 1]) and denote byLF the resulting Lipschitz-constant of
F ′ in Br(α0, t0) due to Lemma 3.9. If(3.16)holds with

LF ‖w‖`2 < 1, (3.18)

then the choiceβ1 = β2 ∼
√

δ yields

‖(αδ − α0, tδ − t0)‖`2×`2 = O
(√

δ
)

, (3.19)

where(αδ, tδ) denotes the solution of(3.3)with noisy datayδ.

Proof. The assertion follows by an application of Theorem 3.7 in [3].

Remark 3.11. It is clear that the source condition is a severe restriction ifm < n + `, since the
set of parameters that can fulfill the source condition is a lower-dimensional manifold. However,
the case ofm � n + ` usually arises in practical applications and thus, the source condition is
mainly an assumption on the regularity of the distribution of the parameterstk with respect to the
grid points. To illustrate this, we consider the case of cubic B-splines on the unit interval, where
the free knots are given byt2, ..., . . . , tn−1 and we havet1 = 0 and tn = 1. Suppose that the
following condition is fulfilled:

∀ k ∈ {1, . . . , n− 1} ∃ i1(k), i2(k) xi1(k), xi2(k) ∈ (tk, tk+1),

then we can setwi = 0 for all i /∈ {i1(k), i2(k)}k∈{1,...,n−1} and write the source condition as
a system for(wi1(1), wi2(1), . . . , wi1(n−1), wi2(n−1)), which is an upper-diagonal system of size
2n − 2 × 2n − 2. Since the diagonal entries are all nonzero (note thatxi1(k) andxi2(k) are in
the interior of the interval(tk, tk+1), there exists a unique solution. Hence, the source condition
(3.16) is satisfied and (3.18) holds if in addition‖α‖ and‖t− t∗‖ are sufficiently small.

4 Numerical Solution of the Regularized Problem

In this section we want to verify theoretical results obtained above by numerical experiments. The
description of the optimization algorithm—a generalized Gauss-Newton like method—follows
Schütze [20,21].
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4.1 Description of Optimization Algorithm

The common characteristic of both the primal nonlinear least squares problem (2.5) as well as the
regularized problems (3.1) and (3.3) is that they are linear in one set of variables (the coefficients
α) but nonlinear in the set of free knotst. In the unconstrained case such semi-linear separable
problems were first analyzed in detail by Golub/Pereyra [11]. Later Parks [18] treated general
constrained nonlinear problems of this type.

Consider the following semi-linear least squares problem with linear inequality constraints:

min
α,t
{‖G(t)α− y(t)‖2 :Ct ≥ h, t ∈ [0, 1]`, α ∈ Rn} (4.1)

representing (3.1), (3.2) with appropriately chosen regularized observation matrixG ∈ Rm+p,n,
(p = n − k in case of (3.1),p = n + ` for (3.3)) vector of coefficientsα ∈ Rn and data
vectory ∈ Rm. The constraints (3.2) on the knot positions are expressed equivalently in matrix
formulation. In the case of (3.3) we do not include the inequality constraints.

The linear subproblem

min
α
{‖G(t)α− y(t)‖2 : α ∈ Rn} (4.2)

can be solved easily for fixedt, e.g. by reducingG to upper triangular form by a series of Givens
rotations, leading to the minimum norm solution

α(t) = G†(t)y(t). (4.3)

whereG†(t) is the pseudoinverse ofG(t). It follows that the original separable problem can be
written

min
t
{‖G(t) G†(t)y(t)− y(t)‖2 : t ∈ [0, 1]`} (4.4)

which is now a nonlinear least squares problem in the free knotst only.

Golub and Pereyra [11] showed that under natural assumptions which guarantee the continuity
of the pseudoinverse, the reduction is feasible in the sense that the change from minimizing the full
problem to minimizing the reduced problem does not add any critical points and does not exclude
the solution of the original problem. Such a natural assumption is that the rank of the matrixG(t)
is constant on an open neighborhood which contains the solution. The constant rank assumption,
even the full rank assumption onG(t) is satisfied in the case of the regularized problems (3.1),
(3.2) and (3.3). Unfortunately for arbitrary data the matrixG(t) of the original problem (2.5) does
not satisfy this full rank assumption (cf. Schoenberg-Whitney condition [6]).

SinceG(t) G†(t) is the orthogonal projector on the range ofG(t), algorithms based on (4.4)
are often called variable projection algorithms. A variable projection algorithm using a Gauss-
Newton method applied to the reduced problem (4.4) was used to solve the original least squares
problem. The Gauss-Newton method is based on a sequence of linear approximations of the
residuum. Iftν denotes the current approximation, then a correctionpν is computed as a solution
to the quadratic problem

min
p
{‖[I −G(tν) G†(tν)]y(tν) + J(tν)p‖2 : p ∈ R`}. (4.5)
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with J the Jacobi matrix ofR(t) := [I − G(t) G†(t)]y(t) evaluated attν . If the Jacobian has
full rank then (4.5) has a unique solutionpν which defines the new approximate

tν+1 = tν + pν . (4.6)

The Gauss-Newton method can be generalized to constrained problems. A search directionpν

is then computed as a solution to

min
p
{‖R(tν) + J(tν)p‖2 : C(t + p) ≥ h, p ∈ R`} (4.7)

by first transforming (4.7) by Householder reflections into a least distance problem and finally
using an active set strategy for solving the resulting nonnegative least squares problem [17].

For evaluatingJ , the derivative ofR has to be computed. Expressions for the derivatives of B-
splines with respect to its knots can be found, e.g. in [20], the formulas for the Frechet derivative
of an orthogonal projector in [11]. Alternatively the derivatives can be approximated by finite
differences. Thenl additional least squares problems have to be solved in each computation of
the derivative. However, in our case, the (regularized) observation matrixG is banded, so that the
costs of realizing the linear algebra involved are relatively cheap.

The undamped generalized Gauss-Newton method converges only locally and for small resid-
ual problems. In order to globalize the method, a Armijo-Goldstein line search has been imple-
mented. To be robust the algorithm must employ stabilizing techniques for the Gauss-Newton
steps when the JacobianJ is nearly rank deficient. This is done by applying a Levenberg-
Marquardt method.

Jupp [13] referred to the potentially high number of local extrema for free knot least squares
problems. For illustration Figure 3 shows the residuals of least squares approximation of the
function8 sin(10x2 +5x+1) on [−1, 1] depending on the position of the two free knotst1 andt2
(triangular membership functions). Not surprisingly, the local minimum to which the optimization
algorithm converges heavily depends on the starting knot sequencet0. Hence, the generalized
Gauss-Newton method is rerun several times with equally distributed random starting values to
obtain the global minimum.

4.2 Results for fixed error levels

In the following we compare the results of reconstructing an a-priori given function from noisy
measurements taking into account spline approximation, smoothing and Tikhonov regularization.
The exact data values are perturbed with uniformly distributed random noise. In the first two
examples we take the emphasis on approximation properties, in the third example we take a more
careful look onto constructing an interpretable fuzzy controller.

In the figures, the starting knot sequences for the reduced free knot optimization problem are
marked with∗ whereas the locations of the resulting (local) optimal knots are labeled with2. The
noisy data are represented by dots, the solid line represents the ’optimal’ spline approximation.

In the tables, we compare the residualsr0,0 andrγ,δ for exact and noisy data, i.e.

rγ,δ :=

√√√√√ m∑
i=1

yδ
i −

n∑
j=1

αγ,δ
j bj(x

γ
i ; tγ,δ)

2

(4.8)
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Figure 3: Residuals of least squares approximation with two free knots (triangular membership
functions)

whereαγ,δ andtγ,δ denote the solutions to the (regularized) optimization problems with noisy
data.

4.2.1 Example 1

As a first example, we consider the reconstruction of the function

f1(x) := sin(4πx) x ∈ [0, 1] (4.9)

from noisy data. The 30 x-values, which are chosen randomly distributed in[0, 1], are perturbed
with equally distributed random noise up to 1%, the data values up to 25% resulting inγ = 0.0042
andδ = 0.9012. 15 B-splines of order 5 are used as membership functions. Starting from an
equidistant knot sequence the search for the optimal location of the 10 free knots is carried out by
the optimization algorithm described above. The results are presented in Figure 4 - Figure 6.

Figure 4 and Table 1 show the results for approximating the data set where the minimal dis-
tance between knots is set to 0.002. The minimal distance constraints on the knots of the op-
timized sequence are active for most of the knots clustering them into three groups. However,
the Schoenberg-Whitney condition is not violated, since the support of B-splines of order 5 is
relatively large such that there is at least one data point within each support interval. The ap-
proximation follows closely the noisy data points leading to abrupt changes in the approximating
function and a large discrepancy fromf1.

Smoothing and Tikhonov regularization find approximations much closer to the original func-
tion. In the smoothing term the second derivative of the spline is included combined with a rela-
tively small smoothing parameterβ. Not surprisingly, the shape of the solution depends strongly
on the choice of the regularization parameters. This is of special importance for standard Tikhonov
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regularization, see Figure 6, where the results are plotted for two different sets of parameters. Ad-
ditionally the solution depends strongly on the choice of the a-priori knot sequencet∗ which is, in
this case, the equidistant knot sequence.

When comparing the results (Table 1), smoothing and Tikhonov regularization are much better
than approximation without any regularization. In this example, smoothing gives a slightly smaller
residual for exact data than Tikhonov regularization (case 1), mainly because the underlying func-
tion f1 is very smooth and we are using second derivatives in the smoothing term. If somebody
wants well separated knots or has a good initial guess of the solution, Tikhonov regularization is
preferable.

Approx Smoothing Tik 1 Tik 2
r0,0 0.7079 0.5763 0.5983 1.4189
rγ,δ 0.5710 0.6712 0.6617 1.5739

‖α‖`2 4.6017 3.0649 2.9534 1.8563
‖t− t∗‖`2 0.3613 0.2479 0.0386 0.1840

Table 1: Ex.1: Results for different solution strategies.

t0 = t∗ 0.091 0.182 0.273 0.364 0.455 0.545 0.636 0.727 0.818 0.909

Approximation 0.056 0.058 0.060 0.492 0.494 0.496 0.816 0.818 0.820 0.822
Smoothing 0.224 0.234 0.252 0.503 0.517 0.522 0.676 0.744 0.746 0.810
Tikhonov 1 0.091 0.160 0.296 0.369 0.425 0.578 0.625 0.717 0.842 0.887
Tikhonov 2 0.082 0.131 0.348 0.350 0.352 0.642 0.644 0.682 0.842 0.856

Table 2: Ex.1: Starting and optimized knot sequences.
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Figure 4: Ex.1: Approximation with 15 B-splines of order 5 (ε = 0.002)

4.2.2 Example 2

The second example deals with the reconstruction of the function

f2(x) :=
10x

1 + 100x2
x ∈ [−2, 2] (4.10)

(see Figure 7), a function already considered in [12] and [20] in the context of spline approximation
and smoothing.
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Figure 5: Ex.1: Smoothing with 15 B-splines of order 5 (k = 2, β = 0.0001, ε = 0.002)
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Figure 6: Ex.1: Tikhonov regularization with 15 B-splines of order 5 (Tikhonov 1:β1 = 0.1, β2 =
0.95, Tikhonov 2:β1 = 0.95, β2 = 0.95)
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Both the abscissa as well as the data values are perturbed with uniformly distributed random
noise. The perturbations of the 40 data samples are within a level of 5% and 12%, respectively
leading to noiselevelsγ = 0.364 andδ = 0.199. For the reconstruction 11 B-splines of order
3 (quadratic splines) are used. The optimization algorithm for the 8 free knots is started with an
equidistant knot sequence.

When approximatingf2 without including any smoothing terms, the resulting function is
rather arbitrary (cf. Figure 8); in most cases the optimization procedure breaks down. The
Schoenberg-Whitney condition is not satisfied for the knot sequences in the iterative optimization
process, the system matrix becomes singular. In smoothing some positions of the optimized knot
sequence nearly coincide. However, the smoothing term stabilizes the calculations. In Tikhonov
regularization knots are quite separated due to the choice oft∗.

When comparing residuals for exact data, Tikhonov regularization gives better results than
regularization via smoothing, and of course, much better results than approximation without ap-
plying any regularization technique. But Tikhonov regularization also gives better results with
regard to the linguistic interpretability of the resulting fuzzy controller, as we will se in the next
example.

Approximation Smoothing Tikhonov reg.
r0,0 4.99659 0.55853 0.52923
rγ,δ 0.16833 0.59593 0.59760

‖α‖`2 8.19528 0.56305 0.60057
‖t− t∗‖`2 1.11397 0.83290 0.41486

Table 3: Ex.2: Results for different solution strategies.

t0 = t∗ -1.566 -1.111 -0.667 -0.222 0.222 0.667 1.111 1.556

Appr. -1.803 -1.012 -0.192 -0.032 -0.030 0.069 1.405 1.705
Smoothing -1.872 -0.788 -0.226 -0.224 0.186 0.190 1.037 1.802
Tikhonov -1.563 -1.120 -0.711 -0.237 0.062 0.288 1.126 1.558

Table 4: Ex.2: Starting and optimized knot sequences.
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Figure 7: Ex.2: The function 10x
1+100x2 and noisy data.
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Figure 8: Ex.2: Approximation with 11 quadratic B-splines (ε = 0.001)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 9: Ex.2: Reconstruction by smoothing with 11 quadratic B-splines (k = 1, β = 0.06, ε =
0.001)
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Figure 10: Ex.2: Tikhonov regularization with 11 quadratic B-splines (β1 = 0.4, β2 = 0.4)
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4.2.3 Example 3

Similar to the paper of Setnes et.al. [23] we want to construct a transparent rule-based model from
noisy data measurements considering the spectral data function

f3(x) := 12 e
−(x−4.8)(x−5.8)

0.7 − 12e−(x+3.5)2 + 0.8x x ∈ [−10, 10] (4.11)

(cf. Figure 11). By using inputsx uniformly distributed in[−10, 10] 50 samples off3(x) were ob-
tained and then disturbed with uniformly distributed noise within a noiselevel of 10% (δ =9.5804,
maximal error =2.0398).

When constructing a Sugeno controller from measurements, the question on the optimal num-
ber of rules or equivalently knots arises. In the context of spline approximation and smoothing,
Schütze [20] proposes a knot removal strategy leading to a nearly optimal number of knots. How-
ever, we just fix the number of rules to be equal to eight. Accordingly, the universe of discourse
is split into eight fuzzy sets interpretable linguistically as negative big, negative medium, negative
small, negative very small, positive very small, positive small, positive medium and positive big.
To be interpretable easily, the shape of the membership functions is chosen to be triangular.

Figure 12 - Figure 14 show the results for approximation, smoothing and Tikhonov regular-
ization of the noisy data problem. Although the residuum is smaller for approximation than for
smoothing and Tikhonov regularization (Table 5), only the later succeeds in constructing an inter-
pretable fuzzy controller since knots are separated appropriately. In approximation and smoothing
knots of the optimized sequence nearly coincide (Table 6) leading to questionable and not lin-
guistically interpretable membership functions (Figure 12 - Figure 14, lower part). For Tikhonov
regularizationt∗ is chosen to be equidistant within the underlying interval.

The linguistic fuzzy model constructed from Tikhonov regularization is given in Table 7.

Approx Smoothing Tikhonov
r0,0 12.0859 14.6041 14.5291
rγ,δ 12.3130 14.7508 16.9215

‖α‖`2 32.6938 25.8770 22.7836
‖t− t∗‖`2 4.1379 4.4046 1.8854

Table 5: Ex.3: Results for different solution strategies.

t0 = t∗ -7.143 -4.286 -1.429 1.429 4.286 7.143

Appr. -5.585 -2.661 -2.608 3.999 5.658 5.668
Smoothing -5.372 -3.119 -2.399 4.215 4.346 4.655
Tikhonov -7.124 -3.718 -0.989 2.790 5.354 7.354

Table 6: Ex.3: Starting and optimized knot sequences.

4.3 Results for error level tending to zero

Again, we consider the reconstruction of the functionf2 (cf. (4.10), Figure 7) and try to validate
the convergence properties stated in Theorem 3.10. We take 90 data samples equidistant in[−2, 2]
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Rule: Antecedent Consequent singleton Consequent label
R1 : If x is Negative Big then y= -7.605 Negative Medium
R2 : If x is Negative Medium then y= -5.025 Negative Medium
R3 : If x is Negative Small then y=-11.063 Negative Big
R4 : If x is Negative very Small then y= -0.460 Negative very Small
R5 : If x is Positive very Small then y= 1.367 Positive very Small
R6 : If x is Positive Small then y= 15.095 Positive Big
R7 : If x is Positive Medium then y= 4.968 Positive Medium
R8 : If x is Positive Big then y= 7.682 Positive Medium

Table 7: Sugeno controller identified from noisy data.
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Figure 11: Ex.3: Spectral data functionf3 and noisy measurements
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Figure 12: Ex.3: Approximation with 8 triangular membership functions (ε = 0.01)
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Figure 13: Ex.3: Smoothing with 8 triangular membership functions (k = 1, β = 0.01, ε = 0.01)
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Figure 14: Ex.3: Tikhonov regularization with 8 triangular membership functions (β1 = β2 = 0.5)
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Figure 15:‖αδ − α‖`2 and‖tδ − t∗‖`2 vs. δ

and perturb the y-values with uniformly distributed random noise up to a noiselevel of 20 %
(maximal error = 0.0986, maximalδ = 0.5226). 15 B-splines of order 5 act as membership
functions in Tikhonov regularization. It is easily shown that the assumptions of Theorem 3.10 are
satisfied.

The residuum for the least squares approximation of the exact data is equal to 0.004322. The
resulting knot sequence

t = {−1.2665, −0.7356, −0.1896, −0.0351, −0.0350,

0.0349, 0.0350, 0.1896, 0.7355, 1.2656}

is taken as the priort∗.The regularization parameters are chosen according to the theory (β1 =
β2 =

√
δ ). Figure 15 shows thè2 difference of the coefficients and knots obtained from exact

data vs. noisy data. It is noticeable that the difference between the knot sequences is nearly
constant or even declines with increasingδ, which could be explained by the increased weighting
of the β2 term in the objective functional. Thè2 difference of the coefficients is quite well in
agreement with the theory.

Finally, in Figure 16 the residuum of the Tikhonov regularized approximation to noisy data is
plotted against the error levelδ.

5 Extensions and Open Problems

We have seen in the preceding sections that regularization leads to stable approximations of the
minimizers and, in addition, improves the interpretability of the arising fuzzy systems, because
grid points are separated. So far, we have restricted our analysis to a one-dimensional situations,
but multi-dimensional problems arise in many applications. However, the results on Tikhonov
regularization can be carried over to a multi-dimensional situation without many modifications
(except with respect to notation). In the case of smoothing the change to higher dimensions is
more difficult, since it is not obvious how the singular values of the system matrix can be estimated
for arbitrary parameterst.
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Figure 16: Residuum‖F (αδ, tδ)− yδ‖`2 of Tikhonov regularized approximation to noisy data
vs. noise level

Since our analysis seems to be a novel approach to the optimization of fuzzy systems, there are
still open problems connected to it, which might be of importance for application. In particular
we want to mention the so-calledgeneralization error(cf. [30]), which means the error of the
approximator at pointsx /∈ {xi}i=1,...,m. A desirable property of the approximators would be
convergence to the function from which the samples are taken, as the number of grid pointsm
tends to infinity. However, such a convergence result can be obtained only if alson → ∞, which
is often not desirable for fuzzy systems. Nevertheless a meaningful approximation should yield
boundedness (and smallness) of the error asm →∞.

If the grid is regular enough one could consider the caseh → 0, whereh is a real number
such that|xi−xi−1| < h for all i, which allows a rather standard deterministic analysis. For more
irregular distributions of sampling points, one should use different concepts such as stochastic
models for the locations. This will be one of our main items for future research.
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