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Abstract — This paper is devoted to the mathematical analysis and the numerical solution of
the problem of designing fuzzy controllers. We show that for a special class of controllers (so-
calledSugeno controlleds the design problem is equivalent to a nonlinear least squares problem,
which turns out to bell-posed Therefore we investigate the use of regularization methods in
order to obtain stable approximations of the solution. We analyze a smoothing method, which is
common in spline approximation, as well as Tikhonov regularization with respect to stability and
convergence.

In addition, we develop an iterative method for the regularized problems, which uses the spe-
cial structure of the problem and test it in some typical numerical examples. We also compare the
behavior of the iterations for the original and the regularized least squares problems. It turns out
that the regularized problem is not only more robust but also favors solutions that are interpretable
easily, which is an important criterion for fuzzy systems.
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2 1 Introduction

1 Introduction

Fundamentally, the idea of fuzzy sets and systems, dated back to Zadeh [31, 32], is to provide a
mathematical model that can present and process vague, imprecise and uncertain knowledge. It
has been modeled on human thinking and the ability of humans to perform approximate reasoning,
so that precise and yet significant statements can be made on the behavior of a complex system.
Successful applications of fuzzy logic control include automatic train operation systems, eleva-
tor control, temperature control, power plant control, fuzzy refrigerators, washing machines, etc.
The main advantage of fuzzy controllers in comparison with other adaptive systems like neural
networks is the linguistic interpretability of the controller’s function.

1.1 Fuzzy Control

Basically, a fuzzy logic controller consists of three components [1,7, 16]:

1. Therules, i.e. a verbal description of the relationships usually of a form as the following (
is the number of rules):

if xis A; thenu is B; (i=1,...,n)

2. The fuzzy sets (membership functions), i.e. the semantics of the vague expressitns
used in the rules. More precisely (cf. [2]): Given a universe of discolrsefuzzy subset
A of X is characterized by its membership function

fa: X —[0,1] (1.1)

where forz € X the numbem 4 (z) is interpreted as the degree of membership of the
fuzzy setA.

3. Aninference machine, i.e. a mathematical methodology for processing a given input through
the rule base. The general inference process proceeds in three (or four) steps.

(a) UnderFuzzification the membership functions defined on the input variables are ap-
plied to their actual values, to determine the degree of truth for each rule premise.

(b) Underinference the truth value for the premise of each rule is computed, and applied
to the conclusion part of each rule. This results in one fuzzy subset to be assigned
to each output variable for each rule. Usually only minimum or product are used as
inference rules as special cases of a triangular norm (t-norm, [2]).

(c) UnderCompositionall of the fuzzy subsets assigned to each output variable are com-
bined together to form a single fuzzy subset for each output variable. Usually maxi-
mum or summation are used.

(d) Finally is the (optionaldefuzzificationwhich is used to convert the fuzzy output set
to a crisp number. Two of the more common defuzzification methods are the centroid
(center of gravity) and the maximum method.
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In the following we assume that a reasonable inference scheme—a Sugeno controller [27], where
the output membership functions are crisp values—is given. For a complete definition of a Sugeno
controller, see Section 2.

There are still two components left which have to be specified in order to design a fuzzy
controller—the rules and the fuzzy sets. Recent effort has been concentrated on developing new
techniques which may be able to design the membership functions and rule base automatically.
Genetic algorithms have played a special role in fuzzy control design as well as methods treating
fuzzy systems as artificial neural networks to adjust membership functions using back propagation.
For references see the article of Tan and Hu [28]. Also classical optimization algorithms, such as
the method of steepest descent have been applied in tuning small and medium sized controllers.

Under the quite natural assumptions that product is used as fuzzy inference rule, summation
as the composition scheme, and center of gravity as the defuzzification method, the tuning of a
Sugeno controller reduces to fitting a set of ddta;, y;) }i—1,... » by alinear combination of mem-
bership functions in the least squares sense, i.e. seeking a solution of the minimization problem

2

Z Yi — Z a;bj(zs;t) | = min, (1.2)
— — (at)
1= Jj=

whereb; represents the membership functions anet: (o, o, . .. ,a,) T the coefficients. The

concrete shape of the membership functions depends on the knot sedquergeh is also in-
cluded in the optimization procedure. Therefore, the minimization problem (1.2) is nonlinear.

Among the wide range of possible membership functions for Sugeno controllers, we will con-
centrate on two different kinds: trapezoidal and B-spline membership functions, firstly for the
one-dimensional case (see Section 2). The more general class of B-spline membership functions
for Sugeno controllers, including the often used triangular membership functions, were proposed
in Zhang and Knoll [33].

1.2 lll-posedness and Regularization

Assuming for the moment that the knot sequeticefixed, we end up with a linear least squares
problem

1 .
Sliy = Bt)all* = min, (1:3)

whereB(t) := (bj(z4,t))i=1,...m: j=1...n IS the so-called observation matrix. (1.3) has a unique
solution, if and only if the observation matri® has full rank which is equivalent to the—in ap-
proximation theory well-known—Schoenberg-Whitney condition [6]. In case of a rank-deficient
observation matrixB (i.e.,r :=rank(B) < n), the least squares problem (1.3) is no longer uniquely
solvable. The set of solutions consists of the linear manifold

«' + N(B).

= denotes the unique least squares solution of minimal (Euclidean) norm, giveénbys 'y (B1
the Moore-Penrose inverse or pseudo inverse)dOf) denotes the nullspace &f with dimen-
sionn — r. Because of roundoff errors any numerical scheme for computing the Moore-Penrose
inverse of a matrib3 will, at best, produce the Moore-Penrose inverse of a perturbed nizatrik .
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However, it is well known that if a matri® + E' is close toB, but is of different rank tha®, then

its Moore-Penrose inverse3 + E)' will be different from Bf, and the smalleF is, the greater

the difference will be. Generally, problems the solution of which does not depend continuously
on the data belong to the class of so-cailegosed problemsIn our case, we also have to take
into account data errors. Usually, the dgtes the result of measurements contaminated by noise.
Often, the exact positiom; of the measurement is only known approximately, i.e. we get a set
of noisy data’x”, y°) with error boundsy andd. Hence, we have to use so-called regularization
techniques to obtain a stable solution to our problem.

We note that an analogous ill-posed problem arises in the problem of function approximation
with neural networks. In this case the problem is also given by (1.2), the basis functions are usually
of the form

bj(z;a,b) = a(ajrx +bj), (1.4)

with a; € RY andb; € R. The so-called activation functionis usually chosen to besigmoidal
function i.e., a monotone and piecewise continuous functioRomwhich satisfies

lim o(t) =0 lim o(t) = 1.

t——o0 t—o0
Similar to our problem in fuzzy control, the minimization is performed with respect to the weights
and also with respect to the parametersindb; on which the output depends in a nonlinear way.
The main difference is that in the approximation with neural networks one is not interested in
the behaviour of the parameters andb;, since they do not have a particular meaning, but one
rather wants to achieve convergence of the approximating oyitpe E?:1 a;bj(x;a, b) to the
function from which the sampleg are taken. For this reason the results obtained in the sequel
cannot be transferred directly to neural networks, but there are several techniques that could be
carried over to that field in future work. For further details we refer the reader to the monograph
by Bishop [4] and also to [5, 10, 25].

In the case of linear ill-posed problems, the regularization theory is very well developed [8].
The ill-posed problem is replaced with a family of similar well-posed problems through the in-
troduction of a regularization operator and a regularization parameter. For a problem to be well-
posed, it must satisfy the requirements of existence, uniqueness, and the solution must depend
continuously on the data. The regularization parameter is chosen dependent on the noise level and
possibly on the data. The regularized solution approaches the true solution as the noiselevels tends
to zero only if certain conditions upon the choice of the regularization parameter are satisfied [8].

It is shown by a simple example in Section 2, that the full nonlinear minimization problem (1.2)
is indeed ill-posed in the sense that solutions do not necessarily depend on the data in a continuous
way. Generally, the theory for nonlinear ill-posed problems (cf. [8], Chapter 10) involves more
technical problems as the linear case. The case of an ill-posed nonlinear least squares problem,
where no "attainability assumption” is fulfilled, is even more complicated and by far not so well
developed [3].

Consider the nonlinear ill-posed problem
F(x) = yo, (1.5)

whereF' is an operator from a (subset of) a Hilbert space to another Hilbert space. We assume
that a-priori information about a suitable solution of (1.5) has been incorporated into a wéctor
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The choice ofc* is very crucial; in the case of multiple solution$ plays the role of a selection
criterion. We are searching forz& minimum-norm least squares solution, that is a least squares
solution of (1.5) which minimizes the distanceatdb over all least squares solutions.

Among several regularization methods for obtaining a stable approximatiariton@mimum-
norm least squares solution, Tikhonov regularization is one of them. Minimizing the Tikhonov
functional

Jrik(x) = ||F(z) — yol|* + Bllz — 2*|? (1.6)

where > 0 is the regularization parameter, is a trade-off between matching the data and stabi-
lizing the solution. A large value gf produces a stable solution; however it may not adequately
satisfy the original data. For a small valuefwe could expect to approximate the minimum of
(1.5) well; however, the problem is then approaching the original ill-posed problem, and becomes
unstable. In Section 3 we discuss the problem of chooSiagpropriately.

Another possibility to stabilize an ill-posed problem is regularization with differential opera-
tors, i.e., we minimize the functional

Ik (@) = ||F(x) = yol* + | Le|® (1.7)

or even
J&rarp(@) = ||F(z) — yol* + BIIL(F ()|, (1.8)

where L represents a differential operator. Especially in classical approximation theory, instead
of the spline approximation problem, a spline smoothing problem is often considered, where the
smoothing term(F'(x)) characterizes the smoothness of the spline (cf. [6] for fixed knots). It
should be mentioned that in practical applications, the smoothness of the controller output is one
of the most important design requirements.

1.3 Approximation Properties of Sugeno Controllers

It has been shown by several authors ([14], [15], [29]), that fuzzy controllers are universal approx-
imators in the sense that it is possible to construct such rule bases that approximate uniformly any
continuous function defined on a compact subs® Bfwith arbitrary accuracy. Proofs are based
upon the Stone-Weierstrass Theorem and purely existential in nature. From a practical—fuzzy
control oriented—point of view, these theorems suffer from the fact that the number of rules in the
base is not bounded, in addition to that even the supports of the terms in the rules are not bounded
(e.g. Gaussian membership functions).

As already mentioned, the tuning of a Sugeno controller reduces to a data fitting problem by
a linear combination of membership functions. From a purely mathematical point of view, we
now let both the number of membership functions and data points tend to infinity and examine
the approximation power. We consider the case of B-spline membership functions, where a wide
range of convergence results ( [6], [24]) exists.

It is well known, that sequences of polynomials interpolating a predetermined sequence of
points in an intervala, b] may not converge (Theorem of Faber, [24]). If polynomials are forced
to follow points in an interval, they may respond by oscillating wildly. This tendency to oscillate
becomes increasingly pronounced as the order of the polynomial is increased. The situation is
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completely different for spline approximation. Here, we are not interested in large order polyno-
mials. To get accurate approximations we would prefer to keep the order of piecewise polynomials
between two knots fixed at a rather low value, and increase the number of knots. Not surprisingly,
convergence results were obtained for wide classes of functions relating the approximation error
to the number of knots or, in our case, to the number of membership functions. Especially, we can
approximate a large class of functions arbitrarily well by splines of a fixed order if we are willing

to use many knots. The order of approximation attainable will increase with the smoothness of the
class of functions being approximated. Additionally, it will turn out, that substantial gains in the
rate of convergence can be achieved when using the knots as free parameters that can be adjusted
to the particular function being approximated (cf. [24], Chapters 6-7).

Let Wj‘[a, b] := {u: u € Ly[a, b];V r < k} denote a Sobolev space of orderp on
[a, b], Lp[a, b] the Lebesgue space of order|| - ||ka the usual Sobolev norna f, S,, /) x =
infses,, , [|f — sl|x the distance of a functiojf to the spline spac8,, , defined by¢ knots and
piecewise polynomials of order.. Assuming a fixed knot sequence (equally spaced knots, for
example), Shumaker [24] cites the following convergence rate result, where < ¢ < oc:

V(A <s<m) VfeWa,b] d(f,Smi)r,ay =0 ETVYP) (1.9)
When using free knots
VA<s<m) VfeW[a,b d(f,Sme)rya,e=0C"). (1.10)

Indeed, it was shown that order convergence is the maximum that can be obtained for smooth
functions. Consider the uniform norm £ o). Then, using splines with equally spaced knots, for
example, the maximal order of convergenceis- 1/p. On the other hand, a free knot sequence
leads to maximal convergence rate

1.4 Organization of the paper

The paper is organized as follows: In Section 2, we give mathematically precise definitions of a
Sugeno controller and membership functions. The optimization of a Sugeno controller is treated
as a nonlinear least squares problem, as not only the coefficients but also the position of knots
defining the shape of membership functions is sought for. It is also shown that solving the min-
imization problem is indeed ill-posed by a rather simple finite dimensional example. In Section
3, two different approaches of regularizing the least squares problem are investigated: the first
one is spline smoothing—commonly used in the area of spline approximation—where additional
constraints are introduced to avoid coalescing knots; the other one is the classical Tikhonov regu-
larization. We develop existence, stability, and convergence results. Finally, in Section 4 we give
a short description of the numerical optimization algorithm—a generalized Gauss-Newton like
algorithm—and prove that the results of reconstructing a-priori given functions from noisy data
are in agreement with theoretical results obtained in Section 3.



2 Optimization of Sugeno Controllers

2.1 Basic definitions of Sugeno controller and membership functions

If we look at a Sugeno controller from the point of view of mappings which assign to each crisp
observation a crisp value (vector) in the output space, i.e., there is a furictionY — R%
associating to each inputits corresponding output, it is possible to construct an explicit formula
substituting the fuzzy control system completely.

Definition 2.1. Let X be an input space, ledy, As, ..., A, be normalized fuzzy subsets af
with 3~ pa,(x) > 0 forallz € X, andfi, fa, ..., fn be functions fromx to R, and consider
the rulebasé: = 1,2,...,n)

if zis A; thenu = f;(x).

Then the Sugeno controller defines the following input-output fundiipnX — R%

> na, (@)
In the following we consider the special case, thatifee 1,2,...,n the functionsf; are

constant, that i;(z) = «;. In a first step, we restrict ourselves to the one-dimensional case,
i.e., a single input-single output controller. However, for the output variable this is no restriction.

If the number of output variables is higher than one, it can easily be shown that in every case
it is possible to decompose the controller into as many independent controllers as many output
variables we have [14].

Among the class of membership functions, we consider first the classical trapezoidal ones. Let
the knot sequence= {¢;}, where

a:tl Stg § Stgnfl §t2n:b (22)

be a partition of the universe of an input variable defined ¢wg], corresponding to n linguis-
tic terms. Then the mathematical formulation of the trapezoidal membership funajidrise
{1,...,n}) is as follows:
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Figure 1: Trapezoidal membership functions

1 if x € [tl,tg]
bl(iﬁ,t) = ;f_ﬁt; if x € (tg,t;;)

0 otherwise

tzj__lt% if x € (tgj_g,tgj_l)

1 if x € [tgj_1,t2j]
bj(xa t) = _I+t2j+l f

g, @€ (tg,ta511)

0 otherwise

Q:j% if z € (ton—2,t2n—1)
bn(2,t) = 4 1 if @ € [ton—1,t2n]

LO otherwise

Figure 1 shows a typical example.

Now we turn to the more general class of B-spline membership functions for Sugeno con-
trollers.

Assume that is an input variable of a Sugeno controller that is defined on the intgryvél
Given a sequence of ordered knots: {¢;}, where

tih=...=tpr=a<tp1 < ... <tp <b=tpy1=... =tttk (2.3)

the j-th normalized B-spline basis functidi; ;, of orderk for the knot sequenceis recursively
defined as

1 ift: <z <tiy,
Bj 1(1‘,13) = )= 1’ 1
0 otherwise
Bjg(z,t) = wjr(z) Bjg—1(z,t) + (1 — wjr1%(7)) Bjy1p-1(z,t) fork >1
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Figure 2: B-spline basis functions of order 1 - 4 for a non-uniform knot sequence

The complete knots consist of two parts, the interior knots that lie within the universe of
discourse, and extended knots that are generated at both ends of the universe for a unified definition
of B-splines (leading to the so-called marginal linguistic terms in [33]).

In the following, we summarize some properties of B-splines, where especially the positivity,
local support, and partition of unity qualify them as membership functions.

Positivity: Bj ,(x,t) > 0

Local support:B; ,(z,t) =0  if

for all

x €

[a,b]

x & [ti tjrk)

C*=2 continuity: if the knotgy, . . . t,,...1 are pairwise different from each other, thepy, (=, t)
is (k — 2) times continuously differentiable.

Partition of unity:

n
> Bjx
=1

(z,t) =1

(2.4)

From the point of view of fuzzy control, B-spline membership functions suffer from the draw-
back that they are not—except for orders less than three—normalized membership functions, i.e.
the largest membership grade is not necessarily one, but a smaller value in the [Atarnvahd-
ditionally for higher order B-splines, the linguistic interpretation of membership degree is rather
complicated.
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2.2 Tuning of Sugeno controllers as an ill-posed least squares problem

Assume(x, y) is a set of so-called training data, where= (z1, 2, ..., z,,)" is the training data
vector, andy = (y1,%2,...,¥m)" the desired output fax. It follows immediately from (2.1), and

the partition of unity (2.4), that designing a Sugeno controller from training data, is then equivalent
to the least squares problem

2
m

i 2 aibiEat) | o= ' , 25
Yol ;ag (24 t) R (2.5)

i1 ((a1,az,...,

where(b;);—1,... » is one of the membership functions introduced above. The concrete shape of the
membership functions is determined by thdimensional knot vectat. ¢ represents the number
of free knots.

As already mentioned, we have to consider data erroysandx, i.e., instead
Ix — x”Hez < v (2.6)
ly=¥’le < 9 (2.7)

where||x||2 := /> it 2? denotes the usud} norm.

The following example shows that the problem of finding a minimum to (2.5) is ill-posed, even
if we have complete information about the functignfrom which the sampleg are taken.
Example 2.2.Letn =2, k € N,k > 2,a =t§ =0,t5 = k=3 andt} = 2k=3,¢tf =b =1, and
choosen® = k, ok = 0. The fuzzy membership functioms andb, are defined by

1 if z <ty

by(z;t) = f;%tz if to < <t3 (2.8)
0 if t3 <z

ba(z;t) = 1—bi(x;t). (2.9)

Then f% = alby(z;t%) + abba(z;t*) converges to zero ([0, 1]), buto* has no bounded
subsequence. Hence, the optimization problem is unstable with respect to perturbations in the
data.

2.3 Tuning of Sugeno controllers - The multiple input single output case

Under the assumptions of the previous sections, the input-output fungtioh a Sugeno con-
troller with d-dimensional input variable is given by

Fo(z1,29,...,2q) =

Qg1 92,0 4 Z Z Z bj1 :cl,tl ]2($2,t2) et bjd(:z:d,td). (210)

Jj1=1j2=1 Ja=1

F represents d—dimensional tensor product spline. Only, if the data is given on a regular
grid (e.g. a rectangular grid in the 2D case), thendha@imensional tuning problem splits up
into d one-dimensional problems. For irregular data, it is hard to define a Schoenberg-Whitney
like condition; practical examples show that the observation m&tisvery often rank-deficient.
Hence, regularization is strongly recommendable or even a must.
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3 Regularization

In the following we want to investigate two different approaches to the regularization of the least
squares problem (2.5). The first one is a common method for spline approximation (cf e.g. [21])
and consists of replacing (2.5) by

m

Z Yi —Zajbj(:ni;t) +ﬁ‘ZO@ ’Hk @ = {nlt% (31)
j=1

i=1

wherel.| ;1 () denotes the norm or seminorm in the Sobolev SpakEY) := WX(Q). In addition
we impose the constraints

tj+1—tj26, jzl,...,f—l, (32)

which are necessary to remove the possible instabilities caused by two equal or almost equal
knots. For notational simplicity, we do not bother with multiple knots at the end of the intervals
(cf. the definition of the knot sequences (2.2), (2.3)). In the subsequent Section 3.1 we will see that
(3.1) subject to (3.2) is a well-posed problem and its solution will converge to a minimizer of the
original problem with the additional constraint (3.2) for fixednd appropriately choseh — 0

asvy, d — 0. However, we cannot show convergence as 0, which is a serious disadvantage.

The second approach under investigation is classical Tikhonov regularization in the parameter
spaceR™ x RY, it consists of minimizing the functional

Z 6 Zaj (z];t) —i—ﬂlza —l—ﬁzzt —t7) —mu; (3.3)

=1

for appropriately chosefi; and 3, (in dependence af andy?), wheret* is a prior fort, e.g. the
uniform grid points. In this case we can show convergence for appropriate chgige-ef0 as
the noise level tends to zero even fisr= 0

In both cases we will assume that the functibpsatisfy the Lipschitz-estimate
bj(z,t) — bj(Z,t)| < Llz — %], V& Vtela,b]

with some nonnegative real constdnt

3.1 Smoothing

Now we turn our attention to the stabilized problem (3.1) supplemented by (3.2). For the sake
of simplicity we restrict our analysis to the case(df= (0, 1), trapezoidal functions; and the
H'-norm defined by

el = /Q (luf? + |Vul?) do

as the stabilizer. Obviously, the number of inner grid points must be even in this case to ensure
that the output equals one in the intervlst; ) and(t,, 1). The number of basis functions is then
given byn = % + 1. We note that a similar but technically much more complicated reasoning is
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possible for other spline basis functions, but the technical details would shadow the basic concepts.
Therefore, they are omitted here.

The stabilizing term can be transformed to a bilinear expression in terms of the variaidle
1" aibi (i)l 0y = @T At)a + o’ B(t)a, (3.4)
j=1
where the symmetric, positive definite matricéa) and B(t) are defined by

A(t) = ( /0 1 bi(z; t)b; (3 t) dm)ml ) (3.5)

-----

B(t) = ( /0 b )0 (2 ) d:c) . (3.6)

ij=1,..n

Now we define a new grid;, which does not include the intervals;, t2j41), on whichd, = 0
for all 3, more precisely,

, 14
81 =1t1, Sj11 =85 tta; —taj1,]= 1,..., 5 (3.7)

This allows us to find an equivalent definition for the mat#it):

Lemma 3.1. Let{cbj}j:1 ¢ denote the usual piecewise affinely linear finite elements on the grid
X LA

{Sj}jil,---é’ l.e.,
¢j|(5i’si+1) is affinely linear,  ¢;(s;) = 0i5,V i, 7,

whered;; denotes the Kronecker delta symbol. Then the ma(i) defined by

b= ([awsee)

equalsB(t) defined by3.6). Furthermore, the matrixi(t) can be represented in the form
a0 = ([owoeas) o, @9
ij=1,...%
whereAy(t) is a positive semidefinite matrix.

Proof. Sinceb;- = 0 on (te;, to;41) for all i, j andb;.(:c;t) = gb;-(Si(x)) on (te;—1,t2;), Wheres;
is the unique transformation of the forfi(z) = = + o; that mapgte;_1, to;) ONtO(s;, s;+1) We
obtain

1
| dtasoniase dz = [ 6516 s)

and consequentlg(t) = B(t).
An analogous argument yields the decomposition

mwz(/@@wx$¢ﬁmﬂwm+<ﬁm);mgm@dﬁ .

ij=1,...n
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whereS = J(t2i—1,%2:). We now defined,(t) as the second term in the previous identity and
since

(an (o 1 =75 € (taima,t2i-1)
bils)b;(s) = { 0 elsefors € (0,1) — S ’

Ay is a diagonal matrix with nonnegative entries and therefore positive semidefinite. [

To carry out the stability analysis we will use the following result adapted from stability esti-
mates in finite element theory:

Lemma 3.2. For eachcy > 0 there exists a positive real numbersuch that for allt satisfying

. Co
f tivg —t;} > —
je{lf{l.,eq}{ stk =g
the estimate . .
Yoo <alll Y ajbi(a;t)|F ) (3.9)
j=1 J=1

holds.

Proof. Lemma 3.1 and (3.4) yield the identity
| Z ajbj(z;t) |71 gy = a” Pa+ ' Ag(t)a > o @a,
j=1
where
0= ([ 1810105 + 5 (5)) ds
A standard argument from finite-element theory (cf. [26]) implies that the minimal eigenvalue of

the symmetric matrixp is bounded below by, ¢, wherec; depends only o, which is a lower
bound for the length of the intervés, , sy,). O

ij=1,..n

Now we are able to show that the stabilized problem 3.1 is well-posed, i.e., a minimizer ex-
ists and the dependence of the minimizers on the data is stable (in a set-valued way), which is
expressed in the following propositions:

Proposition 3.3 (Existence of a minimizer).For all y € R™ andx € [0, 1]™ there exists a
minimizer of(3.1), if e > 0 and 3 > 0.

Proof. Since a minimizer must yield an output less or equal than the onedrent), we may add
the additional constraint (using Lemma 32 ¢ and the notatiol’ = E—é)

n C m
doai< g v
j=1 pe i=1

The resulting set of admissible points is compadRih x R’ and since the objective functional is
continuous, the existence of a minimizer follows from a standard principle in optimizationl
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Proposition 3.4 (Stability). Let3 > 0, ¢ > 0, y* — y andx* — x. Then the according
sequence of minimizers @¢8.1) has a convergent subsequence and the limit of every convergent
subsequence is a minimizer (¥.1).

Proof. As in the proof of Proposition 3.3 we obtain the estimate

n C m
k k
> leb s O3 e
=1

Jj=1

Consequently, the sequen¢e®, t*) is bounded, which implies the existence of a convergent
subsequence. Lét"¢, t%¢) be a convergent subsequence with lifait t), then the continuity of
the objective functional together with the definition(ef*, t*) implies that(a, t) is a minimizer

of (3.1). O

Finally, we want to investigate the question of convergence of minimizers of the regularized
problem as the noise levél, ) and the regularization paramet@rtend to zero. Of course,
it would be of interest to let tend to zero, too, but in this case one cannot guarantee that the
minimizers are uniformly bounded.

Theorem 3.5 (Convergence under Constraints)Lete > 0 be fixed, le(+*, §¥) be a monotone

sequence convergent(®, 0) and Iet(gﬂk , y5k) be a corresponding data sequence satisfyihg),
(2.7)with (v, 8) = (v*, 6¥). Moreover, let the regularization parametgf be chosen such that

max{~", 6"}
matd

If a minimizer of (2.5) with exact data exists, then each sequence of minimjzérs*) of (3.1),
(3.2) with noisy data(ﬁk,y‘;k) and = * has a convergent subsequence and the limit of each
convergent subsequence is a minimizer of the least squares prghEyaubject to(3.2).

g =0, 0.

Proof. Let (&,t) be a minimizer of the problem with exact data, then the definitiofnf t*)
implies

2
m

n n

k k €

> [~ ek )| 84S Y2

i=1 j=1 j=1
2

gl =Y akbi(al 9 |+ AR M)A + B!
j=1

I

.
Il
—

2

=3 ag0i(a]"8) |+ pRaTIAG) + B(®)a
j=1

NE

.
Il
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2
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for some constants, co. The noisy residual can be estimated by

2

i=1 j=1
2
m n
>3 wi— > abbi(xith) | — (8" + L oF|py")
i=1 j=1
2
m n
> wi— D abi(@it) | — a6 + Le*|ayh),
i=1 j=1

and hence,
aC 2l — .
> (ah)? < 22200 + Lllala + ¥ laly) + ==Y a2
€Ok c
Finally, with the standard estimafie* || < /n|a*| 2 we conclude that

po _ c1C [ 6k o o CrC? 7’“ CQC
(b < 2 (4 v anlala g ) + 2295 (5 ya2,

which implies

lim sup Z CQC j

Thus, the sequeno{ezf, t*) is bounded and therefore there exists a convergent subsequence. The
fact that the limit of a convergent subsequence is a mininizer of (2.5) follows from

2
n

m n 2 m
. K k . .
hmsupz yf — Za?bj(xz th ] < Z Yi — Zajbj(:pi,t)
i=1 j=1 i=1

3.2 Tikhonov Regularization

In this section we investigate the Tikhonov regularization applied to (2.5), i.e., the minimization
problem (3.3). We restrict our attention again to the dase (0, 1), but we note that the method
and all proofs can be carried out in the same way (but with ve¢jdrsn the general theory (cf.

e.g. [3,8,9)]), the existence of a minimizer of problem (3.3) can be shown i 0 andgy > 0.

In our special case, the positivity of the second regularization pararfigisrnot necessary to
guarantee the existence as we will show in the following proposition:

Proposition 3.6 (Existence of a minimizer).For all y € R™ andx € [0, 1]™ there exists a
minimizer of(3.3), if 5, > 0.
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Proof. As in the proof of Proposition 3.3 it suffices to show that the set of admisailzi@n be
restricted to a compact set by an a-priori estimate. Again a comparison with the output functional
at the pointy = 0, we may conclude that a minimizés, t) of (3.3) must satisfy

n 1 m
5
IEEES S
j=1 Lo
]

We note that the stability and convergence analysis of Tikhonov regularization with respect
to the perturbation in the outpyt can be carried over directly from [8, 22]. Since we are also
interested in perturbations in the positionave need some modifications, which we will prove in
the following:

Proposition 3.7 (Stability). Let 5, > 0, y* — y andx* — x. Then the according sequence
of minimizers(a*, t*) of (3.3) has a convergent subsequence and the limit of every convergent
subsequence is a minimizer (&.3).

Proof. Again we compare the value of the objective functional achieved/att*) for the data
x* andy” with the one achieved wittD, t*) and obtain the a-priori estimate

Sincey* — y, the right-hand side is uniformly bounded As— oo and therefore the set of
minimizers is bounded, which implies the existence of a weakly convergent subsequence.

A convergent subsequence (without restriction of generatify; t*) itself and limit (@, t))
satisfies

2

n ¢
yi— Y bz ) | + 8> ar+ By (f— 1)

i=1 Jj=1 j=1 j=1

2
n n l
yf = 2 bt | +8) [aflP+ 5y ()’
j=1 j=1 Jj=1

m

3

m

2
l

< liminfz Yk — Zajbj(xf;t) + b Z || + B2 Z(tj - t;k’>2

ol
(

i=1 j=1 j=1 j=1
m n 2 n J4
=Y |w ajbj(st) | 481 o[>+ B2y (85 — 1)
i=1 j=1 j=1 j=1
for all admissiblg«, t) and thus, the limit is again a minimizer of (3.3). O

The convergence result in this case holds for the full problem (2.5), not only for a constrained
version:
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Theorem 3.8 (Convergence)Assume that a minimizer of problefB.3) exists. Moreover, let
(v*, %) be a sequence converging (0,0) and denote by*, t*) the according sequence of
minimizers of(3.3) with data (x?,y?), satisfying(2.6), (2.7). Then(a*,t*) has a convergent
subsequence and the limit of every convergent subsequence is a minin{&&)ofith exact data
(x,y) if the regularization parameters satisfy

B —0,  p5—0 (3.10)
k sk
%k’“ —0 (3.12)
B
Sog. A
€e>0:— >e (3.12)
B3

Proof. By similar reasoning to the proof of Theorem 3.5 we can deduce that
li k\2 < ~2 li ﬁ§ 5 t* 2
1msupZ(aj) < Zaj + 1msupﬂ—{€2( i —1t5)

for a minimizer(&, t) of (2.5). The remaining steps of the proof are the same as for Theorem
3.5. O

Finally, we want to investigate the rate of convergence of the regularized solutiéns-a&
For this sake we need additional smoothness opitameter-to-output mapvhich we will define
and analyze in the following Lemma:

Lemma 3.9. Letb; € C([0,1]") forall j € {1,...,n}, then the nonlinear parameter-to-output
operator F' defined by

F: R"x[0,1 — R™

(@ t) = (Shyasbst) (3.13)

i=1,....m

is continuous. Moreover, if the partial derivativ%;—' exist and are continuous functions for
all j € {1,...,n}, k € {1,...,¢}, thenF is continuously Fréchet-differentiable with partial
derivatives

0
~—F(a,t) = (bk(xi;t))izl,.“,m (3.14)
877
9 [ ob
- i=1,...,m

If the partial derivatives above are all Lipschitz-continuous, ti&ns Lipschitz-continuous, too.

For convergence rates, we restrict our attention to the case-ef0, which enables the ap-
plication of the standard theory of Tikhonov regularization. As usual for ill-posed problems, the
convergence can be arbitrarily slow in general (cf. e.g. [19]), rates can only be achieved under
additional conditions on the solution. A standard condition of this kind isthece condition

IweR™: (@t —t*) = F(@t)w, (3.16)
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which is an abstract smoothness condition. The adjoint of the opeFatdefined in (3.13) is
given by

Fllo, )" (u,0) — <Z 2z bl ) (3.17)

i1 Z;”:l ajW,Z(CUi; t)vi

Theorem 3.10 (Rate of Convergence)Lety? € R™ satisfy(2.7) and letayg, to be a solution
of minimal distance (in the product spaéé x ¢2) to the prior (0,t*). Furthermore, let the
metric projection of the exact dataonto R(F") be unique and equal the projection Bf( £') N
B(F(ao,t0)). Finally, letb; € C11(]0, 1]) and denote by the resulting Lipschitz-constant of
F'in B, (ay, to) due to Lemma 3.9. I3.16)holds with

Lr|wle <1, (3.18)

then the choicg; = (8, ~ V4 yields
I(0® — a0, 6" = to)ll2re = O (V) , (3.19)

where(a?, t%) denotes the solution dB.3)with noisy datay®.

Proof. The assertion follows by an application of Theorem 3.7 in [3]. O

Remark 3.11. It is clear that the source condition is a severe restriction & n + ¢, since the

set of parameters that can fulfill the source condition is a lower-dimensional manifold. However,
the case ofn > n + ¢ usually arises in practical applications and thus, the source condition is
mainly an assumption on the regularity of the distribution of the paramgtevih respect to the

grid points. To illustrate this, we consider the case of cubic B-splines on the unit interval, where
the free knots are given by, ...,... ¢, and we have; = 0 and¢, = 1. Suppose that the
following condition is fulfilled:

Vie{l,...,n—1} Fir(k),i2(k) @4 k)s Tink) € (b 1),

then we can set; = 0 for all i ¢ {i1(k),42(k) }requ,....n—1y @nd write the source condition as

a system for(w;, 1y, Wiy(1)s - - - » Wiy (n—1)> Win(n—1))» Which is an upper-diagonal system of size
2n — 2 x 2n — 2. Since the diagonal entries are all nonzero (note that) andz;, ) are in

the interior of the intervalty, t;+1), there exists a unique solution. Hence, the source condition
(3.16) is satisfied and (3.18) holds if in additipn|| and ||t — t*|| are sufficiently small.

4 Numerical Solution of the Regularized Problem

In this section we want to verify theoretical results obtained above by numerical experiments. The
description of the optimization algorithm—a generalized Gauss-Newton like method—follows
Schitze [20, 21].
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4.1 Description of Optimization Algorithm

The common characteristic of both the primal nonlinear least squares problem (2.5) as well as the
regularized problems (3.1) and (3.3) is that they are linear in one set of variables (the coefficients
«) but nonlinear in the set of free knots In the unconstrained case such semi-linear separable
problems were first analyzed in detail by Golub/Pereyra [11]. Later Parks [18] treated general
constrained nonlinear problems of this type.

Consider the following semi-linear least squares problem with linear inequality constraints:

min{[|G(t)a — y(t)|? :Ct > h, t € [0,1]%,a € R"} (4.1)

representing (3.1), (3.2) with appropriately chosen regularized observation i@agiR ™",

(p = n— kin case of (3.1)p = n + ¢ for (3.3)) vector of coefficientex € R" and data
vectory € R’. The constraints (3.2) on the knot positions are expressed equivalently in matrix
formulation. In the case of (3.3) we do not include the inequality constraints.

The linear subproblem
min{[|G(t)a — y(t)|* : a € R"} (4.2)

can be solved easily for fixeld e.g. by reducing~ to upper triangular form by a series of Givens
rotations, leading to the minimum norm solution

alt) = GT(t)y(t). (4.3)

whereG1(t) is the pseudoinverse @f(t). It follows that the original separable problem can be
written
min{||G(t) GT(t) y(t) —y(t)* : t €[0,1)} (4.4)

which is now a nonlinear least squares problem in the free knody.

Golub and Pereyra [11] showed that under natural assumptions which guarantee the continuity
of the pseudoinverse, the reduction is feasible in the sense that the change from minimizing the full
problem to minimizing the reduced problem does not add any critical points and does not exclude
the solution of the original problem. Such a natural assumption is that the rank of the Gtyix
is constant on an open neighborhood which contains the solution. The constant rank assumption,
even the full rank assumption @r(t) is satisfied in the case of the regularized problems (3.1),
(3.2) and (3.3). Unfortunately for arbitrary data the ma¥if¢) of the original problem (2.5) does
not satisfy this full rank assumption (cf. Schoenberg-Whitney condition [6]).

SinceG(t) GT(t) is the orthogonal projector on the range(t), algorithms based on (4.4)
are often called variable projection algorithms. A variable projection algorithm using a Gauss-
Newton method applied to the reduced problem (4.4) was used to solve the original least squares
problem. The Gauss-Newton method is based on a sequence of linear approximations of the
residuum. Ift” denotes the current approximation, then a corregbiois computed as a solution
to the quadratic problem

min{ [/ — G(t”) GHE")]y(t") + J(t")p|* : p € R} (4.5)
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with J the Jacobi matrix oR(t) := [ — G(t) GT(t)] y(t) evaluated at”. If the Jacobian has
full rank then (4.5) has a unique solutipff which defines the new approximate

tV T = t” 4+ p”. (4.6)

The Gauss-Newton method can be generalized to constrained problems. A search gifection
is then computed as a solution to

min{|[R(t") + J(t")p|* : C(t+p) > h, p € R} (4.7)

by first transforming (4.7) by Householder reflections into a least distance problem and finally
using an active set strategy for solving the resulting nonnegative least squares problem [17].

For evaluating/, the derivative ofk has to be computed. Expressions for the derivatives of B-
splines with respect to its knots can be found, e.g. in [20], the formulas for the Frechet derivative
of an orthogonal projector in [11]. Alternatively the derivatives can be approximated by finite
differences. Ther additional least squares problems have to be solved in each computation of
the derivative. However, in our case, the (regularized) observation n@aieybanded, so that the
costs of realizing the linear algebra involved are relatively cheap.

The undamped generalized Gauss-Newton method converges only locally and for small resid-
ual problems. In order to globalize the method, a Armijo-Goldstein line search has been imple-
mented. To be robust the algorithm must employ stabilizing techniques for the Gauss-Newton
steps when the Jacobiah is nearly rank deficient. This is done by applying a Levenberg-
Marquardt method.

Jupp [13] referred to the potentially high number of local extrema for free knot least squares
problems. For illustration Figure 3 shows the residuals of least squares approximation of the
function8sin(1022 + 5z + 1) on[—1, 1] depending on the position of the two free knatandt,
(triangular membership functions). Not surprisingly, the local minimum to which the optimization
algorithm converges heavily depends on the starting knot sequé€nddence, the generalized
Gauss-Newton method is rerun several times with equally distributed random starting values to
obtain the global minimum.

4.2 Results for fixed error levels

In the following we compare the results of reconstructing an a-priori given function from noisy
measurements taking into account spline approximation, smoothing and Tikhonov regularization.
The exact data values are perturbed with uniformly distributed random noise. In the first two
examples we take the emphasis on approximation properties, in the third example we take a more
careful look onto constructing an interpretable fuzzy controller.

In the figures, the starting knot sequences for the reduced free knot optimization problem are
marked with« whereas the locations of the resulting (local) optimal knots are labeledwitthe
noisy data are represented by dots, the solid line represents the 'optimal’ spline approximation.

In the tables, we compare the residuajg andr., s for exact and noisy data, i.e.

2
m

n
5
T = Z Yo — Za}- bj(z];t79) (4.8)
i=1

=1
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Residuum of LS approximation depending on knot position for B*sin(10x2+5><+1)

=
©

residuum

7
il
ll,,///,'{/
,,,; 1y
, I

Figure 3: Residuals of least squares approximation with two free knots (triangular membership
functions)

wherea?? andt”® denote the solutions to the (regularized) optimization problems with noisy
data.

4.2.1 Examplel

As a first example, we consider the reconstruction of the function
f1(z) := sin(4nx) z €0, 1] (4.9)

from noisy data. The 30 x-values, which are chosen randomly distributéd i, are perturbed

with equally distributed random noise up to 1%, the data values up to 25% resulting (ih0042

andé = 0.9012. 15 B-splines of order 5 are used as membership functions. Starting from an
equidistant knot sequence the search for the optimal location of the 10 free knots is carried out by
the optimization algorithm described above. The results are presented in Figure 4 - Figure 6.

Figure 4 and Table 1 show the results for approximating the data set where the minimal dis-
tance between knots is set to 0.002. The minimal distance constraints on the knots of the op-
timized sequence are active for most of the knots clustering them into three groups. However,
the Schoenberg-Whitney condition is not violated, since the support of B-splines of order 5 is
relatively large such that there is at least one data point within each support interval. The ap-
proximation follows closely the noisy data points leading to abrupt changes in the approximating
function and a large discrepancy frofm

Smoothing and Tikhonov regularization find approximations much closer to the original func-
tion. In the smoothing term the second derivative of the spline is included combined with a rela-
tively small smoothing parametér. Not surprisingly, the shape of the solution depends strongly
on the choice of the regularization parameters. This is of special importance for standard Tikhonov
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regularization, see Figure 6, where the results are plotted for two different sets of parameters. Ad-
ditionally the solution depends strongly on the choice of the a-priori knot seqti&mdgch is, in
this case, the equidistant knot sequence.

When comparing the results (Table 1), smoothing and Tikhonov regularization are much better
than approximation without any regularization. In this example, smoothing gives a slightly smaller
residual for exact data than Tikhonov regularization (case 1), mainly because the underlying func-
tion f; is very smooth and we are using second derivatives in the smoothing term. If somebody
wants well separated knots or has a good initial guess of the solution, Tikhonov regularization is
preferable.

Approx | Smoothing| Tik1 | Tik2

70,0 0.7079| 0.5763 | 0.5983| 1.4189
) 0.5710| 0.6712 | 0.6617| 1.5739
Ilcv]| g2 46017 | 3.0649 | 2.9534| 1.8563
|t —t*||,2 | 0.3613| 0.2479 | 0.0386| 0.1840

Table 1: Ex.1: Results for different solution strategies.

[ ¢9=+¢* T 0.091 ] 0.182 [ 0.273 [ 0.364 | 0.455 [ 0.545 [ 0.636 | 0.727 | 0.818 | 0.909 |
Approximation | 0.056 | 0.058 | 0.060 | 0.492 | 0.494 | 0.496 | 0.816 | 0.818 | 0.820 | 0.822
Smoothing | 0.224 | 0.234 | 0.252 | 0.503 | 0517 | 0.522 | 0.676 | 0.744 | 0.746 | 0.810
Tikhonov 1 | 0.091 | 0.160 | 0.296 | 0.369 | 0.425 | 0.578 | 0.625 | 0.717 | 0.842 | 0.887
Tikhonov2 | 0.082 | 0.131 | 0.348 | 0.350 | 0.352 | 0.642 | 0.644 | 0.682 | 0.842 | 0.856
Table 2: Ex.1: Starting and optimized knot sequences.
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Figure 4: Ex.1: Approximation with 15 B-splines of orderss=€ 0.002)

4.2.2 Example 2

The second example deals with the reconstruction of the function

Fola) 10z

= Tri00,2 22

(4.10)

(see Figure 7), afunction already considered in [12] and [20] in the context of spline approximation
and smoothing.
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Figure 5: Ex.1: Smoothing with 15 B-splines of ordert5 2, 5 = 0.0001, e = 0.002)
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Figure 6: Ex.1: Tikhonov regularization with 15 B-splines of order 5 (Tikhono#1= 0.1, 82 =
0.95, Tikhonov 2: 31 = 0.95, B2 = 0.95)
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Both the abscissa as well as the data values are perturbed with uniformly distributed random
noise. The perturbations of the 40 data samples are within a level of 5% and 12%, respectively
leading to noiselevels = 0.364 andé = 0.199. For the reconstruction 11 B-splines of order
3 (quadratic splines) are used. The optimization algorithm for the 8 free knots is started with an
equidistant knot sequence.

When approximating fo without including any smoothing terms, the resulting function is
rather arbitrary (cf. Figure 8); in most cases the optimization procedure breaks down. The
Schoenberg-Whitney condition is not satisfied for the knot sequences in the iterative optimization
process, the system matrix becomes singular. In smoothing some positions of the optimized knot
sequence nearly coincide. However, the smoothing term stabilizes the calculations. In Tikhonov
regularization knots are quite separated due to the choite of

When comparing residuals for exact data, Tikhonov regularization gives better results than
regularization via smoothing, and of course, much better results than approximation without ap-
plying any regularization technique. But Tikhonov regularization also gives better results with
regard to the linguistic interpretability of the resulting fuzzy controller, as we will se in the next
example.

Approximation| Smoothing| Tikhonov reg.
70,0 4.99659 0.55853 0.52923
.5 0.16833 0.59593 0.59760
Ilcv]| o2 8.19528 0.56305 0.60057
It — t*|p2 1.11397 0.83290 0.41486

Table 3: Ex.2: Results for different solution strategies.

[[t°=t" [ -1.566] -1.111] -0.667 | -0.222 | 0.222 | 0.667 | 1.111] 1.556 |
Appr. | -1.803 [ -1.012 [ -0.192 | -0.032 | -0.030 | 0.069 | 1.405 | 1.705
Smoothing | -1.872 | -0.788 | -0.226 | -0.224 | 0.186 | 0.190 | 1.037 | 1.802
Tikhonov | -1.563 | -1.120 | -0.711 | -0.237 | 0.062 | 0.288 | 1.126 | 1.558

Table 4: Ex.2: Starting and optimized knot sequences.
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Figure 7: Ex.2: The functiop-3¢— and noisy data.
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Figure 8: Ex.2: Approximation with 11 quadratic B-splines< 0.001)
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Figure 9: Ex.2: Reconstruction by smoothing with 11 quadratic B-splikes (, 5 = 0.06,¢ =

0.001)
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Figure 10: Ex.2: Tikhonov regularization with 11 quadratic B-splings=€ 0.4, 52 = 0.4)
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4.2.3 Example 3

Similar to the paper of Setnes et.al. [23] we want to construct a transparent rule-based model from
noisy data measurements considering the spectral data function

—(x—4.8)(z—5.8)
0.7

f3(z) = 12e —12e @139 L 08r  x € [-10, 10] (4.11)

(cf. Figure 11). By using inputs uniformly distributed if—10, 10] 50 samples off3(x) were ob-
tained and then disturbed with uniformly distributed noise within a noiselevel of 2038 (5804,
maximal error =2.0398).

When constructing a Sugeno controller from measurements, the question on the optimal num-
ber of rules or equivalently knots arises. In the context of spline approximation and smoothing,
Schiitze [20] proposes a knot removal strategy leading to a nearly optimal number of knots. How-
ever, we just fix the number of rules to be equal to eight. Accordingly, the universe of discourse
is split into eight fuzzy sets interpretable linguistically as negative big, negative medium, negative
small, negative very small, positive very small, positive small, positive medium and positive big.
To be interpretable easily, the shape of the membership functions is chosen to be triangular.

Figure 12 - Figure 14 show the results for approximation, smoothing and Tikhonov regular-
ization of the noisy data problem. Although the residuum is smaller for approximation than for
smoothing and Tikhonov regularization (Table 5), only the later succeeds in constructing an inter-
pretable fuzzy controller since knots are separated appropriately. In approximation and smoothing
knots of the optimized sequence nearly coincide (Table 6) leading to questionable and not lin-
guistically interpretable membership functions (Figure 12 - Figure 14, lower part). For Tikhonov
regularizationt* is chosen to be equidistant within the underlying interval.

The linguistic fuzzy model constructed from Tikhonov regularization is given in Table 7.

Approx | Smoothing| Tikhonov

70,0 12.0859| 14.6041 | 14.5291
T, 12.3130| 14.7508 | 16.9215
Ilcv]| o2 32.6938| 25.8770 | 22.7836
It —t*||,2 | 41379 | 4.4046 1.8854

Table 5: Ex.3: Results for different solution strategies.

| t9=t" |-7.143] -4.286] -1.429] 1.429] 4.286]| 7.143|

Appr. [ -5.585] -2.661] -2.608] 3.999] 5.658] 5.668
Smoothing| -5.372| -3.119| -2.399 | 4.215| 4.346[ 4.655
Tikhonov | -7.124| -3.718] -0.989| 2.790| 5.354| 7.354

Table 6: Ex.3: Starting and optimized knot sequences.

4.3 Results for error level tending to zero

Again, we consider the reconstruction of the functjor(cf. (4.10), Figure 7) and try to validate
the convergence properties stated in Theorem 3.10. We take 90 data samples equidistagt in
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Rule: Antecedent

Consequent singleton

Consequent label

R1 : If x is Negative Big then y=-7.605 Negative Medium

R2 : If xis Negative Medium  then y=-5.025 Negative Medium

R3 : If x is Negative Small then =-11.063 Negative Big

R4 : If xis Negative very Small then y=-0.460 Negative very Small

R5 : If x is Positive very Small then y=1.367 Positive very Small

R6 : If x is Positive Small then y=15.095 Positive Big

R7 : If x is Positive Medium then y=4.968 Positive Medium

R8 : If x is Positive Big then y=7.682 Positive Medium
Table 7: Sugeno controller identified from noisy data.

Figure 11: Ex.3: Spectral data functigh and noisy measurements
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Figure 12: Ex.3: Approximation with 8 triangular membership functiens:(0.01)



28

4 Numerical Solution of the Regularized Problem
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Figure 13: Ex.3: Smoothing with 8 triangular membership functiégns: (1, 3 = 0.01, ¢ = 0.01)
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Figure 15:|[a® — /s, and|[t® — t*||, vs. §

and perturb the y-values with uniformly distributed random noise up to a noiselevel of 20 %
(maximal error = 0.0986, maximal = 0.5226). 15 B-splines of order 5 act as membership
functions in Tikhonov regularization. It is easily shown that the assumptions of Theorem 3.10 are
satisfied.

The residuum for the least squares approximation of the exact data is equal to 0.004322. The
resulting knot sequence

t ={-1.2665, —0.7356, —0.1896, —0.0351, —0.0350,
0.0349, 0.0350, 0.1896, 0.7355, 1.2656}

is taken as the priot*.The regularization parameters are chosen according to the theoey (

B2 = /¢ ). Figure 15 shows thé, difference of the coefficients and knots obtained from exact
data vs. noisy data. It is noticeable that the difference between the knot sequences is nearly
constant or even declines with increasingvhich could be explained by the increased weighting

of the 3, term in the objective functional. Th& difference of the coefficients is quite well in
agreement with the theory.

Finally, in Figure 16 the residuum of the Tikhonov regularized approximation to noisy data is
plotted against the error levél

5 Extensions and Open Problems

We have seen in the preceding sections that regularization leads to stable approximations of the
minimizers and, in addition, improves the interpretability of the arising fuzzy systems, because
grid points are separated. So far, we have restricted our analysis to a one-dimensional situations,
but multi-dimensional problems arise in many applications. However, the results on Tikhonov
regularization can be carried over to a multi-dimensional situation without many modifications
(except with respect to notation). In the case of smoothing the change to higher dimensions is
more difficult, since it is not obvious how the singular values of the system matrix can be estimated
for arbitrary parameters
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Figure 16: ResiduuntjF'(a®,t°) — y°||,, of Tikhonov regularized approximation to noisy data
vs. noise level

Since our analysis seems to be a novel approach to the optimization of fuzzy systems, there are
still open problems connected to it, which might be of importance for application. In particular
we want to mention the so-callegeneralization error(cf. [30]), which means the error of the
approximator at points ¢ {x;}i—1,..m. A desirable property of the approximators would be
convergence to the function from which the samples are taken, as the number of gridnpoints
tends to infinity. However, such a convergence result can be obtained only if alseo, which
is often not desirable for fuzzy systems. Nevertheless a meaningful approximation should yield
boundedness (and smallness) of the erronas oo.

If the grid is regular enough one could consider the dase 0, whereh is a real number
such thatz; —x;_1| < h for all i, which allows a rather standard deterministic analysis. For more
irregular distributions of sampling points, one should use different concepts such as stochastic
models for the locations. This will be one of our main items for future research.
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