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Abstract— The concept of an image of a fuzzy set
under a fuzzy relation has proved to be a very powerful
tool in fuzzy set theoretical applications. In this paper,
we explain how it can be used to model linguistic expres-
sions. For the representation of expressions, such as “at
least middle-aged”, “brighter than average”, we will use
fuzzy ordering relations, while resemblance relations will
be suitable to model linguistic terms, such as “more or
less expensive” and “very tall.” We will show how these
representations can be smoothly integrated in approxi-
mate reasoning schemes using the compositional rule of
inference.

1 Introduction

The ability to model expressions from natural language
plays a fundamental role in the success story of fuzzy
set theory for practical applications. An important part
within this framework is devoted to the representation of
linguistic modifiers, i.e. linguistic expressions by which
other expressions are modified. Generally, a linguistic
term is modelled by a fuzzy set and a linguistic modi-
fier, therefore, by an operation that transforms a fuzzy
set into another. In the literature, plenty of this kind
of operators have been suggested already [11]. However,
these operators in general lack significant inherent mean-
ing: They are tools whose definition is only dictated by
the technical criterion that they should transform some
fuzzy sets into (approximations of) some other fuzzy sets,
but they have no further meaning of their own.

In contrast to these traditional representations, in [3]
and [6], two new approaches are proposed that construct
representations for linguistic modifiers based on an un-
derlying semantics. As we shall explain in detail, this is
done by taking mutual relationships between objects of
the universe into account. In [3], a fuzzy ordering rela-
tion is used to model ordering-based modifiers (e.g. at
least), while in [6] a resemblance relation is used to rep-
resent weakening modifiers (e.g. more or less) and inten-

sifying modifiers (e.g. very). In this paper, we join these
two approaches in a general framework of images under
fuzzy relations. From the generalization, also a repre-
sentation for comparing linguistic expressions, such as
“greater than average”, arises, and a link between the im-
ages and the fuzzy concepts up-set and appropriateness
is established.

After recalling some preliminaries (Section 2), we give
the definitions of the key tools to our approach, i.e. im-
ages of fuzzy sets under fuzzy relations. We state the
properties that will be useful for the application we want
to deal with, namely the representation of linguistic ex-
pressions (Section 3). To establish such representations,
first we focus on ordering relations (Section 4). Then we
come to resemblance relations, i.e. relations that model
approximate equality (Section 5). Finally, we show how
the developed representations fit into approximate rea-
soning schemes (Section 6).

2 Preliminaries

Throughout this paper, let X denote a universe. F(X)
is the class of all fuzzy sets on X, while P(X) denotes
as usual the class of all crisp subsets of X.

For A and B fuzzy sets on X, the union and intersec-
tion are the fuzzy sets on X defined as follows (for x in
X):

(A ∪B)(x) = max(A(x), B(x))
(A ∩B)(x) = min(A(x), B(x))

If A and B represent linguistic terms, then A ∪ B and
A ∩ B are usually interpreted as “A or B” and “A and
B”, respectively. Furthermore,

A ⊆ B ⇔ (∀x ∈ X)(A(x) ≤ B(x)).

For α in [0, 1], the so-called α-cut of A is defined as

[A]α = {x ∈ X | A(x) ≥ α}.



We say that A is normalized if and only if [A]1 6= ∅. The
height of A is given by

hgt(A) = sup{A(x) | x ∈ X}.

A fuzzy relation R on X is a fuzzy set on X ×X. For
y in X, the R-foreset and the R-afterset of y, denoted by
Ry and yR, respectively, are fuzzy sets on X defined as

(Ry)(x) = R(x, y),
(yR)(x) = R(y, x).

Note that (R−1)y = yR and y(R−1) = Ry. A fuzzy
relation R is called reflexive if and only if R(x, x) = 1 for
all x in X.

In the remaining paper, let T denote a left-continuous
triangular norm (t-norm for short) with a unique residual
implication [8]

T
→

(x, y) = sup{γ ∈ [0, 1] | T (γ, x) ≤ y}.

In particular, the following properties of T and T
→

will be
important in this paper (for arbitrary x, x1, x2, y, y1, y2

in [0, 1]):

T (1, x) = T (x, 1) = x (1)
T
→

(1, x) = x (2)
T
→

(x, y) = 1⇔ x ≤ y (3)

x1 ≤ x2 ⇒ T (x1, y) ≤ T (x2, y) (4)
y1 ≤ y2 ⇒ T (x, y1) ≤ T (x, y2) (5)
x1 ≤ x2 ⇒ T

→
(x1, y) ≥ T

→
(x2, y) (6)

y1 ≤ y2 ⇒ T
→

(x, y1) ≤ T
→

(x, y2) (7)

Let us recall that the Lukasiewicz t-norm TL and the
Lukasiewicz implication T

→

L are defined as

TL(x, y) = max(x+ y − 1, 0),
T
→

L(x, y) = min(1− x+ y, 1).

3 Basic Concepts

Definition 1 (Degree of Overlapping). For A and
B in F(X), the degree of overlapping of A and B is
defined by

OVERL(A,B) = sup
x∈X

T (A(x), B(x)).

Definition 2 (Degree of Inclusion). [2] For A and B
in F(X), the degree to which A is included in B is defined
as

INCL(A,B) = inf
x∈X

T
→

(A(x), B(x)).

Note that A ⊆ B if and only if INCL(A,B) = 1 [4].

Definition 3 (Images). For R a fuzzy relation on X
and A a fuzzy set on X, the images R(A), R4(A) and
R∇(A) are fuzzy sets on X defined as follows (for all
y ∈ X):

R(A)(y) = sup
x∈X

T (A(x), R(x, y)) = OVERL(A,Ry)

R4(A)(y) = inf
x∈X

T
→

(A(x), R(x, y)) = INCL(A,Ry)

R∇(A)(y) = inf
x∈X

T
→

(R(y, x), A(x)) = INCL(yR,A)

R(A) is called the direct or the full image of A under
R [8, 10], while R4(A) and R∇(A) are closely related
to the subdirect image R/(A) and the superdirect image
R.(A) of A under R [10]. More precisely,

R/(A) = R(A) ∩R4(A),
R.(A) = R(A) ∩ (R−1)∇(A).

Proposition 1. If R is a reflexive relation on X then
the following holds for all A in F(X):

R∇(A) ⊆ A ⊆ R(A)

Proof. For all y in X:

R∇(A)(y) ≤ T
→

(R(y, y), A(y))
≤ A(y)
≤ T (R(y, y), A(y))
≤ R(A)(y)

The following two propositions arise from the mono-
tonic behaviour of supremum, infimum, t-norms, and
residual implications.

Proposition 2. If R1 and R2 are fuzzy relations on X
such that R1 ⊆ R2 then for all A in F(X):

(a) R1(A) ⊆ R2(A)
(b) R∇1 (A) ⊇ R∇2 (A)

Proposition 3. If A and B are fuzzy sets on X such
that A ⊆ B then we have, for all R in F(X ×X),

R4(A) ⊇ R4(B).

Proposition 4. If A is a normalized fuzzy set on X
then for R ∈ F(X ×X):

R4(A) ⊆ R(A)

Proof. Since A is normalized, there is an x0 in X such
that A(x0) = 1. Then we obtain, for y in X:

R4(A)(y) ≤ T
→

(A(x0), R(x0, y))
≤ R(x0, y)
≤ T (A(x0), R(x0, y))
≤ R(A)(y)



4 Using Orderings

4.1 Ordering relations

We begin this section by recalling several concepts of
crisp and fuzzy orderings.

Definition 4 (Ordering). A relation L on X is called
an ordering relation (ordering for short) if and only if,
for all x, y, and z in X:

(O.1) L(x, x) = 1 (refl.)
(O.2) L(x, y) = 1 ∧ L(y, x) = 1⇒ x = y (anti-symm.)
(O.3) L(x, y) = 1 ∧ L(y, z) = 1⇒ L(x, z) = 1 (trans.)

Since L is a relation on X, we can use the concepts
of L-foreset and L-afterset as defined in Section 2. If L
represents the relation “is smaller than or equal to” on
X then, for each x in X,

Lx = {y ∈ X | L(y, x) = 1}

is the set of objects that are smaller or equal to x. Fur-
thermore, the inverse relation L−1 — also an ordering
— represents “is greater than or equal to”.

Definition 5 (Strict ordering). A relation S on X is
called a strict ordering on X if and only if, for all x, y,
and z in X:

(S.1) S(x, x) = 0 (anti-refl.)
(S.2) S(x, y) = 1 ∧ S(y, z) = 1⇒ S(x, z) = 1 (trans.)

If S is a strict ordering on X then the relation L de-
fined by

L(x, y) = 1⇔
(
S(x, y) = 1 ∨ x = y

)
(8)

is an ordering on X.
In [3], it is argued that, if there is a notion of fuzzy sim-

ilarity or indistinguishability in the universe X, an order-
ing on X should take this into account. Indeed, although
it can be argued that a height of 1.801 (meter) is not
smaller than 1.800, the human eye can not always make
the distinction. Therefore, in some contexts or applica-
tions, it is not wise to exclude 1.801 completely from the
set “smaller than 1.800.” In other words, 1.801 should
be considered as “(more or less) smaller than 1.800” to
a degree greater than 0. For this purpose, the concept
of a fuzzy ordering, which takes the strong connection
between similarity and ordering into account, is defined.
First, we recall the definition of fuzzy equivalence which
is the common concept for modelling similarity.

Definition 6 (Fuzzy T -equivalence). A fuzzy rela-
tion E on X is called a fuzzy T -equivalence on X if and
only if, for all x, y, and z in X:

(E.1) E(x, x) = 1 (refl.)
(E.2) E(x, y) = E(y, x) (symm.)
(E.3) T (E(x, y), E(y, z)) ≤ E(x, z) (T -trans.)

Definition 7 (Fuzzy T -E-ordering). Let E be a
fuzzy T -equivalence on X. A fuzzy relation F on X
is called a fuzzy T -E-ordering on X if and only if, for all
x, y, and z in X:

(L.1) E(x, y) ≤ F (x, y) (E-refl.)
(L.2) T (F (x, y), F (y, x)) ≤ E(x, y) (T -E-antisymm.)
(L.3) T (F (x, y), F (y, z)) ≤ F (x, z) (T -trans.)

It can be easily verified that this definition includes
crisp orderings on X (for E the crisp equality on X and
T an arbitrary t-norm). In the following, we shall use
the term “fuzzy ordering”, thereby tacitly assuming the
existence of a suitable T and E. Note that the inverse
of a fuzzy ordering is also a fuzzy ordering.

4.2 Ordering-based modifiers

Let L be a crisp ordering on X denoting “is smaller than
or equal to,” and x a crisp value in X. For y in X, we
say that “y is at least x” if and only if y is greater than or
equal to x. Hence the set “at least x” can be defined as
(L−1)x. This notion can be generalized to a crisp subset
P of X as follows:

y ∈ at least P
⇔ y is greater than or equal to some element of P
⇔ (∃z ∈ X)(z ∈ P ∧ L−1(y, z) = 1)
⇔ (∃z ∈ X)(z ∈ P ∧ z ∈ Ly)

In other words, y belongs to “at least P” if and only if
the intersection of P and Ly is not empty. Note that, in
this definition, an element y is in at least x if and only if
y ∈ at least {x}. Since Ly and P are both crisp, this is
equivalent to stating that y belongs to at least P if and
only if the degree of overlapping OVERL(P,Ly) is 1. In
[3] and [4], this underlying meaning is generalized to a
fuzzy set A on X as follows:

at least A (y) = OVERL(A,Ly) = L(A)(y),

where L(A) denotes the direct image of A under the re-
lation L as defined in Definition 3.

If we also want to take the fuzzy similarity into ac-
count, we can use a fuzzy ordering F on X that repre-
sents “is smaller than or equal to”:

(more or less) at least A (y) = OVERL(A,Fy) = F (A)(y)

Using the inverse orderings, “at most A” can be analo-
gously represented by L−1(A), while F−1(A) is suitable
for “(more or less) at most A”.

Example 1. Figure 1 depicts fuzzy sets labelled open,
half-open, almost closed, and closed of a variable “valve
opening of a fermenter” (membership functions taken
from [1]). Using the common orderings ≤ and ≥ of real
numbers, the representation of the linguistic expression



open half-open almost closed closed

? ? ? ?

20 40 60 80 100

0.2

0.4

0.6

0.8

1

at least half-open but at most almost closed

?

20 40 60 80 100

0.2

0.4

0.6

0.8

1

Figure 1: Valve opening

“at least half-open but at most almost closed” can be con-
structed. More specifically,

≤ (half open)∩ ≥ (almost closed).

Since the ordering relations are crisp, the choice of a
particular t-norm does not influence the result.

4.3 Ordering-based comparisons

Now let S be a strict ordering on X representing “is
smaller than” and let x be a crisp value in X. For y
in X, we say that “y is greater than x” if and only if
S−1(y, x) = 1. More generally, for P in P(X), we can
define:

y ∈ greater than P
⇔ y is greater than all elements of P
⇔ (∀x ∈ X)(x ∈ P ⇒ S−1(y, x) = 1)
⇔ (∀x ∈ X)(x ∈ P ⇒ x ∈ Sy)

This means that y belongs to “greater than P” if and only
if P is included in Sy. Again this can be generalized to
a fuzzy set A on X:

greater than A (y) = INCL(A,Sy) = S4(A)(y)

Similarly, we can use (S−1)4(A) to represent the fuzzy
set “smaller than A”.

In applications, the ordering often has a more spe-
cific interpretation than “is greater than” or “is smaller

than”; the representation presented here can be used to
model a variety of ordering-based comparing linguistic
expressions, e.g. in a universe of ages we can construct
the sets “older than middle-aged”, “younger than about
20”, while in a universe of IQs we can use the represen-
tation to model “brighter than average”, etc.

If A represents the concept “tall” in a universe X of
heights, then the following property supports the intu-
itive idea that a man who is “tall or taller than tall” can
be called “at least tall”.

Proposition 5. Let S be a strict order on X and let L
be the associated ordering defined by Formula (8). If A
is a normalized fuzzy set on X then

A ∪ S4(A) ⊆ L(A).

Proof. A is normalized, hence S4(A) ⊆ S(A) (see
Proposition 4). Since S is a subset of L, S(A) ⊆ L(A)
(see Proposition 2). Therefore S4(A) ⊆ L(A). L is re-
flexive, so combined with Proposition 1 this yields the
stated property.

The opposite inclusion does not always hold intu-
itively. This is illustrated by the following example.

Example 2. Suppose that the mean score of a test is
14. The fuzzy set “average” in the universe of scores
[0, 20] can be represented by the triangular fuzzy set A =
(12, 14, 16) shown in Figure 2. Using the Lukasiewicz
t-norm and implication, respectively, the membership
functions for “at least average” and “more than average”
in Figure 2 correspond to the fuzzy sets≤ (A) and< (A),
with ≤ and < denoting the common ordering and strict
ordering on real numbers. A score of 15 is (intuitively)
“at least average” to degree 1. However, 15 is not called
“average” to degree 1, neither can it be called “more than
average” to degree 1, since a lot of scores that are greater
than 15 are still considered to be average to some degree
(e.g. 15.1, 15.5, 15.9, . . . ).

If A is not normalized some intuitive problems may
occur. In particular, we have “smaller than ∅ = X”. This
problem can be solved by representing “smaller than A”
by the subdirect image (S−1)/(A) instead of (S−1)4(A),
thus making sure that “smaller than A” is a subset of “at
most A”.

Remark 1. Using the representation for “greater than
A” introduced in this section and the concept of degree
of inclusion defined in Definition 2, we can construct an
ordering on fuzzy sets (for two fuzzy sets A,B ∈ F(X)):

B is greater than A to degree INCL(B, greater than A)

Note that, if we also want to be able to compare fuzzy
sets with the empty set, some extra precautions have to
be taken to avoid the counter-intuitive result that ∅ is
greater than all fuzzy sets to degree 1.
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Figure 2: Score of a test

4.4 Up-set

The only kind of image (see Definition 3) of a fuzzy set
A under an ordering L that still needs to be discussed
is L∇(A). In this section, we show that this image is
related to a fuzzy concept of up-set. First, we recall the
definition of up-set in the crisp case [5].

Definition 8 (Up-set I). Let L be an ordering on X
and P in P(X). P is an up-set in (X,L) if and only if

(∀y ∈ P )(∀x ∈ X)(L(y, x) = 1⇒ x ∈ P )

This notion can be fuzzified as follows:

Definition 9 (Up-set II). Let F be a fuzzy ordering
on X. For A in F(X), the degree to which A is an up-
set in (X,F ) is defined by:

Up(A) = inf
y∈X

T
→(
A(y), inf

x∈X
T
→

(F (y, x), A(x))
)

= INCL(A,F∇(A))

A is called a true up-set in (X,F ) if and only if Up(A) =
1.

Proposition 6. A is a true up-set in (X,F ) if and only
if A = F∇(A).

Proof. A is a true up-set in (X,F ) if and only if A ⊆
F∇(A). Since F∇(A) ⊆ A always holds for a reflexive
relation F (see Proposition 1), this is equivalent to A =
F∇(A).

5 Using Resemblance Relations

5.1 Resemblance relations

In this section, we will study the images defined in Defi-
nition 3 for the case that the relation R models approx-
imate equality. The intuitive meaning of the notion of
approximate equality involves reflexivity (an object x is
approximately equal to itself to degree 1) and symmetry
(x is approximately equal to y to the same degree as y
is approximately equal to x). However, assuming that
approximate equality should be T -transitive like fuzzy
T -equivalences, may lead to counter-intuitive results. To
illustrate this, the following example is given in [7]:

Example 3. In every-day life we usually do not feel a
difference in temperature between 0◦ and 1◦, neither be-
tween 1◦ and 2◦, between 35◦ and 36◦, etc. For us, 0◦

and 1◦ are certainly approximately equal, and so are 1◦

and 2◦, and 35◦ and 36◦, etc. To formalize this, consider
a universe X of temperatures and a T -equivalence re-
lation E on X used to represent “approximately equal”.
We would thus expect,

E(k, k + 1) = 1 for every k in N.

By induction, it is easy to show that, for every k and
n in N, E(k, k + n) = 1. This means, in turn, that all
temperatures are approximately equal to the degree 1 —
obviously, a completely counter-intuitive result.

The above discussion leads us to defining resemblance
relations: These relations are reflexive and symmetric;
T -transitivity, however, is replaced by a pseudo-metric-
based criterion.

Definition 10 (Pseudo-metric). An M2 → R
+
0 map-

ping d is called a pseudo-metric on M if and only if, for
every x, y, and z in M:

(M.1) d(x, x) = 0
(M.2) d(x, y) = d(y, x)
(M.3) d(x, y) + d(y, z) ≥ d(x, z)

(M, d) is then called a pseudo-metric space.

Intuitively, we feel that the smaller the distance be-
tween two objects is, the more they are approximately
equal. This is expressed by the axiom (R.3) in the fol-
lowing definition.

Definition 11 (Resemblance relation). A fuzzy re-
lation R on X is called a resemblance relation on X if
and only if there exists a pseudo-metric space (M, d) and
a X →M mapping g such that, for all x, y, z, and u in
X:

(R.1) E(x, x) = 1
(R.2) E(x, y) = E(y, x)
(R.3) d(g(x), g(y)) � d(g(z), g(u))⇒ E(x, y) ≥ E(z, u)



If X is already equipped with a pseudo-metric, then g
can be the identity mapping. Note that, for all y in X,
Ey (= yE) is the fuzzy set of all objects resembling to
y.

5.2 Weakening modifiers

Let R denote a crisp resemblance relation on X, i.e.
R(x, y) = 1 if and only if x resembles to y. Note that
a person can be called “more or less adult” if he/she re-
sembles in age to an adult. Therefore, in general, for P
in P(X) and y in X, we can define:

y ∈ more or less P
⇔ some element of P resembles to y
⇔ (∃x ∈ X)(x ∈ P ∧R(x, y) = 1)

In other words, y belongs to “more or less P” if and only
if OVERL(P,Ry) = 1. Using a resemblance relation E
on X, this can be generalized to a fuzzy set A on X [6]:

more or less A (y) = OVERL(A,Ey) = E(A)(y)

This means that y belongs to “more or less A” to the
degree to which A and the fuzzy set of objects resembling
to y overlap.

We can approach the representation of the term
“roughly A” from two different sides. The first option
is to use a second resemblance relation E1 on X such
that E ⊂ E1 and to define:

roughly A (y) = OVERL(A,E1y) = E1(A)(y)

The second possibility is to define

roughly A (y) = E(E(A))(y)

Propositions 1 and 2 (a) guarantee that for both options

A ⊆ more or less A ⊆ roughly A (9)

which corresponds to the inclusive interpretation of these
terms, which is often assumed in literature (see e.g. [12]).

Note that, for a reflexive and T -transitive fuzzy rela-
tion E,

E(E(A)) = E(A)

holds, which would make the second inclusion in Formula
(9) an equality. This supports the statement posed in
Section 5.1 that T -transitivity is not an appropriate re-
quirement for relations modelling approximate equality.
In the next example, a non-T -transitive resemblance re-
lation E is chosen to model “more or less” and “roughly.”

Example 4. Figure 3 depicts a membership function for
a fuzzy set A representing the concept “tall” in the uni-
verse of heights of men. The membership functions for
“more or less tall” and “roughly tall” in Figure 3 corre-
spond to the fuzzy sets E(A) and E(E(A)), respectively,
with E defined as

E(x, y) = min
(
1,max(0, 1.5− 0.1|x− y|)

)
,

roughly tall

more or less tall

tall

very tall

extremely tall
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Figure 3: Weakening and intensifying modifiers

where TL was chosen as t-norm. It can be shown that,
for this t-norm,

E(E(A)) = E1(A)

where the resemblance relation E1 is defined by

E1(x, y) = min
(
1,max(0, 2− 0.1|x− y|)

)
.

Hence, in this example, the two approaches for modelling
“roughly” coincide.

5.3 Intensifying modifiers

For R a crisp concept of resemblance in X, P in P(X)
and y in X, we can define:

y ∈ very P
⇔ all elements that y resembles to, belong to P
⇔ (∀x ∈ X)(R(x, y) = 1⇒ x ∈ P )

In natural language, the application of an intensifying
modifier like “very” to a crisp concept usually has lit-
tle or no meaning (what is understood by “very preg-
nant”, “very rectangular”, “very dead”, etc.?). However,
for a fuzzy concept, such as “beautiful”, it is clear that
a woman who resembles to all beautiful women must be
“very beautiful”. More formally, we define [6] (for A in
F(X)),

very A (y) = INCL(yE,A) = E∇(A)(y),

where E is a resemblance relation.
Analogous to the representation scheme for “roughly

A”, we have two choices to model “extremely A.” Either
we use a resemblance relation E1 such that E ⊂ E1, i.e.

extremely A (y) = INCL(yE1, A) = E∇1 (A)(y),

or we define

extremely A (y) = E∇(E∇(A))(y).



Again Propositions 1 and 2 (b) guarantee that, for both
options, the inclusive interpretation is respected:

extremely A ⊆ very A ⊆ A

Example 5. The membership functions for “very tall”
and extremely tall” in Figure 3 correspond to the fuzzy
sets E∇(A) and E∇(E∇(A)) respectively, with A and E
defined as in Example 4. Again the T

→

L implication was
chosen. For this implication and the relation E1 defined
in Example 4, it also holds that

E∇(E∇(A)) = E∇1 (A).

5.4 Appropriateness

The only kind of image of a fuzzy set A (according to Def-
inition 3) under a resemblance relation E that we have
not discussed so far is E4(A). Reasoning in an analo-
gous way as in the previous sections, we remark that, for
y in X, E4(A)(y) is the degree to which A is included
in the fuzzy set of objects that resemble to y. Hence, we
can use E4(A)(y) to express something about the ap-
propriateness of the term A for y. The degree to which
A is an appropriate term for y cannot be greater than
the degree to which y satisfies A (i.e. the degree to which
y belongs to A). Therefore, we use T (A(y), E4(A)) to
express the degree to which A is appropriate for y.

If a fuzzy set B on X represents a larger concept than
A, i.e. A ⊆ B, and A(y) = B(y), then B can never
model a more appropriate term for y. Indeed Grice’s [9]
maximes of conversation indicate that out of two expres-
sions with the same linguistic cost, the most informative
one should be chosen. One can check that this is formally
supported by Proposition 3.

6 Approximate Reasoning

The well-known compositional rule of inference (CRI)
(see e.g. [13]) is based on the concept of direct image
under a fuzzy relation. Therefore, representations of lin-
guistic expressions based on the same image, as presented
in previous sections, can be smoothly integrated in this
approximate reasoning scheme. To demonstrate this, we
will use the most popular form of the CRI.

Definition 12 (CRI). For u and v variables in X, A
a fuzzy set on X, and R a fuzzy relation on X, the CRI
dictates the following derivation:

u is A
u and v are R
v is R(A)

(1)
(2)
(3)

This means that, from the two pieces of knowledge (1)
and (2), the new information stated in (3) can be derived.

The following two examples show how the representa-
tion for linguistic expressions fit into this framework.

Fred is a good student.
Zdenek is as good or better.
Zdenek it is at least good.

→
→
←

u is A
u and v are L
v is L(A)

Figure 4: Ordering and the CRI

Yesterday it was warm
Today it is the same.
Today it is more or less warm.

→
→
←

u is A
u and v are E
v is E(A)

Figure 5: Resemblance and the CRI

Example 6. Suppose that we know that “Fred is a good
student” and that “Zdenek is as good or even better.”
In the universe of students, “good” can be represented
by a fuzzy set A, and the relation between the students
Zdenek and Fred can be modelled by an ordering L−1

representing “is as good or better than.” Hence the re-
lation between Fred and Zdenek is given by the inverse
L (“is as good or worse than”). According to the CRI,
we can then derive the information “Zdenek is L(A).” In
this paper it is explained that L(A) is a representation
for “at least good.” In other words, by applying the CRI,
we have obtained the result “Zdenek is at least good”
without making any computation (i.e. without actually
computing the direct image L(A)) and without applying
any process of linguistic approximation. The derivation
process is shown schematically in Figure 4.

Example 7. A similar derivation is shown in Figure 5.
In this case, a resemblance relation E is used to model
approximate equality in the universe of temperatures.
The resulting fuzzy set E(A) can be immediately inter-
preted as “more or less A”.

7 Conclusion

In this paper, we have shown that it is possible to model
linguistic modifiers with inherent meaning by taking the
mutual relationships between objects of the universe into
account. On the formal level, this can be implemented
by images of fuzzy sets under fuzzy relations, where three
different kinds of images have been studied . In the case
of ordering relations and resemblance relations, these im-
ages have a clear semantics, and most of them can be
used to model linguistic expressions. Furthermore, some
of the resulting representations can be smoothly inte-
grated in approximate reasoning schemes using the com-
positional rule of inference.
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[1] R. Babuška. Fuzzy Modeling for Control. Kluwer
Academic Publishers, Boston/Dordrecht/London,
1998.

[2] W. Bandler and L. Kohout. Fuzzy power sets and
fuzzy implication operators. Fuzzy Sets and Sys-
tems, 4:13–30, 1980.

[3] U. Bodenhofer. The construction of ordering-based
modifiers. In G. Brewka, R. Der, S. Gottwald, and
A. Schierwagen, editors, Fuzzy-Neuro Systems ’99,
pages 55–62. Leipziger Universitätsverlag, 1999.
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