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Abstract

This paper presents a three-stage approach to data mining which puts special emphasis on the visualization and
interpretability of the results. In the first stage, the input data is represented by a self-organizing map in order to
allow visualization and to reduce the amount of data while removing noise, outliers, and missing values. Then this
preprocessed information is used to identify and display fuzzy clusters of similarity. Finally, descriptions close to
natural language are computed for these clusters in order to provide the analyst with qualitative information. This
is accomplished by generating fuzzy rules using an inductive learning method. The proposed approach is applied
to image segmentation and labeling.

Categories and Subject Descriptors(according to ACM CCS): I.5.3 [Pattern Recognition]: Clustering

1. Introduction

This paper addresses the tasks of extracting, displaying, and
describing previously unknown clusters of similarity in large
data sets. Special emphasis is placed on the robustness and
interpretability of the results, with the aim to support de-
cision makers and domain experts who want to make use
of this information; therefore, our investigations are not
only focused on the accuracy of the clusters, but also on
their characterization by means of interpretable, hence user-
friendly, knowledge. In order to demonstrate this substantial
need, let us consider the following example: a typical appli-
cation of clustering is market segmentation, i.e. the identifi-
cation of significant groups of customers from data (e.g. in-
formation about customer, transactional data, order history).
A salesman who is not an expert in data analysis needs to
have a compact and interpretable description of the customer
groups (clusters) in order to be able to take this information
in his/her daily practice into account.

This contribution is devoted to a novel three-stage ap-
proach to data mining, which not only extracts clusters of
interest from large data sets, but also generatesqualitative
descriptions.

The first step consists of reducing the data to a reasonable
amount using a self-organizing map. Such a map still con-
tains all significant information while eliminating possible
data faults like noise, outliers, or missing values. While, for

† This paper is a shortened and updated version of [8].

the purpose of data reduction, other methods may be used
as well, SOMs have the advantages that they preserve the
topology of the data space and allow to visualize the results
[5], which is a particularly important aspect according to our
requirement that results should be easy to evaluate and inter-
pret also by non-experts.

The second step is concerned with identifying significant
regions of interest within the SOM nodes using a modified
fuzzy c-means algorithm [2, 9]. In our variant, two main
drawbacks of the standard fuzzy c-means algorithm are re-
solved in a very simple and elegant way. Firstly, the cluster-
ing is not influenced by outliers anymore, as they have been
eliminated by the SOM. Secondly, the problem of finding
appropriate initial values for the cluster centers is solved by
computing a crisp Ward clustering [20] first.

In the third and last stage, we create linguistic descrip-
tions of the centers of these clusters which help the analyst
to interpret the results. As the number of data samples under
consideration has been reduced tremendously by using the
SOM nodes, we are able to apply inductive learning methods
[13] to find fuzzy descriptions of the clusters. Using the pre-
viously found clusters, we can make use of supervised learn-
ing methods in an unsupervised environment by considering
the cluster membership as goal parameter. Descriptions are
composed using fuzzy predicates of the form “x is/is not/is
at least/is at most A”, wherex is the parameter under consid-
eration, andA is a linguistic expression modeled by a fuzzy
set. The method used here is FS-FOIL [7], a fuzzy variant of
Quinlan’s First Order Inductive Learner (FOIL) [16, 17].



Drobics et al. / Descriptive Data Analysis

In all the three stages, it is possible to take available do-
main knowledge into account. This can be done by assigning
an importance weight to each attribute in the preprocessing
and clustering steps or by defining domain-specific predi-
cates in the final description step.

The proposed method is applied to several real-world data
sets. Through the combination of the two-dimensional pro-
jection of the data by means of a SOM and the fuzzy de-
scriptions generated, the results are not only significant and
accurate, but also very intuitive and easy to interpret.

2. Preprocessing

With the aim to reduce computational effort in the consec-
utive steps without losing significant information, we create
a mapping of the data space by means of aself-organizing
map(SOM) [10].

Let us assume that we are given a data setI consisting of
K samples from a data spaceR. Throughout the remaining
paper, we restrict to then-dimensional real caseR= Rn, i.e.

I = {~x1, . . . ,~xK} ⊂ Rn.

We refer to ther-th dimension (r = 1, . . . ,n) as r-th input
variableor r-th attribute.

A SOM is defined as a mapping from the data spaceR
to a discrete output spaceC. The output space consists of
a finite numberNC of nodes (“neurons”). By enumerating
the nodes, we are able to identify each node inC with a
unique indexi ∈ {1, . . . ,NC}. On the set of nodesC, we
assume a certain topological structure (i.e. a neighborhood
relation) and a distance functiondC(., .). In this paper, we
will suffice with planar hexagonal grids; in order to define
the distance functiondC(., .), we assign two-dimensional co-
ordinates to each node according to the planar hexagonal
grid and apply the standard Euclidean norm. To each node
i ∈ {1, . . . ,NC}, we associate aweight vectorin the data
space~wi = (wi

1,w
i
2, . . . ,w

i
n)T ∈R. The mapping

φ :R−→ C

~x 7−→ φ(~x) = argmini {‖~x−~wi‖V}

defines the“neural” map of the data spaceR in the topo-
logical structureC, where

‖~x‖2
V =

∑n
r=1

mr
Vr

x2
r

∑n
r=1 mr

.

In the norm‖.‖V , mr denotes an individual weight pa-
rameter which allows us to take different importance of the
attributes into account. For ther-th attribute, the factorVr

stands for the variance of the values(x1
r , . . . ,x

K
r ). In other

words, the functionφ maps every input sample~x to that node
of the map whose weight vector is closest to~x with respect to
the norm‖.‖V . Obviously, this mapping creates a partition of
the data space. Each part is a convex polytope and contains
one unique weight vector~wi which is called itsnucleus. This
partition of the input space into convex polytopes is usually
calledVoronoi tessellation.

Appropriate weight vectors for a given topological struc-
tureC and a data setI have to be found in atraining process.

The aim of this process is to fit the data by the weight vec-
tors as close as possible. More specifically, the goal is to
minimize thedistortion error

K

∑
j=1

NC

∑
i=1

h(i,φ(~x j ))
K

· ‖~x j −~wi‖V ,

whereh(i,k) defines the lateral interaction inC relative to
the distancedC(i,k). We use a Gaussian bell

h(i,k) = exp
(
− dC(i,k)2

2 · r(t)2

)
with radiusr(t)≥ 1 decreasing from

√
NC
4 to 1 over training

time t.

Algorithm 1 (SOM Training)

Input: data samplesI = {~x1, . . . ,~xK}
Output: weight vectorsW = {~w1, . . . , ~wNC }

t = 0
Initialize node weights~w1, . . . , ~wNC (e.g. randomly)
do {

Select a random sample~x j with 1≤ j ≤ K
for i = 1, . . . ,NC

Update weight vector of nodei:
~wi = ~wi + λ(t) · h(i,φ(~x j )) · (~x j − ~wi )

t = t + 1

} while ∑
NC
i=1 ∆~wi > ε;

In the update formula for the weight vectors,λ(t) denotes
the so-calledlearning factor, which decreases over time

λ(t) =
1
2
·exp

(
− t2

2 · (σ ·K)2

)
.

In our applications, we sufficed with a fixed valueσ = 20,
which ensures that a few ten-thousand learning steps are per-
formed. For data sets with much redundant information, this
coefficient may be decreased, while, for very complex data
sets, a larger value can be beneficial [11].

SOM training falls into the category ofunsupervised com-
petitive learning paradigms, since the data samples are as-
signed to nodes in a self-organizing process without explicit
goal information. The crucial difference between SOMs and
conventional competitive learning is that not only the weight
vector of the “winning node”φ(~x j ) is updated. Instead, by
taking the lateral interactionh(i,φ(~x j )) into account, also the
weight vectors of neighboring nodes are modified. There-
fore, it is possible to achieve that the weight vectors of nodes
which are close to each other in the topological structureC
are also close in the data spaceR. In other words, the topo-
logical structure of the data setI is preserved by the SOM
(see [18] for a more detailed argumentation).

Since the topological structureC is typically chosen such
that it can be projected to a two-dimensional plane (like the
planar hexagonal grid we use), it is possible to plot each
attribute with respect to the map in a very straightforward
manner. This graphical information can be used to analyze
dependencies in the data in a visual manner [5].

In our three-stage approach, the purpose of the SOM pre-
processing is twofold. On the one hand, since the weight
vector of each node approximates the mean of several data
records, outliers and small variations in the input set are
eliminated and noise is drastically reduced. On the other
hand, the amount of data is heavily reduced, while the weight



Drobics et al. / Descriptive Data Analysis

vectors still contain all significant information. The two fol-
lowing steps, therefore, are able to work with a clean and
compact set of data, which helps to improve their efficiency
and robustness.

3. Clustering

The second building block of our approach is the identifica-
tion of possible regions of interest in the map. Regions of
interest are characterized through nodes, the weight vectors
of which are close to each other in the data space. To find
these regions of interest, we use a modifiedfuzzy c-means
clustering algorithm [2]. The aim is not only to find clus-
ters which are homogeneous within the data space, but also
within the map. This is accomplished by taking the topolog-
ical information of the map into account, too. The number of
regions of interestL is fixed a priori.

In order to find appropriate initial values for the fuzzy c-
means algorithm, we first perform a crispWard clustering
[20]. Ward clustering is an agglomerative clustering method,
which is often not applicable due to its high computational
effort. This problem is avoided, as we use the compressed
node information. The homogeneity of the clusters within
the map is achieved by merging only nodes/clusters which
are neighbors in the map (according to the topological struc-
ture, e.g. a hexagonal grid). After this initialization process,
fuzzy clustering is done by applying the usual iterative two-
step update procedure.

Algorithm 2 (Fuzzy c-Means)
Input: number of clustersL,

weight vectorsW = {~w1, . . . , ~wNC }
Output: cluster centersV = {~v1, . . . ,~vL}

Initialize cluster centers~v1, . . . ,~vL using Ward clustering
do {

for i = 1, . . . ,NC
for l = 1, . . . ,L

Compute degree of membershipC(l , i) of ~wi to clusterl
for l = 1, . . . ,L

Compute new cluster center~vl

} while ∑L
l=1 ∆~vl > ε;

The degree of membership to which nodei belongs to
clusterl , denotedC(l , i), is computed as

a(l , i) = exp
(
−α ·d2(~wi ,~vl )

)
(1)

C(l , i) =
a(l , i)

∑L
k=1 a(k, i)

(2)

The factorα ≥ 1 determines the fuzziness of the clusters (1
corresponds to rather blurred clusters, while, e.g., a value of
100 gives very sharp boundaries between clusters; we use
α = 40). By normalizing the sum of class memberships to 1
for each node (cf. (2)), we create a fuzzy partition ofC (in
the sense of [19]). Taking the exponential function to com-
pute the membership degree overcomes the problem of non-
convexity [9].

In Eq. (1), the distance measured(., .) is defined such
that the weights and the topological structure of the map are
taken into account, i.e.

d2
R(~x,~y) =

1

∑n
r=1 mr

·
n

∑
r=1

mr ·
( |xr −yr |

maxk,l |wk
r −wl

r |

)2

d2(~x,~y) = d2
R(~x,~y)h(φ(~x),φ(~y))β

For the radius of the lateral interactionh(., .) we user =√
NC . Note that, due to the division by maxk,l |wk

r −wl
r |,

dR(~x,~y) is always a value between 0 and 1 if all valuesxr , yr

are in the interval[mink wk
r ,maxk wk

r ]. Since we applydR(., .)
only to weight vectors or weighted sums of them, this re-
quirement holds throughout the clustering process. The ex-
ponent

h(φ(~x),φ(~y))β

corresponds to the influence of the neighborhood relation
h(., .); the smallerh(φ(~x),φ(~y)) is (i.e. the larger the distance
of nodeφ(~x) and nodeφ(~y) in the map is), the stronger the
raw distancedR(~x,~y) is stretched, while the exponentβ con-
trols how strong the influence of the topological structure is
(we useβ = 2).

In the second step of the main loop, the cluster centers~vl

are updated by computing the weighted means of all nodes
[9]:

~vl =
1

∑NC
i=1C(l , i)2 ·

NC

∑
i=1

C(l , i)2 ·~wi

The complete procedure is repeated until the change of
the cluster centers is lower than a predefined limitε. The
result is a set of cluster centers which uniquely characterize
regions of interest in the data set.

4. Cluster Descriptions

The final stage is concerned with finding interpretable, sim-
ple, and unambiguous descriptions of the regions of interest
determined in the clustering step.

In order to create descriptions in a logical manner, it is
necessary to define a discrete set of predicates for each at-
tribute. In case of continuously valued numerical attributes,
discretization cannot be avoided. If this discretization is
done by means of partitions into crisp sets (intervals), small
variations (e.g. noise) can cause large changes in the classi-
fication quality and mislead the search. This entails the de-
mand for admitting vagueness in the assignment of samples
to predicates. Beside rough set theory [15], fuzzy sets [21]
have emerged as a standard models for solving this problem
of artificial preciseness arising from sharp interval bound-
aries.

We create a set of fuzzy predicates for each attribute. De-
pending on the underlying context of the attribute under con-
sideration, we assign natural language expressions likevery
very low, medium, large, etc. to each attribute. These expres-
sions are modeled by fuzzy sets which can either be defined
by hand or automatically. When defining the fuzzy sets, in
particular when they are generated automatically, it is impor-
tant to preserve the semantic content of the natural language
expressions (e.g. thatlow corresponds to smaller values than
high) in order to achieve interpretable descriptions [3].

To find appropriate fuzzy segmentations of the input do-
mains according to the distribution of the sample data auto-
matically, we use a simple clustering-based algorithm. The
cluster centers are first initialized by dividing the input range
into a certain number of equally sized intervals (the number
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is denoted bysr for ther-th attribute). Then these centers are
iteratively updated using a modifiedk-meansalgorithm [12]
with simple neighborhood interaction to preserve the order-
ing of the clusters. Usually, a few iterations (less than ten)
are sufficient for each input variable. The fuzzy sets are then
created assr trapezoidal membership functions around the
centers. For more details, see [6].

Assume that thej-th fuzzy set for ther-th attribute (r =
1, . . . ,n and j = 1, . . . ,sr ) is denoted withMr j . ThenMr j ,
uniquely characterized by its membership functionµMr j :
R→ [0,1], induces a fuzzy predicate (forxr ∈ R)

t(xr is Mr j ) = µMr j (xr ),

wheret is the function assigning a truth value to the assertion
“xr is Mr j ”. In a straightforward way, a fuzzy setMr j also
induces the following fuzzy predicates [4]:

t(xr is notMr j ) = 1−µMr j (xr )

t(xr is at leastMr j ) = sup{µMr j (y) | y≤ xr}
t(xr is at mostMr j ) = sup{µMr j (y) | y≥ xr}

We refer to these four kinds of predicates asatomsor atomic
predicatesin the following. Without loss of generality, we
consider all atoms as predicates onR:

t(~x is Mr j ) = t(xr is Mr j )

t(~x is notMr j ) = t(xr is notMr j )

t(~x is at leastMr j ) = t(xr is at leastMr j )

t(~x is at mostMr j ) = t(xr is at mostMr j )

Let us assume that we want to compute a description of
the l -th cluster obtained in the previous step. We denote the
predicate corresponding to the membership to clusterl as
(for convenience, using prefix notation)

t(Cl (~x)) = C(l ,φ(~x)).

Now the goal is to find an appropriate approximation of
Cl by means of a fuzzy predicate consisting of conjunc-
tions/disjunctions of atomic predicates. Logical operations
on the truth values are defined using triangular norms and
conorms, i.e. commutative, associative, and non-decreasing
binary operations on the unit interval with neutral elements
1 and 0, respectively. In our applications, we restricted to the
Łukasiewicz operations:

TL (x,y) = max(x+y−1,0)

SL (x,y) = min(x+y,1)

Then conjunctions and disjunctions of arbitrary fuzzy predi-
catesA andB can be defined as follows:

t(A(~x)∧B(~x)) = TL
(
t(A(~x)), t(B(~x))

)
t(A(~x)∨B(~x)) = SL

(
t(A(~x)), t(B(~x))

)
The degree of common fulfillmentof a predicateA and

the goal predicateCl (for a given sample~x) is defined as
t(A(~x)∧Cl (~x)). For a given finite sample setX, the fuzzy
set of samples fulfilling a predicateA, which we denote with
A(X), is defined as (for all~x∈ X)

µA(X)(~x) = t(A(~x)).

Thecardinality of a fuzzy setN on X is defined as the sum
of µN(~x), i.e.

|N|= ∑
~x∈X

µN(~x).

Finally, the cardinality of samples commonly fulfilling a
predicateA and the goal predicateCl can be defined by

|A(X)∩Cl (X)|= ∑
~x∈X

t
(
A(~x)∧Cl (~x)

)
= ∑

~x∈X

TL
(
t(A(~x)), t(Cl (~x))

)
.

In order to find an approximating predicate forCl , we
useFS-FOIL [7] — a generalization of theFOIL algorithm
[16, 17] to fuzzy predicates. FS-FOIL creates a sequential
coverage of the goal predicateCl by means of a setSl con-
sisting of fuzzy predicates which are composed by conjunc-
tion of atoms. The final descriptor is given as the disjunction
of the predicates inSl , i.e. FS-FOIL uses a disjunctive nor-
mal form to represent the description. In contrast to the origi-
nalFOIL algorithm, which performs a steepest ascent search
in the solution space, we use a beam search hill-climbing ap-
proach, to find a description (i.e. not only a single candidate,
but the bestk candidates are kept).

Algorithm 3 (FS-FOIL)

Input: goal predicateCl

weight vectorsW = {~w1, . . . , ~wNC }
Output: predicate setSl

open nodesO = Cl (W)
final predicate setSl = ∅
intermediate predicate setpreds= {>}
do {

preds’= bestk predicates ofpredsaccording to gain measureG
preds= expand all predicates inpreds’
if a predicateA∈ predsis accurate & significant
{

add predicateA to setSl

remove nodes covered byA from the set of open nodesO
preds= {>}

}
} while stopping condition is not fulfilled;

FS-FOIL works with an intermediate set of predicates
predswhich are sequentially expanded in each iteration. The
fuzzy setO corresponds to the samples fromW fulfilling Cl

which have not yet been described by a predicate inSl .

In the first step of the loop, we select the bestk predicates
in preds(we usek = 10) according to the following entropy-
based information gain measureG (see [14] for a detailed
explanation):

G(A) = |A(W)∩Cl (W)|

·
(

log2
|A(W)∩Cl (W)|

|A(W)| − log2
|Cl (W)|
|W|

)
Note that this is a slight adaptation of the original FOIL gain
measure to the beam search (bestk) used in FS-FOIL.

In the next step, the predicates are expanded by all atomic
fuzzy predicates. The expansion of a predicateA with an
atomic fuzzy predicateB is done by means of conjunction,
i.e. A∧B. In case thatpredsonly contains the initial triv-
ial predicate> (the predicate which is always fulfilled), the
expansion by an atomic predicateB is defined as>∧B = B.
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The third step is concerned with the search for an appro-
priate predicate within the set of expanded predicates. As
quality criteria, we require significance and accuracy. The
significance of a predicateA is defined as the commonsup-
port of a predicateAand the goal predicateCl . The support is
defined as the ratio of the cardinality of samples commonly
fulfilling A andCl to the total number of samples:

supp(A,Cl ) =
|A(W)∩Cl (W)|

|W| =
1

NC
·

NC

∑
i=1

t
(
A(~wi)∧Cl (~wi)

)
.

Theaccuracyof a predicateA is defined as theconfidenceof
predicateA with respect toCl

conf(A,Cl ) =
supp(A,Cl )

supp(A)
,

where supp(A) is defined as

supp(A) =
|A(W)|
|W| =

1
NC

·
NC

∑
i=1

t
(
A(~wi)

)
.

Hence, the following holds:

conf(A,Cl ) =
∑NC

i=1 t
(
A(~wi)∧Cl (~wi)

)
∑NC

i=1 t
(
A(~wi)

)
In other words, the confidence ofA with respect toCl is the
ratio of the number of samples commonly fulfillingA andCl

to the number of samples fulfillingA.

Provided that we find a predicateA∈ predsfulfilling rea-
sonable requirements in terms of support and confidence (by
imposing two lower bounds suppmin and confmin, respec-
tively [1]), we can addA to the final predicate setSl and
remove those nodes from the set of open nodesO which
are covered/described byA. In detail, we replaceO by
O\A(W) = O∩A(W)c the membership function of which
is defined as (for all~x∈W)

TL
(
µO(~x),1−µA(W)(~x)

)
= max

(
µO(~x)+1−µA(W)(~x)−1,0)

= max
(
µO(~x)−µA(W)(~x),0).

The loop terminates if either the percentage of unde-

scribed nodes|O|NC
falls under a certain threshold (we use

10%) or no new significant and accurate predicates can be
found by expansion anymore.

Given a result set of predicatesSl , the final predicateAl

approximating the goal predicateCl is defined as the dis-
junction of all predicates fromSl . In detail, the truth value to
which a sample~x∈R fulfills Al is defined as

t(Al (~x)) =
∨

A∈Sl

t(A(~x)) = SL
A∈Sl

t(A(~x))

SinceAl only involves atomic predicates and logical op-
erations,Al can be regarded as an expression close to natural
language whichdescribesthe goal predicateCl and, thereby,
the l -th cluster in our original data set.

Figure 1: Original image (left) and its segmentation (right)

5. Image Segmentation and Labeling: An Example

The approach proposed in this paper is widely applicable to
any kind of data. We decided to demonstrate the method by
means of a rather unusual example—image segmentation.
Other examples (that are more familiar to the data mining
domain) can be found in [8].

A typical application of clustering in computer vision is
image segmentation, therefore, it seemed interesting to ap-
ply our three-stage approach to this problem. Moreover, the
possibility to describe segments with natural language ex-
pressions gives rise to completely new opportunities in im-
age understanding.

First experiments using pixel coordinates and RGB val-
ues showed good results in terms of accuracy, however, the
descriptions were rarely intuitive. In order to overcome this
problem, we added HSL features (hue, saturation and light-
ness), which match the way humans perceive color much
closer, in the final description step. Since humans have a
certain understanding of colors and intensities, it is more ap-
propriate to assume predefined fuzzy predicates correspond-
ing to natural language terms describing these properties. By
this way, moreover, it can be avoided that the meaning of the
descriptions depend on the image under consideration.

The example in Fig. 1 shows an image with 170× 256
pixels, i.e. we haveK = 43520 samples withn = 8 features.
First, it was mapped onto a SOM with 10×10 nodes. Then
four clusters and the corresponding descriptions were com-
puted. On the right-hand side, Fig. 1 shows the computed
segmentation. Figure 2 shows the final rule sets and the cross
validation table which illustrates how good the clusters are
described by the rule sets.

The rule sets in Fig. 2 can be interpreted as follows: The
first rule set corresponds to the blue sky. The second rule set
describes the black pants. The snow is classified by the third
rule set. Finally, the jackets are identified by the fourth rule
set.

6. Conclusion

In this paper, we have shown how the synergistic combina-
tion of different methods (self-organizing maps, clustering,
and inductive learning) can be applied to perform descriptive
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Description
Cluster 1: (Blue Is High) OR

(Red IsAtMost Low AND
Blue IsAtLeast VeryHigh)

Cluster 2: Lightness IsAtMost Dark
Cluster 3: Lightness IsAtLeast Light
Cluster 4: (Hue Is Orange) OR

(Hue Is Red) OR
(Hue Is Yellow) OR
(Hue Is Green AND Lightness Is Normal)

Figure 2: Rule sets for the image segmentation

data analysis. The modular design allows to change individ-
ual components on demand or even to omit one step (e.g.
when labeled data is available, it is possible to use this infor-
mation as the goal parameter in the inductive learning step,
instead of performing unsupervised clustering first).

Due to the data reduction provided by the SOM prepro-
cessing step, this approach is applicable to large data sets. It
is clear, therefore, that this step is the bottleneck in terms of
computation time, since it is the only component that has to
process the complete input data set.

As an experimental study, we presented an image segmen-
tation example. For traditional image segmentation, the clus-
ter descriptions do not necessarily add value. These descrip-
tions, however, can be considered as specific image features
that can be used as features for image understanding and im-
age indexing. Beyond the example in this paper, there is a
big potential in business intelligence (as the salesman exam-
ple in Section 1 underscores). Moreover, structuring and in-
dexing of large text corpora appears to be another promising
application field. Future work will go into these directions.
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