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Abstract

This contribution is concerned with the compact-
ness of fuzzy logics, where we concentrate on the
three standard fuzzy logics—¥.ukasiewicz logic, G6-
del logic, and product logic.
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The necessity to describe vagueness of data lead
to the development of many-valued or fuzzy logics
which use a larger scale of truth values, usually
the real interval [0, 1]. It is natural to ask to which
extent the theorems known from classical logic hold
also in this generalized context. One of the basic
properties of classical logic is its compactness: If
we have a set I' of formulas such that each of its
finite subsets is satisfiable, then T is satisfiable (i.e.,
all formulas in I" can be simultaneously satisfied for
some evaluation). We try to extend this result to
fuzzy logics. The problem becomes more complex,
because we have a continuum of truth values [0, 1]
instead of two truth values of classical logic. Thus
we have different types of satisfiability. While f.u-
kasiewicz logic is known to satisfy the compactness
property, we prove that this is not the case for G6-

del and product logic. Nevertheless, some partial
positive answers are obtained for these logics, too.

Following [3,4,11], we deal here with fuzzy logics
which have the real interval [0, 1] as the set of truth
values and the following basic connectives:

e the nullary false statement 0, interpreted by 0,

e the binary conjunction A, interpreted by a tri-
angular norm T: [0,1]2 — [0, 1], i.e., a commu-
tative, associative, non-decreasing operation
with neutral element 1,

e the binary implication —, interpreted by the
residuum R of T, i.e.,

R(z,y) = sup { € [0,1] : T(z,2) <y} .

In this approach, the semantics of the fuzzy logic
under consideration is fully determined by the
choice of the triangular norm 7.

We start from a nonempty countable set A of
atomic symbols and we define the class of well-
formed formulas in a fuzzy logic (formulas for
short) inductively as follows:

(i) Each atomic symbol p is a formula.

(ii) If Ois an n-ary connective and 1, .. .
formulas, then O(¢py, ...

,¥n are
,¥n) is a formula.



For each function e which assigns a truth value to
each atomic formula there exists always a unique
natural extension of e to an evaluation € which, for
each atomic symbol p, for each n-ary connective [,
its interpretation Meaningy and for all formulas
©1,--. ,Pn, is obtained by induction in the follow-
ing canonical way:

é(p) = e(p)

e(@(g1;- -, ¢n)) = Meaningg ((¢1), - - ,&(#n)) -

The three basic triangular norms lead to the fol-
lowing three main examples of fuzzy logics:

e For the triangular norm Tp(z,y) = max(z +
y — 1,0) we obtain Zukasiewicz logic.

¢ For the minimum Tg(z,y) = min(z,y) we ob-
tain Gddel logic.

e For the algebraic product Tp(z,y) = z - y we
obtain product logic.

For additional information on these logics we re-
fer to [3,4,11]. Their detailed study and the proofs
of completeness can be found in [4,6].

Using the basic logical connectives A, — and 0,
we can define derived logical connectives. Negation
= is defined as

p=p—=0.
Its interpretation is the fuzzy negation IV given by
N(z) = R(z,0) =sup{z € [0,1] : T(z,2) <0} .

In Fukasiewicz logic this leads to standard fuzzy
negation Ng(z) = 1—=, in Godel and product logic
we obtain Godel negation

1 ifz=0,

N, =
a(@) {o >0,

For a conjunction with n equal arguments ¢, we
use the abbreviation A" ¢. The inductive definition

1S:
Ao ¢,
/\nﬂgo = <,0/\/\n<,0, neN.

(We use the notation N, resp. N, for the set of
positive integers, resp. all integers greater than 1.)

Definition 1. For a set I' of formulas and K C
[0,1], we say that T is K -satisfiable if there exists
an evaluation € such that we have €(¢) € K for all
@ € I'. The set I is said to be finitely K -satisfiable
if each finite subset of I' is K-satisfiable.

Obviously, K-satisfiability implies finite K -satis-
fiability. The reverse implication holds in classical
logic, as well as in some fuzzy logics provided that
K is closed. This property is called compactness of
a logic.

Definition 2. A logic satisfies the compactness
property if, for each closed subset K of [0,1], K-
satisfiability is equivalent to finite K-satisfiability.

In Lukasiewicz logic we obtain the interpreta-
tion Ry, of the implication defined by Ry (z,y) =
min(1—2z+y,1). In this case the following theorem
holds:

Theorem 3. [4] Lukasiewicz logic has the com-
pactness property.

Proof. Let T' be a set of formulas. For each
¢ € T, the mapping H,: [0,1]* — [0,1] defined
by H,(e) = &(p) is continuous. The preimages
(H;'(K))ger are closed subsets of the compact
[0,1]4. This collection is centered (i.e., each fi-
nite subset has a nonempty intersection) because
of finite K -satisfiability. Hence the intersection
Nyer H_'(K) is nonempty; each of its elements
is an evaluation that makes I' K-satisfiable. |

The compactness property can be proved sim-
ilarly also in other fuzzy logics in which all op-
erations are interpreted by continuous functions.
In particular, this applies to so-called S-fuzzy log-
ics. These logics were introduced (under a dif-
ferent name) in [2] and investigated in detail in
[7-9]. In S-fuzzy logics, the basic connectives are
negation —, interpreted by standard fuzzy negation
Ns(z) = 1 — z, and conjunction A, interpreted by
a continuous triangular norm. Implication — in an
S-fuzzy logic is a derived connective

o= ==(pAN).

The compactness property of S-fuzzy logics is
proved in [2, Th. 3.3].



The same argument does not work in Godel and
product logic where the residua Rg and Rp inter-
preting the implication are defined by

1 ifzx<y,
y otherwise ,

RG(xay) = {

R 1 ifz<y,
p(w.y) = Y otherwise .
T

The residuum Rg is not continuous in the points
(z,z), 0 <z <1, Rp has a discontinuity in (0,0).
Still some partial positive results can be obtained.
For instance, in Godel logic, finite {1}-satisfiability
is equivalent to {1}-satisfiability. This weakened
form of compactness was proved in [4]. In a mod-
ified form it can be derived from [1]; although the
logic and notions studied there do not coincide ex-
actly with our approach, the paper covers this par-
ticular result. It was generalized by Hajek to the
following form [5]:

Theorem 4. Let K be a closed subset of [0, 1] such
that 1 € K, 0 ¢ K. Then in Gddel logic, as well as
in product logic, finite K -satisfiability implies K -
satisfiability.

Another partial positive result for Godel logic is
the following (again, see [1] for a related result):

Proposition 5. Gddel logic with finitely many
atomic symbols has the compactness property.

Proof. With finitely many atomic symbols, we can
form infinitely many formulas, but only finitely
many of them are semantically different. (We call
two formulas semantically different if there is an
evaluation attaining different values on them.) As
satisfiability depends only on the semantics, we get
the compactness property trivially. O

However, the compactness property of Godel
logic does not hold in general:

Theorem 6. Gddel logic with an infinite set of
atomic symbols does mot satisfy the compactness

property.

Proof. Let p,, n € N, be atomic symbols. We take
F:{pn+1 %pn:nEN}a

K={0}U{l/n:neN}.

Let € be an evaluation such that e(p,+1 — pn) = z,
where x € K. As x < 1, this is possible only if

e(pn) =1, e(Pnt1) > T .
For each m € N, the set
Ly ={pnt1 =2 pPn:n=1,..., m}CT

is K-satisfiable. Indeed, if we take

1
e(pn) m+2_n’ n ) ’m+ )
we obtain
e — =—€K.
e(pn+1 pn) m+2—n

Each finite subset of I is contained in I',,, for some
m € N, so I is finitely K-satisfiable.

It remains to prove that I' is not K-satisfiable.
Suppose that € is an evaluation which maps all for-
mulas from I' into K. This implies that the se-
quence (€(pn))nen is strictly increasing. We get a
contradiction, because €(py) € K\{0} and there are
only finitely many (exactly 1/€(p2) — 1) elements of
K greater than €(p2). Thus such an evaluation does
not exist. O

Also in product logic, we do not obtain compact-
ness in general.

Theorem 7. Product logic does not satisfy the
compactness property.

Proof. (We only outline the basic ideas to give the
reader an overview—to show which set of formulas
and which closed set of truth values are used. Their
properties are not proved here. The complete proof
exceeds the scope of this paper; it can be found
in [10].)
We define a set
1
M:{i——,: i,j €N, jgz‘}.
J

The collection of sets {£M : n € N} has the fol-
lowing intersections:



1. () 1M # 0 for each finite subset F C N,
neFr

2. N tM=0.
neN

We define the set
K =exp(—M)U{0} = {exp(—z) : 2z € M}U {0} .

(We use here exp to denote the exponential func-
tion, resp. its extension to sets of reals.) The set K
is a closed subset of [0, 1].

We take an atomic symbol p. For each n € N,
we define the formula ¢, by

pn=-p—>N\'p.

The function H,, : e(p) — €(y,) interpreting the
formula ¢, is

H,, (z) = Rp(Na (N (7)), z")
oz if 2>0,
B 1 if z=0.

The set I = {p, : n € N} is finitely K-satisfiable,
but not K-satisfiable. This can be proved by using
the preimages

H;nl(K) = {exp(—%) 1z € M} = exp(—%M)

and the above properties of the collection of sets
{1M :neN}L O

Although we do not have the compactness prop-
erty in Gddel and product logic, it still holds for
some special forms of the set K. Also in some other
fuzzy logics the questions of compactness were not
clarified yet. These problems may be a subject for
further research.
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