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Abstract

Screening molecules for desired biological activities with bioassays is at the core
of the drug discovery process. The data produced by bioassays enable building
quantitative structure-activity relationship (QSAR) models that are fundamental
components of computer-aided drug discovery. Despite the advances brought by
Deep Learning-based QSAR models, it is still unclear how to build these models for
new bioassays for which no active nor inactive molecules are known. To ameliorate
this problem, we propose BioassayCLR, a machine learning method that leverages
rich textual bioassay descriptions for modeling. Our model takes as input both
the chemical structure of a molecule and the textual description of the bioassay
and outputs the predicted activity for this pair. The approach can be viewed as a
contrastive learning approach in which representations of both molecules and bioas-
says should be learned, which are similar if the molecule-bioassay pair is active and
dissimilar if the pair is inactive. We perform experiments on bioassay descriptions
and molecules from PubChem with 223,219,241 records of molecule-bioassay ac-
tivity, corresponding to 2,120,811 unique molecules and 21,002 unique bioassays.
On a strict temporal hold-out set with 615 unseen bioassays and 248,290 unseen
molecules, BioassayCLR reaches an AUROC of 63.97 ± 0.47 outperforming the
baselines using simple textual similarity by a margin, whereas all other QSAR
methods yield random performance of 50.00. To our knowledge, this is the first
time that a textual representation of a bioassay is directly fed into a QSAR model
and, thus, the first method that can produce accurate predictions for bioassays that
are only described by natural language. Because of these properties, our method
allows for zero-shot transfer learning in drug discovery.

1 Introduction

Selecting compounds to be screened by a new bioassay is the critical step in drug discovery.
The use, development and improvement of biological assays (bioassays) is at the heart of drug
discovery. In this field, bioassays take the central role to determine the biological properties of a
small molecule, such as inhibitory activity on a drug target in a wet-lab test. New bioassays are often
developed with the aim to screen a library of molecules for a particular activity on a target. At this
initial phase, when a new bioassay has been developed, the library design problem emerges in all drug
discovery projects [36]. The library design problem concerns how to select molecules to be screened
without previous experience about the new bioassay [15, 10, 19]. A good selection of molecules
will lead to a high number of active molecules, which can potentially be further developed into a
drug. Therefore, this initial phase critically determines the success of a drug discovery project and is
usually both time- and cost-intensive. The drug discovery process could be made more effective by
improving the selection of molecules to be tested in a newly developed bioassay (Section A.1)
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Figure 1: Schematic overview of our approach.
BioassayCLR learns similar representations for
active molecule-bioassay pairs.

Bioassays provide data to build quantitative
structure activity relationship (QSAR) mod-
els. As soon as molecules have been selected
and measured with the new bioassay, data is
available which can be used for data-driven and
machine learning approaches [58, 23]. With
these approaches, QSAR models can be built,
which can then be used to virtually screen
databases of molecules with high predicted ac-
tivities. These molecules can then be further
tested in a wet-lab [32, 42] to increase the set of
active molecules, which is a determining factor
in drug discovery [17, 3]. This process of ac-
quiring bioassay data and improving the QSAR
model depends strongly on the initial selection
of molecules [15, 42].

QSAR modeling has been strongly im-
proved by Deep Learning which needs large
amounts of labelled data. Since the advent of Deep Learning methods in drug discovery, QSAR
models have been strongly improved with respect to predictive quality and thus ranking and selection
of molecules with desired activity [48, 6, 23, 53, 56, 9]. Machine learning methods, including Deep
Learning, rely on training data, that is, a set of molecules that has already been tested in the assay
and hence each molecule has an associated activity score. Usually several tens of active and inactive
molecules are necessary to yield models with a good predictive quality [32, 46, 56]. To this end,
recent efforts have been undertaken to make Deep Learning models more efficient with respect
to the necessary training data [2, 35], an area which is called few-shot learning or low-resource
drug discovery. Despite the recent progress in Deep Learning and low-resource drug discovery,
the problem of the selecting molecules for a bioassay without any known actives or inactives, the
so-called zero-shot learning problem, has not been solved.

Information from the textual description of the bioassay can be leveraged with contrastive
learning. Despite the lack of known active and inactive molecules for novel bioassays, there is
information available that could potentially be used for machine learning: the textual description
of the bioassay. For each bioassay, the procedure in the wet-lab, their endpoint, and the substrate,
is usually described in textual form. Their have even been efforts to semantically describe such
bioassays using an ontology [52]. With the recent advances of machine learning methods for natural
language [47, 51, 57], it has become evident that information in textual form can be leveraged for
predictive models. As a prominent example, the BioBERT model [25] has been trained on biomedical
texts and has been shown to be highly effective for biomedical named entity recognition, biomedical
relation extraction, and biomedical question answering. In light of these results, we hypothesize that a
meaningful representation of the textual description of the bioassay might be learned in a contrastive
learning [13] approach and be used for QSAR models.

To solve the library design problem for new bioassays and the zero-shot learning problem in drug
discovery, we propose a new machine learning model that takes as input both the chemical structure
of a molecule and a textual description of a bioassay (Fig. 1). To this end, a bioassay encoder and
a molecule encoder are trained in a contrastive learning approach. Contrastive learning methods
have recently had a profound impact on machine learning and computer vision, because they offer a
way to learn powerful, transferable representations [13, 8, 14]. We introduce a new method called
BioassayCLR, which procures meaningful representations of both molecules and bioassays, and
which can predict bioassay activity even when no actives and inactives are known (Fig. 2). Thus,
we solve the problem of selecting compounds for a new bioassay and, equivalently, the zero-data or
zero-shot problem in drug discovery.

2 BioassayCLR

Bioactivity prediction is usually considered as a classical supervised, binary prediction prediction
task. For a given bioassay or drug target, a machine learning model ŷ = g(m) can be trained on
a set of available measurement pairs of molecules and activity labels {(m1, y1), . . . , (mN , yN )}.
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Figure 2: Predictive ability of methods: While
previous methods, e.g. multi-task deep networks,
make predictions on unseen molecules and known
bioassays (black box), BioassayCLR allows to
make predictions for molecules on unseen bioas-
says (green box). Strict hold-out evaluation: To
assess the ability of our method to predict unseen
bioassays, we use a strict hold-out setting: meth-
ods are assessed on their ability to correctly predict
the activity of unseen molecules in unseen bioas-
says (blue area). Both molecules and bioassays
are sorted increasingly by their PubChem identi-
fier, given at the time of their entry in the database,
which leads to an approximate temporal validation
strategy. BioassayCLR allows for accurate predic-
tions of assays without any training data, that is
zero-shot transfer learning.

The problem has also been treated as a multi-
task learning problem [49, 9, 41, 31, 32], in
which several types of activity labels are avail-
able for a molecule {(m1,y1), . . . , (mN ,yN )},
where yn are vectors containing activity values
of different bioassays or drug targets. The ad-
vantage of multi-task learning over single-task
is that a learned molecule encoder m = h(m)
can be shared across prediction tasks. However,
multi-task deep networks (MT-DNN) cannot be
used for zero-shot transfer learning, when pre-
dictions should be made for a new bioassay for
which no training data is available.

Contrastive learning of molecules and bioas-
says. To allow for meaningful predictions
of bioassays, for which no training data is
available, we propose a contrastive learning
approach in which molecule representations
are learned together with representations of
bioassays. Our machine learning model uses
both a molecule m and a textual descrip-
tion of the bioassay a as input. To train
this model, we consider the training data as
triplets {(m1,a1, y1), . . . , (mN ,aN , yN )} of
molecule embeddings from a molecule encoder
m = f(m), bioassay embeddings from a bioas-
say encoder a = g(a), and a binary activity
label y. A scoring function k(m,a) should re-
turn high values if a molecule m is active on
a bioassay a and low values otherwise. The
contrastive learning approach equips our model
with the potential for zero-shot transfer learn-
ing, that is, supplying meaningful predictions
for unseen bioassays.

The BioassayCLR model has the following
structure:

ŷ = k(m,a) = k(f(m), g(a)), (1)

where ŷ is the predicted activity, f(.) and g(.)
are neural networks serving as the molecule encoder and the bioassay encoder, k(., .) is a scoring
function that should approximate the targeted distribution p(y = 1 | m,a). In practice, we use
the following: k(m,a) = exp(τ−1mTa)

exp(τ−1mTa)+1
, where τ−1 can either be a hyperparameter or a learned

parameter (Section A.3).

The objective of our model is to minimize the following contrastive loss function [13, 34, 29, 20]:

LNCE = − 1

N

N∑
n=1

yn log(k(mn,an)) + (1− yn) log(1− k(mn,an)). (2)

The loss function encourages that molecules that are active on a bioassay have correlated representa-
tions, whereas inactive molecules have decorrelated representations, to the given bioassay. In contrast
to our approach, recent prominent contrastive learning approaches [40, 7] only have access to pairs
without label. Another difference to these methods is that for zero-shot transfer learning of bioactivity
tasks, only a representation of the positive class, but not of the negative class, is available.

Encoders. Both the molecule and the bioassay encoders consist of a feature extraction component
and a learned component. For the molecules, we first extract molecular descriptors, which we pass
further to a fully connected neural network. For the bioassays, we first process their text descriptions
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Table 1: Mean of AUROC, average precision (AVGP) and negative-class average precision (Neg-
AVGP) over 615 test bioassays for zero-shot transfer learning. The table shows the mean and one
standard deviation of this mean value over five runs initialized with different random seeds.

Method Bioassay encoder AUROC [%] AVGP [%] NegAVGP [%]
BioassayCLR (ours) LSA 63.97 ± 0.47 46.34 ± 0.64 75.14 ± 0.48
soft-NN (baseline) LSA 61.99 ± 0.32 43.31 ± 0.81 75.69 ± 0.53
1-NN (baseline) LSA 57.16 ± 0.92 41.25 ± 1.09 72.43 ± 0.52

BioassayCLR (ours) BioBERT 62.52 ± 0.93 44.93 ± 0.72 75.28 ± 0.45
soft-NN (baseline) BioBERT 61.71 ± 0.77 42.58 ± 0.70 75.31 ± 0.49
1-NN (baseline) BioBERT 55.15 ± 0.76 40.89 ± 0.64 72.23 ± 0.56

Global (baseline, 1 run) – 62.63 ± NA 45.11 ± NA 75.61 ± NA
MT-DNN1 [9, 49, 31, 41] – 49.68 ± 0.49 38.48 ± 0.45 69.35 ± 0.17

1 equivalent to a random classifier, in this case

either using Latent Semantic Analysis (LSA) or using BioBERT as a feature extractor. We then pass
these representations to a fully connected neural network. Both fully connected neural networks are
learned following the contrastive paradigm described above. Details on feature extraction and on the
investigated architectures and hyperparameters can be found in Section A.3.

3 Experiments and results

We use a large public dataset extracted from PubChem [39] with 223,219,241 records of molecule-
bioassay activity (Section A.2). In contrast to other benchmarking datasets for molecular property
prediction, the PubChem database offers large number of textual descriptions of the bioassays,
from which our method can learn. We split the dataset into training, validation and test using an
approximate temporal split (Section A.2.2), such that the test set only contains assays and molecules
for which not a single activity measurement is contained in the training set. From the machine
learning perspective, this represents a zero-shot learning problem.

BioassayCLR is compared to two informative baseline methods derived from MT-DNN. Our baselines
could also be considered as new methods, as they have not been suggested before. The 1-nearest
neighbour baseline (1-NN) uses the text representation of the new bioassay and selects the most
similar bioassay of the training set. Then, MT-DNN predictions for molecules of this bioassay are
used as predictions. Similarly, the soft k-nearest neighbours (soft-NN) approach first calculates the
textual similarity of the given bioassay with the training set bioassays. Then, these similarity values
are used to calculate a weighted average of MT-DNN predictions for new molecules. We test two
different bioassay encoders. First, the representations obtained using LSA and, second, the hidden
representations obtained from BioBERT [26].

Our method BioassayCLR reaches an AUROC of 63.97 ± 0.47 based on the LSA-encoder, which
can be considered high given that not a single activity value of this bioassays was available (Tab. 1).
For a comparable study, AUROC values are in the range of 73.10 [32, Tab. 1] for bioassays with
3,900 measurements on average. Our two suggested baselines, soft-NN and 1-NN, developed with
the capability of zero-shot learning, reach an AUROC of 61.99 ± 0.32 and 57.16 ± 0.92, whereas
MT-DNNs remain at random performance. The learned textual representations of the bioassays yield
similarities that are meaningful beyond pure textual similarity (Supplementary Material).

Conclusion. Our results are surprising in the sense that without a single activity measurement and
only having the textual description of the bioassay, a predictive model can reach average AUROCs
close to 64%. A critical consequence of this finding is that a bioassay need not even exist physically,
but only be textually described, and already data-driven virtual screening for active molecules can be
performed. The fact that the LSA encoder performs better than BioBERT indicates that the sentence
structure and grammar of the bioassay descriptions does not seem to play a major role for predictive
modeling, which we also did not expect. However, we see room for improvement of the bioassay
encoder. It has not escaped our notice that our trained molecule encoders potentially contain more
information than molecule encoders trained purely on activity data, which could make them suitable
for transferring to other prediction tasks. We envision that BioassayCLR becomes a useful tool in
early-stage drug discovery and that architectural improvements could even boost its performance.
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A Appendix

A.1 Related work

Selection strategies for bioassay screening. To increase the chance of success of a drug discovery
project, many different strategies on how to select the molecule library have been proposed and tested.
A prominent approach is high-throughput screening, in which large parts of physically available
molecules are screened at high-throughput [15]. This is possible if the bioassay can be performed in
high throughput, the wet-lab facilities and a large molecule library are available. High-throughput
screening has been seen as a strong improvement in drug discovery. Naturally, many computational
methods have also been suggested to first virtually screen [44] chemical libraries and then perform
bioassay screening on the top-ranked molecules. Data-driven strategies, such as machine learning
and Deep Learning, have brought a strong improvement of virtual screening methods. However,
data-driven strategies are not possible for new bioassays [1] since no data is available, and no actives
or inactives are known. To ameliorate this central problem, practitioners and scientists have resorted
to using information from similar bioassays, facilitated by efforts to semantically structure the
information about bioassays [52]. However, this type of information has not been integrated into
machine learning approaches yet. In summary, while data-driven virtual screening strategies have
been shown to be highly effective, it is currently unclear how those approaches could be used for
designing libraries for newly developed bioassays.

Proteochemometric and molecular docking. Several efforts have been devoted to being able to
make predictions for new biological targets, such as proteins. The set of proteochemometric methods
[50] use information about the protein, such as its 1D structure, and combine it with information
about the molecule. Molecular docking methods use the 3D structure of the protein and search for a
conformation of a ligand that fits into a binding pocket [37, 33]. However, many bioassays are not
focused on a target, but rather measure a general effect, such as a toxic response or cell proliferation,
which limits or prohibits the use of proteochemic or docking methods.

Zero-shot learning problem. From the perspective of machine-learning, the described problem
represents a zero-data or zero-shot prediction task [5, 24, 11, 38], for which several methods in the
area of computer vision and natural language processing have been developed [54]. The setting is that
no training data are available and only a description of the classes or tasks are provided, which in our
case is the textual description of the bioassay. In contrast to zero-shot problems in computer vision
where a description of each class is available, in the drug discovery setting only a description of the
positive class is available. Contrastive learning for zero-data problems has recently been exemplified
with the CLIP algorithm [40], in which representations of natural images and language are learned.

Recommender systems. The zero-data problem has earlier been identified by the recommender
systems and matrix factorization research community as cold-start problem [43]. The cold-start
problem is how to to provide good recommendations for novel users or items. Remedies for the
cold-start problem of recommender systems exploit similarities of initial descriptions between users
and items [27]. Contrastive learning has recently been suggested to learn the similarities between
users and items [28, 59]. From the perspective of recommender systems, our method BioassayCLR
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can be understood as having to suggest molecules representing items for a new bioassay representing
a new user.

A.2 Data set

A.2.1 Bioactivity dataset

We use a large public dataset extracted from PubChem [39]. It is initially comprised of 224,290,250
records of compound-bioassay activity, corresponding to 2,120,854 unique compounds and 21,003
unique bioassays. We find that some compound-bioassay pairs have multiple activity records, which
may not all agree. We reduce every compound-bioassay pair to exactly one activity measurement
by applying majority voting. Compound-bioassay pairs with ties are discarded. This step yields
our final bioactivity data set, which features 223,219,241 records of compound-bioassay activity,
corresponding to 2,120,811 unique compounds and 21,002 unique bioassays.

A.2.2 Data splits

We conduct a temporal split to emulate the situation in which novel compounds and bioassays are not
yet know at training time. We approximate this effect by assuming that new compounds and bioassays
receive increasingly larger identifiers [21]. We split both the unique PubChem compound identifiers
(CIDs) and the unique PubChem bioassay identifers (AIDs) into the oldest 60%, the following 20%,
and the most recent 20%. Then, we take the bioactivity records corresponding to the 60% oldest
compounds and bioassays for training, the bioactivity records corresponding to the following 20% of
compounds and bioassays for validation, and the bioactivity records corresponding to the 20% most
recent compounds and bioassays for testing (Fig. 2). Compound-bioassay pairs corresponding to, for
example, older compounds tested on newer bioassays, will not be included in any of the splits. This
entails a loss of data samples, but we favor the disjoint compound-wise and bioassay-wise splits, in
order to conduct a strict evaluation of whether our proposed method can predict bioactivity on novel
compounds and bioassays.

A.3 BioassayCLR

A.3.1 Molecule encoder

For each unique compound in the bioactivity data set, we retrieve its SMILES string [55] from
PubChem. We use the Python1 API of the RDKit2 open-source chemoinformatics software to extract
Daylight-like fingerprints, Morgan fingerprints and MACCS keys, which we concatenate obtaining
final compound feature vectors of dimension of 2176.

A feed forward neural network takes the compound feature vectors as input and projects them to
d-dimensional encodings. Further details on the network architecture and the choice of the dimension
d are provided in Section A.3.3.

A.3.2 Bioassay encoder

For each unique bioassay in the bioactivity data set, we retrieve a rich textual description from
PubChem, consisting of the concatenation of the title and the description of the bioassay. We process
each textual description to obtain a fix-length bioassay feature vector. We follow two different
pipelines, which we then assess separately.

We pretrain a Latent Semantic Analysis (LSA) model [30] specialized in PubChem bioassay descrip-
tions. We obtain textual descriptions for 1,252,874 PubChem bioassays. To avoid leaking information,
we exclude those corresponding to bioassays present in the validation and test splits of the bioactivity
dataset. To train the LSA model, we first compute a bioassay-term matrix of tf-idf coefficients and
then compute its truncated SVD decomposition. Finally, we extract the LSA feature vectors for all
the bioassay descriptions in our bioactivity dataset. The LSA feature vectors have dimension 2048.

1https://www.python.org
2http://www.rdkit.org
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Table 2: BioassayCLR hyperparameter values explored during model selection.
Hyperparameter Explored values
Encoding dimension d 64, 128, 256
Learning rate 5× 10−3, 1× 10−3, 5× 10−4, 1× 10−4, 5× 10−5, 1× 10−5

Number of hidden layers 1, 2, 3, 4, 8
Number of units per hidden layer 128, 256, 512, 1024
Dropout probability 0.05, 0.1
Parameter τ Set to 1, Learned
Normalization Batch-based [18], Layer-based [4]

We use a pretrained instance of the BioBERT model [26],3 which uses a transformer architecture [51]
and has been trained on biomedical text corpora. Each bioassay description is provided as input to
BioBERT and we keep the activations at the last layer as the bioassay feature vector. These are of
dimension 1024.

The dimension of the BioBERT feature vectors (1024) is given by the architecture of the pretrained
BioBERT model. The dimension of the LSA feature vectors (2048) is our hyperparameter choice.
While it may seem that the LSA feature vectors are much larger than their BioBERT counterparts, we
decided not to reduce them further because they might become too uninformative (the selected 2048
dimensions only explain 65% of the training data variance).

A feed forward neural network takes the assay feature vectors as input and projects them to d-
dimensional encodings. Further details on the network architecture and the choice of the dimension d
are provided in Section A.3.3.

A.3.3 Feed forward neural networks

The molecule and the bioassay encoders process their feature vectors using each a feed forward
neural network. The network architecture on each encoder can be different, except for the output
dimensionality d, which must agree. Nevertheless, here we have experimented with both networks
having the same architecture.

The input and hidden layers in a network have the following structure

dropout
(

ReLU
(
norm(Wx+ b)

))
,

where x is the input to the layer, and W and b are learnable weights. The preactivations are followed
by batch normalization [18] or layer normalization [4], a rectified linear unit (ReLU) activation
function, and dropout [45]. The output layer does not have normalization, activation function, nor
dropout, as it directly serves as the molecule or the bioassay encoding.

A.3.4 Hyperparameters

Models were selected by conducting a hyperparameter manual search (Tab. 2). We explored different
configurations for the encoding dimension d, the learning rate, the number of layers, the number of
hidden units in each layer, and the dropout probability. We also experimented with the parameter τ ,
necessary for the scoring function (Eq. 1), being set to 1 or learned, and with using either batch or
layer normalization. In total, 115 hyperparameter combinations were investigated.

The search was run separately for models using LSA-based and BioBERT-based bioassay encoders.
Model weights were initialized with MSRA [16]. For each hyperparameter configuration, we
optimized the objective function (Eq. 2) using Adam [22] with a batch size of 256 samples. For each
hyperparameter configuration, a copy of the model weights achieving the highest validation AUROC
over 100 training epochs was stored. Upon analysis of the obtained validation metrics, we selected
the final models (Tab. 3). We then trained four additional instances of each final model, resulting in
five model instances, each having been initialized with a different random seed. Table 1 provides the
final test results averaged over the five model instances.

3https://huggingface.co/dmis-lab/biobert-large-cased-v1.1
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Table 3: BioassayCLR final hyperparameter configurations.
Hyperparameter LSA-based BioBERT-based
Encoding dimension d 128 128
Learning rate 5× 10−5 5× 10−5

Number of hidden layers 2 3
Number of units per hidden layer 512 256
Input dropout probability 0.1 0.1
Hidden dropout probability 0.05 0.05
Parameter τ Learned Set to 1
Normalization Layer-based Batch-based

Table 4: Baselines hyperparameter values explored during model selection.
Hyperparameter Explored values

Learning rate 5× 10−5, 1× 10−5

Number of hidden layers 2, 3
Number of units per hidden layer 256, 512
Dropout probability 0.05, 0.1

A.4 Baselines

We propose baselines, which could be considered two variants of MT-DNN, for the purpose of making
activity predictions for novel bioassays. In both cases, for a target novel bioassay, we compute the
cosine similarity between its feature vector and the feature vectors of all the training bioassays, thus
obtaining a vector of similarities. The first baseline method, 1-nearest neighbour (1-NN), predicts the
bioactivity values that MT-DNN would predict for the training bioassay most similar to the target
novel bioassay. The second baseline, soft k-nearest neighbours (soft-NN), is a smoother version of
the first one. The vector of similarities between the target novel bioassay and the training bioassays
is normalized using the softmax function, such that the resulting vector of weights sums up to one.
Then, soft-NN predicts the weighted average of the values that MT-DNN would predict for all the
training bioassays.

A.4.1 Hyperparameters

We trained a dedicated MT-DNN for each baseline model. Since our training, validation and test
splits are bioassay-wise disjoint, we propose the following training procedure. Each MT-DNN visits
the training set as usual, but it is then evaluated on the (bioassay-wise disjoint) validation set by
using its predictions directly as 1-NN or soft-NN. In this way, we can train MT-DNN models for our
baselines using exactly the same splits and information that BioassayCLR used.

Given the results of the hyperparameter search conducted for BioassayCLR, we conducted a hyperpa-
rameter search where we explored different configurations for the learning rate, the number of layers,
the number of hidden units in each layer, and the dropout probability (Tab. 4). We set the parameter τ
to 1 and used layer normalization.

The search was run separately for models using LSA and BioBERT bioassay feature vectors. Model
weights were initialized with MSRA [16]. For each hyperparameter configuration, we optimized
the multitask masked loss [31] using Adam [22] with a batch size of 256 samples. For each
hyperparameter configuration, a copy of the model weights achieving the highest validation AUROC
over 100 training epochs was stored. Upon analysis of the obtained validation metrics, we selected
the final models (Tab. 5, 6). We then trained four additional instances of each final model, resulting
in five model instances, each having been initialized with a different random seed. Table 1 provides
the final test results averaged over the five model instances.
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Table 5: 1-NN final hyperparameter configurations.
Hyperparameter LSA-based BioBERT-based

Learning rate 1× 10−5 1× 10−5

Number of hidden layers 3 2
Number of units per hidden layer 255 512
Input dropout probability 0.05 0.5
Hidden dropout probability 0.05 0.05
Parameter τ Set to 1 Set to 1
Normalization Layer-based Layer-based

Table 6: Soft-NN final hyperparameter configurations.
Hyperparameter LSA-based BioBERT-based

Learning rate 5× 10−5 1× 10−5

Number of hidden layers 2 3
Number of units per hidden layer 512 256
Input dropout probability 0.1 0.5
Hidden dropout probability 0.05 0.05
Parameter τ Set to 1 Set to 1
Normalization Layer-based Layer-based

A.5 Metrics

In this work we report three performance metrics, which we denote AUROC, AVGP and NegAVGP.
AUROC is the area under the ROC curve [12]. AVGP is the mean average precision, which is an
approximation of the area under the precision-recall curve [30]. The last metric, which we dub
“NegAVGP” for negative-class mean average precision, is not standard, but it is very informative. It is
simply the mean average precision of the negative class. That is, if the negative class is coded as 0
and the positive class is coded as 1, then NegAVGP is,

NegAVGP = AVGP(1− y, 1− ŷ).

A.6 Additional results

Table 7: Median of AUROC, AVGP and NegAVGP over 615 test bioassays for zero-shot transfer
learning. The table shows the mean and one standard deviation of this median value over five runs
initialized with different random seeds.

Method Bioassay encoder AUROC [%] AVGP [%] NegAVGP [%]
BioassayCLR (ours) LSA 66.72± 0.33 40.69± 2.83 90.42± 0.60
soft-NN (baseline) LSA 64.25± 0.38 33.93± 0.85 89.54± 0.48
1-NN (baseline) LSA 59.81± 1.16 30.91± 2.08 86.64± 0.75

BioassayCLR (ours) BioBERT 66.04± 1.06 37.63± 1.94 89.73± 0.32
soft-NN (baseline) BioBERT 63.94± 1.03 34.34± 1.12 89.54± 0.61
1-NN (baseline) BioBERT 56.15± 1.74 31.09± 1.42 86.99± 0.20

MT-DNN1 [9, 49, 31, 41] – 49.95± 0.26 25.15± 0.48 83.19± 0.49
1 equivalent to a random classifier, in this case
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