
GANs Trained by a Two Time-Scale Update Rule
Converge to a Nash Equilibrium

Martin Heusel Hubert Ramsauer Thomas Unterthiner Bernhard Nessler

Günter Klambauer Sepp Hochreiter

LIT AI Lab & Institute of Bioinformatics,
Johannes Kepler University Linz

A-4040 Linz, Austria
{mhe,ramsauer,unterthiner,nessler,klambauer,hochreit}@bioinf.jku.at

Abstract

Generative Adversarial Networks (GANs) excel at creating realistic images with
complex models for which maximum likelihood is infeasible. However, the con-
vergence of GAN training has still not been proved. We propose a two time-scale
update rule (TTUR) for training GANs with stochastic gradient descent that has
an individual learning rate for both the discriminator and the generator. We prove
that the TTUR converges under mild assumptions to a stationary Nash equilibrium.
The convergence carries over to the popular Adam optimization, for which we
prove that it follows the dynamics of a heavy ball with friction and thus prefers
flat minima in the objective landscape. For the evaluation of the performance of
GANs at image generation, we introduce the “Fréchet Inception Distance” (FID)
which captures the similarity of generated images to real ones better than the
Inception Score. In experiments, TTUR improves learning for DCGANs, improved
Wasserstein GANs, and BEGANs, outperforming conventional GAN training on
CelebA, One Billion Word Benchmark, and LSUN bedrooms. Implementations
are available at: https://github.com/bioinf-jku/TTUR.

Introduction

Generative adversarial networks (GANs) [17] have achieved outstanding results in generating realistic
images [46, 36, 27, 2, 4] and producing text [22]. GANs can learn complex generative models for
which maximum likelihood or a variational approximations are infeasible. Instead of the likelihood,
a discriminator network serves as objective for the generative model, that is, the generator. GAN
learning is a game between the generator, which constructs synthetic data from random variables,
and the discriminator, which separates synthetic data from real world data. The generator’s goal
is construct data in such a way that the discriminator cannot tell them apart from real world data.
Thus, the discriminator tries to minimize the synthetic-real discrimination error while the generator
tries to maximize this error. Since training GANs is a game and its solution is a Nash equilibrium,
gradient descent may fail to converge [48, 17, 19]. For special GAN variants, convergence can be
proved under certain assumptions [9, 21], as can local stability [41]. To characterize the convergence
properties of training general GANs is still an open challenge [18, 19]. In an actor-critic setting,
where critic learns faster than the actor, a two time-scale update rule can ensure that training reaches a
stationary Nash equilibrium [45]. Convergence is proved by deriving an ordinary differential equation

ar
X

iv
:1

70
6.

08
50

0v
4

 [
cs

.L
G

]
 1

3
Ju

l 2
01

7

(ODE), whose stable limit points coincide with stationary Nash equilibria of the underlying stochastic
game. We follow the same approach.

We prove that GAN converge to a Nash equilibrium when trained by a two-time scale update rule
(TTUR), i.e., when discriminator and generator have separate learning rates. This also leads to
better results in practice. The main premise is that the discriminator converges to a local minimum
when the generator is fixed. If the generator changes slowly enough, then the discriminator still
converges, since the perturbations by the generator are small. The discriminator is tracking the
generator while the former converges. Besides ensuring convergence, the results also may improve
since the discriminator must first learn new patterns before they are transferred to the generator. In
contrast, a generator which is overly fast, drives the discriminator steadily into new regions without
having captured the generator’s shortcomings. In recent GAN implementations, the discriminator
often learned faster than the generator. A new objective slowed down the generator to prevent it
from overtraining on the current discriminator [48]. The Wasserstein GAN algorithm uses more
update steps for the discriminator than for the generator [2]. We demonstrate the learning behavior of
GAN training with TTUR in contrast to standard GAN training. Figure 1 shows at the left panel a
typical stochastic gradient example on MNIST for original GAN training (orig), which often leads
to oscillations, and the TTUR. On the right panel an example of a 4 node network flow problem
of Zhang et al. [54] is shown. The distance between the actual parameter and its optimum for an
one time-scale update rule is shown across iterates. When the upper bounds on the errors are small,
the iterates return to a neighborhood of the optimal solution, while for large errors the iterates may
diverge (see Appendix Section A2.3).

Figure 1: Left: Typical case of original vs. TTUR GAN training on MNIST. Right: Figure from
Zhang 2007 [54] which shows the distance of parameter from the optimum for a one time-scale
update of a 4 node network flow problem. When the upper bounds on the errors (α, β) are small,
the iterates return to a neighborhood of the optimal solution (see Appendix Section A2.3). However,
when the upper bounds on the errors are large, the recurrent behavior of the iterates may not occur,
and the iterates may diverge.

Our novel contributions in this paper are

• the two time-scale update rule (TTUR) for GANs,

• the proof that GANs trained with TTUR converge to a stationary Nash equilibrium,

• the description of Adam as heavy ball with friction and the resulting second order differential
equation,

• the convergence of GANs trained with TTUR and Adam to a stationary Nash equilibrium,

• the “Fréchet Inception Distance” (FID) to evaluate GANs, which is more consistent than the
Inception Score.

2

Two Time-Scale Update Rule for GANs

We formulate the GAN update rules according to Goodfellow et al. [17] with discriminator D(.;w)
with parameter vector w and generator G(.;θ) with parameter vector θ. First we define the gradient
g̃(θ,w) of discriminator’s loss function and the gradient h̃(θ,w) of the generator’s loss function:

g̃
(
θ,w

)
= ∇w

[
1

m

m∑
i=1

(
logD

(
x(i);w

)
+ log

(
1 − D

(
G
(
z(i);θ

)
;w
)))]

, (1)

h̃
(
θ,w

)
= ∇θ

[
− 1

m

m∑
i=1

log
(

1 − D
(
G
(
z(i);θ

)
;w
))]

. (2)

In the generator gradient formula Eq. (2), log(1−D(.)) is often replaced by − logD(.) to speed up
learning at the beginning [19]. The Wasserstein GAN has the same gradients but without “log” and
the resulting constants [2].

The gradients Eq. (1) and Eq. (2) use mini-batches of m real world samples x(i), 1 6 i 6 m
and m synthetic samples z(i), 1 6 i 6 m which are randomly chosen. Therefore both gradients
are stochastic. If the true gradients are g(θ,w) and h(θ,w), then we can define g̃(θ,w) =

g(θ,w) +M (w) and h̃(θ,w) = h(θ,w) +M (θ) with random variablesM (w) andM (θ). Thus,
the update rules Eq. (1) and Eq. (2) are stochastic approximations algorithms. Recently GANs have
been analyzed using stochastic approximation algorithms [41]. We analyze GANs as two time-scale
stochastic approximations algorithms. For a two time-scale update rule (TTUR), we use the learning
rates b(n) and a(n) for the discriminator and the generator update, respectively:

wn+1 = wn + b(n)
(
g
(
θn,wn

)
+ M (w)

n

)
, θn+1 = θn + a(n)

(
h
(
θn,wn

)
+ M (θ)

n

)
.

(3)

For more details on the following convergence proof and its assumptions, see Appendix Section A2.1.
To prove convergence of GANs learned by TTUR, we make the following assumptions (The actual
assumption is ended by J, the following text are just comments and explanations):

(A1) The gradients h and g are Lipschitz. J Consequently, networks with Lipschitz smooth
activation functions like ELUs (α = 1) [12] fulfill the assumption but not ReLU networks.

(A2)
∑
n a(n) =∞,

∑
n a

2(n) <∞,
∑
n b(n) =∞,

∑
n b

2(n) <∞, a(n) = o(b(n))J

(A3) The stochastic gradient errors {M (θ)
n } and {M (w)

n } are martingale difference sequences
w.r.t. the increasing σ-field Fn = σ(θl,wl,M

(θ)
l ,M

(w)
l , l 6 n), n > 0 with

E
[
‖M (θ)

n ‖2 | F (θ)
n

]
6 B1 and E

[
‖M (w)

n ‖2 | F (w)
n

]
6 B2, where B1 and B2 are positive

deterministic constants.J The original Assumption (A3) from Borkar 1997 follows from
Lemma 2 in [5] (see also [47]). The assumption is fulfilled in the Robbins-Monro setting,
where mini-batches are randomly sampled and the gradients are bounded.

(A4) For each θ, the ODE ẇ(t) = g
(
θ,w(t)

)
has a local asymptotically stable attractor

λ(θ) within a domain of attraction Gθ such that λ is Lipschitz. The ODE θ̇(t) =
h
(
θ(t),λ(θ(t))

)
has a local asymptotically stable attractor θ∗ within a domain of

attraction.J The discriminator must converge to a minimum for fixed generator param-
eters and the generator, in turn, must converge to a minimum for this fixed discriminator
minimum. Borkar 1997 required unique global asymptotically stable equilibria [7]. The
assumption of global attractors was relaxed to local attractors via Assumption (A6)’ and
Theorem 2.7 in Karmakar & Bhatnagar [28]. See for more details Assumption (A6) in
Appendix Section A2.1.3. Here, the GAN objectives may serve as Lyapunov functions.
Recently it has been shown that the traditional GAN formulation is locally asymptotically
stable [41].

(A5) supn ‖θn‖ <∞ and supn ‖wn‖ <∞.J Typically ensured by objective or weight decay.
The parameters can be projected to a box which leads to a projected stochastic approximation.
Theorem 5.3.1 on page 191 of Kushner & Clark [35] states convergence for projected
stochastic approximations for single iterates (see Appendix E of Bhatnagar, Prasad, &
Prashanth 2013 [6]).

3

The next theorem has been proved in the seminal paper of Borkar 1997 [7].
Theorem 1 (Borkar). If the assumptions are satisfied, then the updates Eq. (3) converge to
(θ∗,λ(θ∗)) a.s.

The solution (θ∗,λ(θ∗)) is a stationary Nash equilibrium [45], since θ∗ as well as λ(θ∗) are local
asymptotically stable attractors with g

(
θ∗,λ(θ∗)

)
= 0 and h

(
θ∗,λ(θ∗)

)
= 0. An alternative

approach to the proof of convergence using the Poisson equation for ensuring a solution to the fast
update rule can be found in Appendix Section A2.1.2. This approach assumes a linear update function
in the fast update rule which, however, can be a linear approximation to a nonlinear gradient [31, 33].
For the rate of convergence see Appendix Section A2.2, where Section A2.2.1 focuses on linear and
Section A2.2.2 on non-linear updates. Recently the local stability of GANs and their convergence
rates have been investigated [41].

For equal time scales it can only be proved that the updates revisit an environment of the solution
infinitely often, which, however, can be very large [54, 13]. For more details on the analysis of
equal time scales see Appendix Section A2.3. The main idea in the proof of Borkar [7] is to use
(T, δ) perturbed ODEs according to Hirsch 1989 [23] (see also Appendix C of Bhatnagar, Prasad,
& Prashanth 2013 [6]). The proof relies on the fact that there eventually is a time point when the
perturbation of the slow update rule is small enough (given by δ) to allow the fast update rule to
converge. For experiments with TTUR, we aim at finding learning rates such that the slow update
is small enough to allow the fast to converge. Typically, the slow update is the generator and the
fast update the discriminator. We have to adjust the two learning rates such that the generator does
not affect discriminator learning in a undesired way and perturb it too much. However, even a
larger learning rate for the generator than for the discriminator may ensure that the discriminator
has low perturbations. Learning rates cannot be translated into perturbation since the perturbation of
discriminator by the generator is different from the perturbation of the generator by the discriminator.

Two Time-Scale Update Rule for Adam

GANs suffer from "mode collapse", where large masses of probability are mapped onto a few modes
that cover only small regions of the entire data distribution. While these regions represent meaningful
samples, the variety of the real world data is lost and only
a few prototype samples are generated. Different methods
have been proposed to avoid mode collapsing [10, 39].
We observed that models trained with Adam [30] are less
prone to mode collapse than pure SGD. We hypothesize
that Adam reduces the risk of mode collapse because
it follows the dynamics of a Heavy Ball with Friction
(HBF) (see below). The HBF dynamics stem from the
averages over past gradients. This averaging corresponds
to a velocity that makes the generator resistant to getting
pushed into small regions. Adam as an HBF method
typically overshoots small local minima that correspond to
model collapse and can find flat minima which generalize
well [25]. Figure 2 depicts the dynamics of HBF, where

Figure 2: Heavy Ball with Friction, where the
ball with mass overshoots the local minimum
θ+ and settles at the flat minimum θ∗.

the ball settles at a flat minimum. Next, we analyze whether GANs trained with TTUR converge
when using Adam. For more details see Appendix Section A3.

We recapitulate the Adam update rule at step n, with learning rate a, exponential averaging factors β1

for the first and β2 for the second moment of the gradient∇f(θn−1):

gn ←− ∇f(θn−1) (4)
mn ←− (β1/(1− βn1))mn−1 + ((1− β1)/(1− βn1)) gn
vn ←− (β2/(1− βn2)) vn−1 + ((1− β2)/(1− βn2)) gn � gn
θn ←− θn−1 − amn/(

√
vn + ε) ,

where following operations are meant componentwise: the product �, the square root √., and the
division / in the last line.

4

Instead of learning rate a, we introduce the damping coefficient a(n) with a(n) = an−τ for
τ ∈ (0, 1]. Adam has parameters β1 for averaging the gradient and β2 for averaging the squared
gradient. These parameters can be considered as defining a memory for Adam. To characterize β1

and β2 in the following, we define the exponential memory r(n) = r and the polynomial memory
r(n) = r/

∑n
l=1 a(l) for some positive constant r. The next theorem describes Adam by a differential

equation, which in turn allows to apply the idea of (T, δ) perturbed ODEs to TTUR. Consequently,
learning GANs with TTUR and Adam converges.

Theorem 2. If Adam is used with β1 = 1− a(n+ 1)r(n), β2 = 1− αa(n+ 1)r(n) and with ∇f
as the full gradient of the lower bounded, continuously differentiable objective f , then for stationary
second moments of the gradient, Adam follows the differential equation for Heavy Ball with Friction
(HBF):

θ̈t + a(t) θ̇t + ∇f(θt) = 0 . (5)

Adam converges for gradients∇f that are L-Lipschitz.

Proof. Gadat et al. derived a discrete and stochastic version of Polyak’s Heavy Ball method [44], the
Heavy Ball with Friction (HBF) [16]:

θn+1 = θn − a(n+ 1)mn , (6)

mn+1 =
(
1 − a(n+ 1) r(n)

)
mn + a(n+ 1) r(n)

(
∇f(θn) + Mn+1

)
.

These update rules are the first moment update rules of Adam [30]. The HBF can be formulated
as the differential equation Eq. (5) [16]. Gadat et al. showed that the update rules Eq. (6) converge
for loss functions f with at most quadratic grow and stated that convergence can be proofed for ∇f
that are L-Lipschitz [16]. Convergence has been proved for continuously differentiable f that is
quasiconvex (Theorem 3 in Goudou & Munier [20]). Convergence has been proved for∇f that is
L-Lipschitz and bounded from below (Theorem 3.1 in Attouch et al. [3]).

Adam normalizes the averagemn by the second moments vn of of the gradient gn: vn = E [gn � gn].
mn is componentwise divided by the square root of the components of vn. We assume that the
second moments of gn are stationary, i.e., v = E [gn � gn]. In this case the normalization can be
considered as additional noise since the normalization factor randomly deviates from its mean. In the
HBF interpretation the normalization by

√
v corresponds to introducing gravitation. We obtain

vn =
1 − β2

1 − βn2

n∑
l=1

βn−l2 gl � gl , ∆vn = vn − v =
1 − β2

1 − βn2

n∑
l=1

βn−l2 (gl � gl − v) .

(7)

For a stationary second moment v and β2 = 1−αa(n+ 1)r(n), we have ∆vn ∝ a(n+ 1)r(n). We
use a componentwise linear approximation to Adam’s second moment normalization 1/

√
v + ∆vn ≈

1/
√
v − (1/(2v �

√
v)) � ∆vn + O(∆2vn), where all operations are meant componentwise. If

we set M (v)
n+1 = −(mn � ∆vn)/(2v �

√
va(n + 1)r(n)), then mn/

√
vn ≈ mn/

√
v + a(n +

1)r(n)M
(v)
n+1 and E

[
M

(v)
n+1

]
= 0, since E [gl � gl − v] = 0. For a stationary second moment v,

the random variable {M (v)
n } is a martingale difference sequence with a bounded second moment.

Therefore {M (v)
n+1} can be subsumed into {Mn+1} in update rules Eq. (6). The factor 1/

√
v can

be componentwise incorporated into the gradient g which corresponds to rescaling the parameters
without changing the minimum.

According to Attouch et al. [3] the energy, that is, a Lyapunov function, isE(t) = 1/2|θ̇(t)|2+f(θ(t))

and Ė(t) = −a |θ̇(t)|2 < 0. Since Adam can be expressed as differential equation and has a
Lyapunov function, the idea of (T, δ) perturbed ODEs [7, 23, 8] carries over to Adam. Therefore
the convergence of Adam with TTUR can be proved via two time-scale stochastic approximation
analysis like in Borkar [7] for stationary second moments of the gradient.

5

Experiments

Performance Measure

Before presenting the experiments, we introduce a quality measure for models learned by GANs.
The objective of generative learning is that the model produces data which matches the observed
data. Therefore, each distance between the probability of observing real world data pw(.) and the
probability of generating model data p(.) can serve as performance measure for generative models.
However, defining appropriate performance measures for generative models is difficult [50]. The
best known measure is the likelihood, which can be estimated by annealed importance sampling
[52]. However, the likelihood heavily depends on the noise assumptions for the real data and can be
dominated by single samples [50]. Other approaches like density estimates have drawbacks as well
[50].

A well-performing approach to measure the performance of GANs is the “Inception Score” which
correlates with human judgment [48]. Generated samples are fed into a Inception model that was
trained on ImageNet. Images with meaningful objects are supposed to have low label (output) entropy,
that is, they belong to few object classes. On the other hand, the entropy across images should be
high, that is, the variance over the images should be large. A drawback of the Inception Score is that
the statistics of real world samples are not used and compared to the statistics of synthetic samples.
Therefore, we improve the Inception Score. The equality p(.) = pw(.) holds except for a non-
measurable set if and only if

∫
p(.)f(x)dx =

∫
pw(.)f(x)dx for a basis f(.) spanning the function

space in which p(.) and pw(.) live. These equalities of expectations are used to describe distributions
by moments or cumulants, where f(x) are polynoms of the data x. We generalize these polynoms
by replacing x by the coding layer of an Inception model in order to obtain vision-relevant features.
For practical reasons we only consider the first two polynoms, that is, the first two moments: mean
and covariance. The Gaussian is the maximum entropy distribution for given mean and covariance,
therefore we assume the coding units to follow a multidimensional Gaussian. The difference of two
Gaussians (synthetic and real-world images) is measured by the Fréchet distance [15] also known as
Wasserstein-2 distance [51]. We call the Fréchet distance d(., .) between the Gaussian with mean
and covariance (m,C) obtained from p(.) and the Gaussian (mw,Cw) obtained from pw(.) the
“Fréchet Inception Distance” (FID), which is given by [14]:

d2((m,C), (mw,Cw)) = ‖m−mw‖22 + Tr
(
C +Cw − 2

(
CCw

)1/2)
. (8)

Next we show that the FID is consistent with human judgment and increasing disturbances. Figure 3
displays the evaluation of the FID for Gaussian noise, Gaussian blur, implanted black rectangles,
swirled images, salt and pepper noise, and CelebA dataset contaminated by ImageNet images. The
FID captures the disturbance level well. Therefore, we used the FID to evaluate the performance
of GANs in the experiments. For more details and a comparison between FID and Inception Score
see Appendix Section A1, where we show that FID is more consistent with the noise level than the
Inception Score.

6

0 1 2 3
disturbance level

0

50

100

150

200

250

300

350

400

FI
D

0 1 2 3
disturbance level

0

50

100

150

200

250

300

350

400

FI
D

0 1 2 3
disturbance level

0

50

100

150

200

250

300

350

400

FI
D

0 1 2 3
disturbance level

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
FI

D

0 1 2 3
disturbance level

0

100

200

300

400

500

600

FI
D

0 1 2 3
disturbance level

0

50

100

150

200

250

300

FI
D

Figure 3: FID is evaluated for Gaussian noise (upper left), Gaussian blur (upper right), implanted
black rectangles (middle left), swirled images (middle right), salt and pepper noise (lower left), and
CelebA dataset contaminated by ImageNet images (lower right). Left is the smallest disturbance
level of zero, which increases to the highest level at right. The FID captures the disturbance level
very well by monotonically increasing.

7

Model Selection and Evaluation

We have selected Adam stochastic optimization to reduce the risk of mode collapsing. The advantage
of Adam has been confirmed by MNIST experiments, where Adam indeed considerably reduced
the cases for which we observed mode collapsing. Although TTUR ensures that the discriminator
converges during learning, practicable learning rates must be found for each experiment. We face a
trade-off since the learning rates should be small enough (e.g. for the generator) to ensure convergence
but at the same time should be large enough to allow fast learning. For each of the experiments, the
learning rates have been optimized to be large while still ensuring stable training which is indicated
by a decreasing FID or Jensen-Shannon-divergence. We further fixed the time point for stopping
training to the update step when the FID or Jensen-Shannon-divergence of the best models was no
longer decreasing. For some models, we observed that the FID diverges or starts to increase at a
certain time point. An example of this behaviour is shown in Figure 4.

50 100 150 200 250 300 350
mini-batch x 1k

32

34

36

38

40

42

44

46

FI
D

orig 1e-5
orig 8e-6
TTUR 1e-5 8e-6

Figure 4: The FID for BEGAN on CelebA along training time given as 1k mini-batch updates. The
FID of the GANs diverges at different time points, where TTUR training diverges later than the
original GANs. TTUR has lower variance of its FID compared to the original training method, which
indicates more stable learning.

The performance of generative models is evaluated via the Fréchet Inception Distance (FID) intro-
duced above. For the Billon Word experiment, the normalized Jensen-Shannon-divergence served as
performance measure.

For computing the FID, we propagated 100,000 random images from the CelebA or LSUN bedroom
dataset through the pretrained Inception-v3 model (for the pretrained Inception model see Section A6).
Following the computation of the Inception Score [48], we use the pool_3:0 tensor as coding layer.
For this coding layer, we calculated the mean mw and the covariance matrix Cw for the 100,000
images. Thus, we approximate the first and second central moment of the function given by the
Inception coding layer under the real world distribution. To approximate these moments also for
the model distribution, we generate 5,000 images from the model, propagate them through the
Inception-v3 model, and compute meanm and the covariance matrix C for these 5,000 images. For
computational efficiency, we only evaluate the FID every 5,000 mini-batch updates.

For more details, used implementations and further results Appendix Section A4.

Results

CelebA. The Large-scale CelebFaces Attributes (CelebA) dataset [37] has been used to evaluate
GANs [24]. We used images that were center cropped to 64×64 pixels. We trained Boundary
Equilibrium GANs (BEGAN) [4] with their original training procedure and with TTUR. Figure 5
(left panel) shows training performance across mini-batch updates. We report the average FID and

8

standard deviation for 8 runs for TTUR and the training procedure every 5,000 mini-batches. Figure 5
(right panel) shows the FID at the end of the training. TTUR outperformed the original training
starting from mini-batch update around 100k. The best FIDs that could be obtained with the original
BEGANs and TTUR trained BEGANs are 28.55 and 26.19, respectively (see Table 1). Examples of
CelebA images generated by BEGAN trained with the original procedure and TTUR are given in
Figure 6 for a FID around 48 and in Figure 7 for a FID of 26.

0 25 50 75 100 125 150 175 200
mini-batch x 1k

50

100

150

200

250

300

350

400

FI
D

orig 5e-5
TTUR 6e-5 4e-5

100 120 140 160 180 200
mini-batch x 1k

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

FI
D

orig 5e-5
TTUR 6e-5 4e-5

Figure 5: FID for BEGAN trained on CelebA. The learning rate a for the original training method is
given as “orig a”. TTUR learning rates are given as pairs (b, a) of discriminator learning rate b and
generator learning rate a: “TTUR b a”. The shaded region indicates the standard deviation for 8 runs
for each experiment. Left: Training curves for the whole training from 0 to 200k updates. Right:
Training curves zoomed in on the region from 100k to 200k updates. At the end of the learning
process, BEGAN trained with TTUR exhibit an improved FID.

Table 1: The performance of BEGAN trained with the original procedure and with TTUR on CelebA.
We compare the networks performance with respect to the FID at the optimal number of updates
during training. BEGAN trained with TTUR exhibit a better FID.

method learning rates updates FID

BEGAN TTUR 6e-5, 4e-5 175,000 26.19
BEGAN orig 5e-5 170,000 28.55

Figure 6: Examples of CelebA images generated by BEGANs with a FID around 48 trained with the
original training method (top two rows) and TTUR (lower two rows).

In the next experiment, we test TTUR for the deep convolutional GAN (DCGAN) [46] at the CelebA
dataset. Figure 8 shows the FID during learning DCGAN with the original learning method and
with TTUR, each averaged over five runs and surrounded with one standard deviation. The original

9

Figure 7: Examples of CelebA images generated by BEGANs with a FID of 28 trained with the
original training method (top two rows) and FID 26 with TTUR (lower two rows).

training method is faster at the beginning, but TTUR finally achieves better performance. Figure 8
(right panel) zooms in at the region of 10k to 50k mini-batch updates of Figure 8 (left panel) to
show the difference between TTUR and original learning of DCGANs. Overall, DCGAN achieves
a lower FID than BEGAN, which we attribute to higher variety of the generated images. DCGAN
trained TTUR reaches a lower FID than the original method. The best FIDs that could be obtained
with original DCGANs and TTUR trained DCGANs over all runs are 20.09 and 17.88, respectively
(see Table 2). Note, that in this case the learning rate of the generator is larger then that of the
discriminator. This is not contradictory to the theory, for more details see A5. Examples of CelebA
images generated by DCGAN trained with the original procedure and TTUR are given in Figure 9.

0 10 20 30 40 50
mini-batch x 1k

0

100

200

300

400

FI
D

orig 5e-4
TTUR 1e-4 5e-4

10 15 20 25 30 35 40 45 50
mini-batch x 1k

20

25

30

35

40

FI
D

orig 5e-4
TTUR 1e-4 5e-4

Figure 8: FID for DCGAN trained on CelebA. TTUR learning rates are given as pairs (b, a) of
discriminator learning rate b and generator learning rate a: “TTUR b a”. Left: Training curves for
the whole training from 0 to 50k updates. Right: Training curves zoomed in on the region from 10k
to 50k updates. While the original training procedure is faster at the beginning, training with TTUR
leads to a better FID.

Table 2: The performance of DCGAN trained with the original procedure and with TTUR on CelebA.
We compare the networks performance with respect to the FID at the optimal number of updates
during training. DCGAN trained with TTUR exhibit a lower FID.

method learning rates updates FID

DCGAN TTUR 1e-4, 1e-3 45,000 17.88
DCGAN orig 5e-4 49,000 20.09

10

Figure 9: CelebA samples generated by DCGANs with TTUR (left) and original procedure (right)
respectively.

One Billion Word. The One Billion Word Benchmark [11] serves to compare TTUR to other GAN
training methods. We used the Improved WGAN model [22]. The character-level generative language
model is a 1D convolutional neural network (CNN) which maps a latent vector into a sequence of one-
hot character vectors of dimension 32 given by the maximum of a softmax output. The discriminator
is also a 1D CNN applied to sequences of one-hot vectors of 32 characters. Since the FID criterium
only works for images, we measured the performance by the Jensen-Shannon-divergence (JSD)
between the model and the real world distribution as has been done previously [22]. In contrast to the
original code in which the critic is trained 10 times for each generator update, TTUR updates the
discriminator only once, therefore we align the training progress with wall-clock time. The learning
rate for the original training was optimized to be large but leads to stable learning. TTUR can use a
higher learning rate for the discriminator since TTUR stabilizes learning. We report the normalized
mean JSD for 10 runs for original training and TTUR training in Figure 10 for 4-gram and 6-gram
word evaluation. TTUR outperforms the standard training procedure for both evaluation measures.
The improvement of TTUR on the 6-gram statistics over original training shows that TTUR enables
to learn to generate more subtle pseudo-words which better resembles real words. The best JSD that
could be obtained with original and TTUR trained Improved WGANs over all runs for the 4-gram
evaluation are 0.374 and 0.351, respectively and 0.756 and 0.736 for the 6-gram evaluation (see
Table 3). Training Improved WGANs with TTUR improved their performance with respect to both
4-gram and 6-gram JSD. In Table 4 we show randomly chosen samples from models trained with
original method and TTUR.

200 400 600 800 1000 1200 1400
minutes

0.38

0.40

0.42

0.44

0.46

0.48

JS
D

orig 1e-4
TTUR 3e-4 1e-4

200 400 600 800 1000 1200 1400
minutes

0.78

0.80

0.82

0.84

0.86

JS
D

orig 1e-4
TTUR 3e-4 1e-4

Figure 10: Performance of improved WGAN models trained with the original (orig) and our TTUR
method on the Billion Word benchmark. The performance is measured by the normalized Jensen-
Shannon-divergence based on 4-grams (left) and 6-grams (right) and averaged over 10 runs. TTUR
learning clearly improved the original learning which is more prominent at 6-gram than at 4-gram.

11

Table 3: Performance of Improved WGAN trained with the original procedure and with TTUR on the
One Billion Word Benchmark. We compare the networks performance with respect to JSD score at
the optimal number of updates during training. Improved WGAN trained with TTUR exhibit a better
FID.

4-gram 6-gram
method learning rates wall-clock JSD learning rates wall-clock JSD

minutes minutes

Improved WGAN TTUR 3e-4, 1e-4 1300 0.351 3e-4, 1e-4 1400 0.736
Improved WGAN orig 1e-4 1380 0.374 1e-4 1400 0.756

Table 4: Samples of Billion Word data generated by improved WGAN trained with TTUR (left) the
original method (right).

Dry Hall Sitning tven the concer
There are court phinchs hasffort
He scores a supponied foutver il
Bartfol reportings ane the depor
Seu hid , it ’s watter ’s remold
Later fasted the store the inste
Indiwezal deducated belenseous K
Starfers on Rbama ’s all is lead
Inverdick oper , caldawho ’s non
She said , five by theically rec
RichI , Learly said remain .‘‘‘‘
Reforded live for they were like
The plane was git finally fuels
The skip lifely will neek by the
SEW McHardy Berfect was luadingu
But I pol rated Franclezt is the

No say that tent Franstal at Bra
Caulh Paphionars tven got corfle
Resumaly , braaky facting he at
On toipe also houd , aid of sole
When Barrysels commono toprel to
The Moster suprr tent Elay diccu
The new vebators are demases to
Many ’s lore wockerssaow 2 2) A
Andly , has le wordd Uold steali
But be the firmoters is no 200 s
Jermueciored a noval wan ’t mar
Onles that his boud-park , the g
ISLUN , The crather wilh a them
Fow 22o2 surgeedeto , theirestra
Make Sebages of intarmamates , a
Gullla " has cautaria Thoug ly t

12

LSUN Bedrooms. We compare TTUR to the original GAN training for BEGANs [4] on the
bedrooms category of the large scale image database (LSUN) [53]. Figure 11 shows the training
curves of BEGAN trained with the original procedure and with TTUR and original runs. BEGAN
trained with TTUR show a lower FID from around 40k mini-batch updates and maintains a better
performance until the end of the training. However, the best FID that could be obtained with original
BEGANs and TTUR trained BEGANs over all runs are similar with 112.8 and 112.0, respectively
(see Table 5). Figure 12 shows examples of samples of BEGAN trained with the original method and
with TTUR.

0 20 40 60 80 100 120 140
mini-batch x 1k

100

150

200

250

300

350

400

450

FI
D

orig 2e-5
TTUR 3e-5 1e-5

20 40 60 80 100 120 140
mini-batch x 1k

120

140

160

180

200

220

240

260

FI
D

orig 2e-5
TTUR 3e-5 1e-5

Figure 11: FID of BEGANs on the LSUN bedroom dataset trained with the original method (orig) and
TTUR. TTUR learning rates are given as pairs (b, a) of discriminator learning rate b and generator
learning rate a: “TTUR b a”. The curves are averages over 3 runs, the shaded region indicates the
standard deviation. Left: Training curves for the whole training from 0 to 140k updates. Right:
Training curves zoomed in on the region from 20k to 140k updates.

Table 5: The performance of BEGAN trained with the original procedure and with TTUR on LSUN.
We compare the networks performance with respect to the FID at the optimal number of updates
during training. BEGAN trained with TTUR exhibit a similar FID as with the original training.

method learning rates updates FID

BEGAN TTUR 3e-5, 1e-5 85,000 112.0
BEGAN orig 2e-5 96,000 112.8

Figure 12: LSUN bedroom samples generated by BEGANs trained with the original method (left)
and the TTUR method (right).

13

We compare TTUR to the original GAN training procedure for DCGANs at the LSUN dataset.
Figure 13 shows the training curves of DCGAN with the original learning method and with TTUR.
The original training method improves the FID faster at the beginning, but TTUR finally achieves
better performance. The right plot in Figure 13 zooms in at the region of 10k to 50k mini-batch
updates of Figure 13 to show the difference between TTUR and original learning of DCGANs.
DCGAN achieves a lower FID than BEGAN, therefore gives better results, which we attribute to
higher variety of the generated images. DCGAN trained with TTUR reaches a lower FID than the
original method. The best FIDs that could be obtained with original DCGANs and TTUR trained
DCGANs are 69.7 and 68.3, respectively (see Table 6). Similar to TTUR DCGAN training on
CelebA, the learning rate of the generator is larger than that of the discriminator. To see that this
is not contradictory to the theory, we again refer to A5. Figure 14 shows examples of samples of
DCGAN trained with the original method and with TTUR.

0 50 100 150 200
mini-batch x 1k

100

150

200

250

300

350

400

FI
D

orig 5e-4
TTUR 1e-4 5e-4

25 50 75 100 125 150 175 200
mini-batch x 1k

75

80

85

90

95

100

105

FI
D

orig 5e-4
TTUR 1e-4 5e-4

Figure 13: FID of DCGANs on the LSUN bedroom dataset trained with the original method (orig)
and TTUR. TTUR learning rates are given as pairs (b, a) of discriminator learning rate b and generator
learning rate a: “TTUR b a”. The curves are averages over 5 runs. Left: Training curves for the
whole training from 0 to 200k updates. Right: Training curves zoomed in on the region from 25k to
200k updates. Again, TTUR leads to lower FID and improved over the original learning method.

Table 6: The performance of DCGAN trained with the original procedure and with TTUR on LSUN.
We compare the networks performance with respect to the FID at the optimal number of updates
during training. DCGAN trained with TTUR exhibit a better FID.

method learning rates updates FID

DCGAN TTUR 1e-4, 5e-4 150,000 68.3
DCGAN orig 5e-4 130,000 69.7

Figure 14: LSUN bedroom samples generated by DCGANs trained with the original method (left)
and the TTUR method (right).

14

Conclusion

For learning GANs, we have introduced the two time-scale update rule (TTUR) which we have proved
to converge to a stationary Nash equilibrium. We then described Adam stochastic optimization as a
heavy ball with friction (HBF) dynamics, which shows that Adam converges and that Adam tends to
find flat minima while missing small local minima. A second order differential equation describes
the learning dynamics of Adam as a HBF system. Via this differential equation, the convergence of
GANs trained with TTUR to a stationary Nash equilibrium can be extended to Adam. In experiments,
we have compared GANs trained with TTUR to conventional GAN training on CelebA, the One
Billion Word Benchmark, and the LSUN bedroom category. TTUR outperforms conventional GAN
training with respect to performance.

References

The references are provided in Section A7.

Acknowledgment

This work was supported by NVIDIA Corporation, Zalando SE with Research Agreement 01/2016,
Audi.JKU Deep Learning Center, Audi Electronic Venture GmbH, IWT research grant IWT150865
(Exaptation), H2020 project grant 671555 (ExCAPE) and FWF grant P 28660-N31.

Appendix

Contents

A1 Fréchet Inception Distance (FID) 16

A2 Two-Time Scale Stochastic Approximation Algorithms 30

A2.1 Convergence of Two-Time Scale Stochastic Approximation Algorithms 31

A2.1.1 Additive Noise . 31

A2.1.2 Linear Update, Additive Noise, and Markov Chain 33

A2.1.3 Additive Noise and Controlled Markov Processes 35

A2.2 Rate of Convergence of Two-Time Scale Stochastic Approximation Algorithms . . 38

A2.2.1 Linear Update Rules . 38

A2.2.2 Nonlinear Update Rules . 40

A2.3 Equal Time Scale Stochastic Approximation Algorithms 42

A2.3.1 Equal Time Scale for Saddle Point Iterates 42

A2.3.2 Equal Time Step for Actor-Critic Method 43

A3 ADAM Optimization as Stochastic Heavy Ball with Friction 45

A4 Experiments: Additional Details and Results 47

A4.1 CelebA . 47

A4.1.1 BEGAN . 47

15

A4.1.2 DCGAN . 49

A4.2 One Billion Word . 50

A4.3 LSUN Bedrooms . 51

A4.3.1 BEGAN . 51

A4.3.2 DCGAN . 52

A4.4 Fixed k BEGAN at CelebA . 53

A5 Discriminator vs. Generator Learning Rate 54

A6 Used Software, Datasets, and Pretrained Models 55

A7 References 55

List of figures 58

List of tables 59

A1 Fréchet Inception Distance (FID)

We improve the Inception score for comparing the results of GANs [48]. The Inception score has
the disadvantage that it does not use the statistics of real world samples and compared them to the
statistics of synthetic samples. Let p(.) be the distribution of model samples and pw(.) the distribution
of the samples from real world. The equality p(.) = pw(.) holds except for a non-measurable set if
and only if

∫
p(.)f(x)dx =

∫
pw(.)f(x)dx for a basis f(.) spanning the function space in which

p(.) and pw(.) live. These equalities of expectations are used to describe distributions by moments
or cumulants, where f(x) are polynoms of the data x. We replacing x by the coding layer of an
Inception model in order to obtain vision-relevant features and consider polynoms of the coding
unit functions. For practical reasons we only consider the first two polynoms, that is, the first two
moments: mean and covariance. The Gaussian is the maximum entropy distribution for given mean
and covariance, therefore we assume the coding units to follow a multidimensional Gaussian. The
difference of two Gaussians is measured by the Fréchet distance [15] also known as Wasserstein-2
distance [51]. The Fréchet distance d(., .) between the Gaussian with mean and covariance (m,C)
obtained from p(.) and the Gaussian (mw,Cw) obtained from pw(.) is called the “Fréchet Inception
Distance” (FID), which is given by [14]:

d2((m,C), (mw,Cw)) = ‖m−mw‖22 + Tr
(
C +Cw − 2

(
CCw

)1/2)
. (9)

Next we show that the FID is consistent with increasing disturbances and human judgment on the
CelebA dataset. We computed the (mw,Cw) on 100,000 randomly chosen CelebA images, while for
computing (m,C) we used 5,000 randomly selected samples. We considered following disturbances
of the imageX:

1. Gaussian noise: We constructed a matrix N with Gaussian noise scaled to [0, 255]. The
noisy image is computed as (1− α)X + αN for α ∈ {0, 0.25, 0.5, 0.75}. The larger α is,
the larger is the noise added to the image, the larger is the disturbance of the image.

2. Gaussian blur: The image is convolved with a Gaussian kernel with standard deviation
α ∈ {0, 1, 2, 4}. The larger α is, the larger is the disturbance of the image, that is, the more
the image is smoothed.

3. Black rectangles: To an image five black rectangles are are added at randomly chosen
locations. The rectangles cover parts of the image. The size of the rectangles is αimagesize
with α ∈ {0, 0.25, 0.5, 0.75}. The larger α is, the larger is the disturbance of the image, that
is, the more of the image is covered by black rectangles.

16

4. Swirl: Parts of the image are transformed as a spiral, that is, as a swirl (whirlpool effect).
Consider the coordinate (x, y) in the noisy (swirled) image for which we want to find the
color. Toward this end we need the reverse mapping for the swirl transformation which
gives the location which is mapped to (x, y). We first compute polar coordinates relative
to a center (x0, y0) given by the angle θ = arctan((y − y0)/(x − x0)) and the radius
r =

√
(x− x0)2 + (y − y0)2. We transform them according to θ′ = θ + αe−5r/(ln 2ρ).

Here α is a parameter for the amount of swirl and ρ indicates the swirl extent in pixels. The
original coordinates, where the color for (x, y) can be found, are xorg = x0 + r cos(θ′)
and yorg = y0 + r sin(θ′). We set (x0, y0) to the center of the image and ρ = 25. The
disturbance level is given by the amount of swirl α ∈ {0, 1, 2, 4}. The larger α is, the larger
is the disturbance of the image via the amount of swirl.

5. Salt and pepper noise: Some pixels of the image are set to black or white, where black is
chosen with 50% probability (same for white). Pixels are randomly chosen for being flipped
to white or black, where the ratio of pixel flipped to white or black is given by the noise
level α ∈ {0, 0.1, 0.2, 0.3}. The larger α is, the larger is the noise added to the image via
flipping pixels to white or black, the larger is the disturbance level.

6. ImageNet contamination: From each of the 1,000 ImageNet classes, 5 images are randomly
chosen, which gives 5,000 ImageNet images. The images are ensured to be RGB and to
have a minimal size of 256x256. A percentage of α ∈ {0, 0.25, 0.5, 0.75} of the CelebA
images has been replaced by ImageNet images. α = 0 means all images are from CelebA,
α = 0.25 means that 75% of the images are from CelebA and 25% from ImageNet etc.
The larger α is, the larger is the disturbance of the CelebA dataset by contaminating it by
ImageNet images. The larger the disturbance level is, the more the dataset deviates from the
reference real world dataset.

We compare the Inception Score [48] with the FID. The Inception Score with m samples and K
classes is

exp
(1

m

m∑
i=1

K∑
k=1

p(yk |Xi) log
p(yk |Xi)

p(yk)

)
. (10)

The FID is a distance, while the Inception Score is a score. To compare FID and Inception Score,
we transform the Inception Score to a distance, which we call “Inception Distance” (IND). This
transformation to a distance is possible since the Inception Score has a maximal value. For zero
probability p(yk | Xi) = 0, we set the value p(yk | Xi) log p(yk|Xi)

p(yk) = 0. We can bound the
log-term by

log
p(yk |Xi)

p(yk)
6 log

1

1/m
= logm . (11)

Using this bound, we obtain an upper bound on the Inception Score:

exp
(1

m

m∑
i=1

K∑
k=1

p(yk |Xi) log
p(yk |Xi)

p(yk)

)
(12)

6 exp
(

logm
1

m

m∑
i=1

K∑
k=1

p(yk |Xi)
)

(13)

= exp
(

logm
1

m

m∑
i=1

1
)

= m . (14)

The upper bound is tight and achieved if m 6 K and every sample is from a different class and
the sample is classified correctly with probability 1. The IND is computed “IND = m - Inception
Score”, therefore the IND is zero for a perfect subset of the ImageNet with m < K samples, where
each sample stems from a different class. Therefore both distances should increase with increasing
disturbance level. In the following we present the evaluation for each kind of disturbance. The larger
the disturbance level is, the larger the FID and IND should be. We consider following disturbances:

1. Gaussian noise: Figure A15 shows the FID and the IND for Gaussian noise with different
disturbance levels.

17

0 1 2 3
disturbance level

0

50

100

150

200

250

300

350

400

FI
D

0 1 2 3
disturbance level

0

1

2

3

4

5

IN
D

Figure A15: For Gaussian noise the FID (left) and the IND (right) are given for different disturbance
levels. The disturbance level increases from zero (left) to maximal value (right), thus a good quality
measure should increase from left to right.

2. Gaussian blur: Figure A16 shows the FID and the Id for Gaussian blur with different
disturbance levels.

0 1 2 3
disturbance level

0

50

100

150

200

250

300

350

400

FI
D

0 1 2 3
disturbance level

0.0

0.2

0.4

0.6

0.8

1.0

IN
D

Figure A16: For Gaussian blur the FID (left) and the IND (right) are given for different disturbance
levels. The disturbance level increases from zero (left) to maximal value (right), thus a good quality
measure should increase from left to right.

3. Black rectangles: Figure A17 shows the FID and the IND for implanted rectangles with
different disturbance levels.

18

0 1 2 3
disturbance level

0

50

100

150

200

250

300

350

400

FI
D

0 1 2 3
disturbance level

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

IN
D

Figure A17: For implanted black rectangles the FID (left) and the IND (right) are given for different
disturbance levels. The disturbance level increases from zero (left) to maximal value (right), thus a
good quality measure should increase from left to right.

4. Swirl: Figure A18 shows the FID and the IND for swirls with different disturbance levels.

0 1 2 3
disturbance level

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

FI
D

0 1 2 3
disturbance level

0.0

0.2

0.4

0.6

0.8

1.0
IN

D

Figure A18: For swirls the FID (left) and the IND (right) are given for different disturbance levels.
The disturbance level increases from zero (left) to maximal value (right), thus a good quality measure
should increase from left to right.

5. Salt and pepper noise: Figure A19 shows the FID and the IND for salt and pepper noise
with different disturbance levels.

0 1 2 3
disturbance level

0

100

200

300

400

500

600

FI
D

0 1 2 3
disturbance level

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

IN
D

Figure A19: For salt and pepper noise the FID (left) and the IND (right) are given for different
disturbance levels. The disturbance level increases from zero (left) to maximal value (right), thus a
good quality measure should increase from left to right.

19

6. ImageNet contamination: Figure A20 shows the FID and the IND for ImageNet contami-
nations with different contamination / disturbance levels.

0 1 2 3
disturbance level

0

50

100

150

200

250

300

FI
D

0 1 2 3
disturbance level

0

10

20

30

40

50

60

IN
D

Figure A20: For ImageNet contamination the FID (left) and the IND (right) are given for different
disturbance levels. The disturbance level increases from zero (left) to maximal value (right), thus a
good quality measure should increase from left to right.

The following Table A7 reports the FID and the IND for different disturbances at different levels.
The FID is consistent with the disturbance level while the IND is not always consistent with the
disturbance level. The FID is clearly a better evaluation criteria than the Inception Score.

noise measure none weak medium strong
Gaussian FID 2.0 40.2 82.3 234
Gaussian IND 2.2 2.08 2.22 2.38
Gaussian blur FID 2.0 16.7 77.8 233
Gaussian blur INC 2.2 2.15 2.01 2.19
Black rectangles FID 2.0 124 179 250
Black rectangles IND 2.2 2.26 2.48 2.37
Swirl FID 2.0 2.8 4.0 8.5
Swirl IND 2.2 2.24 2.20 2.16
Salt and pepper FID 2.0 369 382 380
Salt and pepper IND 2.2 3.00 2.19 1.91
ImageNet FID 2.0 37.5 87.9 149
ImageNet IND 2.2 6.14 15.2 34.0

Table A7: The FID and IND are given for different disturbances at different levels (none, weak,
medium, strong). The larger the disturbance level is, the larger the FID and IND should be. The FID
is consistent with the disturbance level while the IND is not always consistent with the disturbance
level. The FID is clearly a better evaluation criteria than the Inception Score.

To show how the FID and the visual impression is related we show generated samples from the
CelebA dataset during training with BEGAN and samples from LSUN bedroom during training with
DCGAN. Both implementations maintain fixed noise vectors before the training starts and used them
for generating samples from the generator afterwards, therefore it’s possible to see how the generators
vary their output given the fixed inputs while learning from the discriminator. For details about
DCGAN and BEGAN references, architectures and training see A4.1.2 and A4.1.1 in the experiment
section.

20

Figure A21: CelebA BEGAN mini-batch 0 FID 403.

Figure A22: CelebA BEGAN mini-batch 5000 FID 105.

Figure A23: CelebA BEGAN mini-batch 20000 FID 48.

Figure A24: CelebA BEGAN mini-batch 100000 FID 39.

21

Figure A25: CelebA BEGAN mini-batch 200000 FID 33.

Figure A26: CelebA DCGAN mini-batch 0, FID 453.

22

Figure A27: CelebA DCGAN mini-batch 5000, FID 111.

23

Figure A28: CelebA DCGAN mini-batch 15000, FID 29.

24

Figure A29: CelebA DCGAN mini-batch 45000, FID 18.

Figure A30: LSUN BEGAN mini-batch 0 FID 445.

25

Figure A31: LSUN BEGAN mini-batch 25000 FID 233.

Figure A32: LSUN BEGAN mini-batch 50000 FID 174.

Figure A33: LSUN BEGAN mini-batch 100000 FID 129.

Figure A34: LSUN BEGAN mini-batch 150000 FID 123.

26

Figure A35: LSUN Bedroom DCGAN mini-batch 0 FID 360.

27

Figure A36: LSUN Bedroom DCGAN mini-batch 10000 FID 200.

28

Figure A37: LSUN Bedroom DCGAN mini-batch 20000 FID 110.

29

Figure A38: LSUN Bedroom DCGAN mini-batch 110000 FID 69.

A2 Two-Time Scale Stochastic Approximation Algorithms

Stochastic approximation algorithms are iterative procedures to find a root or a stationary point
(minimum, maximum, saddle point) of a function when only noisy observations of its values or
its derivatives are provided. Two-time scale stochastic approximation algorithms are two coupled
iterations with different step sizes. For proving convergence of these interwoven iterates, it is assumed
that one step size leads to considerably smaller updates than the other. The slower iterate (typically
the one with smaller step size) is assumed to be slow enough to allow the fast iterate converge while
being perturbed by the the slower. The perturbations of the slow should be small enough to ensure
convergence of the faster.

The iterates map at time step n > 0 the fast variable wn ∈ Rk and the slow variable θn ∈ Rm to
their new values:

30

θn+1 = θn + a(n)
(
h
(
θn,wn,Z

(θ)
n

)
+ M (θ)

n

)
, (15)

wn+1 = wn + b(n)
(
g
(
θn,wn,Z

(w)
n

)
+ M (w)

n

)
. (16)

The iterates use

• h(.) ∈ Rm: mapping for the slow iterate Eq. (15),

• g(.) ∈ Rk: mapping for the fast iterate Eq. (16),
• a(n): step size for the slow iterate Eq. (15),
• b(n): step size for the fast iterate Eq. (16),

• M (θ)
n : additive random Markov process for the slow iterate Eq. (15),

• M (w)
n : additive random Markov process for the fast iterate Eq. (16),

• Z(θ)
n : random Markov process for the slow iterate Eq. (15),

• Z(w)
n : random Markov process for the fast iterate Eq. (16).

A2.1 Convergence of Two-Time Scale Stochastic Approximation Algorithms

A2.1.1 Additive Noise

The first result is from Borkar 1997 [7] which was generalized in Konda and Borkar 1999 [32].
Borkar considered the iterates:

θn+1 = θn + a(n)
(
h
(
θn,wn

)
+ M (θ)

n

)
, (17)

wn+1 = wn + b(n)
(
g
(
θn,wn

)
+ M (w)

n

)
. (18)

Assumptions. We make the following assumptions:

(A1) Assumptions on the update functions: The functions h : Rk+m 7→ Rm and g : Rk+m 7→ Rk
are Lipschitz.

(A2) Assumptions on the learning rates:∑
n

a(n) = ∞ ,
∑
n

a2(n) < ∞ , (19)∑
n

b(n) = ∞ ,
∑
n

b2(n) < ∞ , (20)

a(n) = o(b(n)) , (21)

(A3) Assumptions on the noise: For the increasing σ-field

Fn = σ(θl,wl,M
(θ)
l ,M

(w)
l , l 6 n), n > 0 ,

the sequences of random variables (M
(θ)
n ,Fn) and (M

(w)
n ,Fn) satisfy∑

n

a(n)M (θ)
n < ∞ a.s. (22)∑

n

b(n)M (w)
n < ∞ a.s. . (23)

(A4) Assumption on the existence of a solution of the fast iterate: For each θ ∈ Rm, the ODE

ẇ(t) = g
(
θ,w(t)

)
(24)

has a unique global asymptotically stable equilibrium λ(θ) such that λ : Rm 7→ Rk is
Lipschitz.

31

(A5) Assumption on the existence of a solution of the slow iterate: The ODE

θ̇(t) = h
(
θ(t),λ(θ(t))

)
(25)

has a unique global asymptotically stable equilibrium θ∗.
(A6) Assumption of bounded iterates:

sup
n
‖θn‖ < ∞ , (26)

sup
n
‖wn‖ < ∞ , (27)

which can be ensured by regularization like weight decay or by proper objectives that
saturate for large weights.

Convergence Theorem The next theorem is from Borkar 1997 [7].
Theorem 3 (Borkar). If the assumptions are satisfied, then the iterates Eq. (17) and Eq. (18) converge
to (θ∗,λ(θ∗)) a.s.

Comments

(C1) According to Lemma 2 in [5] Assumption (A3) is fulfilled if {M (θ)
n } is a martingale

difference sequence w.r.t Fn with

E
[
‖M (θ)

n ‖2 | F (θ)
n

]
6 B1

and {M (w)
n } is a martingale difference sequence w.r.t Fn with

E
[
‖M (w)

n ‖2 | F (w)
n

]
6 B2 ,

where B1 and B2 are positive deterministic constants.
(C2) Assumption (A3) holds for mini-batch learning which is the most frequent case of stochastic

gradient. The batch gradient is Gn := ∇θ(1
N

∑N
i=1 f(xi, θ)), 1 6 i 6 N and the mini-

batch gradient for batch size s is hn := ∇θ(1
s

∑s
i=1 f(xui , θ)), 1 6 ui 6 N , where the

indexes ui are randomly and uniformly chosen. For the noiseM (θ)
n := hn −Gn we have

E[M
(θ)
n] = E[hn]−Gn = Gn −Gn = 0. Since the indexes are chosen without knowing

past events, we have a martingale difference sequence. For bounded gradients we have
bounded ‖M (θ)

n ‖2.
(C3) The assumptions (A4) and (A5) of global attractors was relaxed to local attractors via

Assumption (A6)’ and Theorem 2.7 in Karmakar & Bhatnagar [28]. For local attractors see
also Karmakar, Bhatnagar & Ramaswamy 2016 [29].

(C4) The main result used in the proof of the theorem relies on work on perturbations of ODEs
according to Hirsch 1989 [23] (see also Appendix C of Bhatnagar, Prasad, & Prashanth
2013 [6]).

(C5) Konda and Borkar 1999 [32] generalized the convergence proof to distributed asynchronous
update rules.

(C6) Tadić relaxed the assumptions for showing convergence [49]. In particular the noise as-
sumptions (Assumptions A2 in [49]) do not have to be martingale difference sequences
and are more general than in [7]. In another result the assumption of bounded iterates is
not necessary if other assumptions are ensured [49]. Finally, Tadić considers the case of
non-additive noise [49]. Tadić does not provide proofs for his results. We were not able
to find such proofs even in other publications of Tadić.

(C7) Typically, Assumption (A6) of bounded iterates is hard to show, however the parameters can
be projected to a box which leads to a projected stochastic approximation. Theorem 5.3.1 on
page 191 of Kushner & Clark [35] states convergence for projected stochastic approximations
for a single iterate. See also Appendix E of Bhatnagar, Prasad, & Prashanth 2013 [6].

32

A2.1.2 Linear Update, Additive Noise, and Markov Chain

In contrast to previous subsection, we assume that an additional Markov chain influences the iterates
[31, 33]. The Markov chain allows applications in reinforcement learning, in particular in actor-critic
setting where the Markov chain is used to model the environment. The slow iterate is the actor update
while the fast iterate is the critic update. For reinforcement learning both the actor and the critic
observe the environment which is driven by the actor actions. The environment observations are
assumed to be a Markov chain. The Markov chain can include eligibility traces which are modeled as
explicit states in order to keep the Markov assumption.

The Markov chain is the sequence of observation of the environment which progresses via transition
probabilities. The transitions are not affected by the critic but by the actor.

Konda et al. considered the iterates [31, 33]:
θn+1 = θn + a(n)Hn , (28)

wn+1 = wn + b(n)
(
g
(
Z(w)
n ;θn

)
+ G

(
Z(w)
n ;θn

)
wn + M (w)

n wn

)
. (29)

Hn is a random process that drives the changes of θn. We assume thatHn is a slow enough process.
We have a linear update rule for the fast iterate using the vector function g(.) ∈ Rk and the matrix
functionG(.) ∈ Rk×k.

Assumptions. We make the following assumptions:

(A1) Assumptions on the Markov process, that is, the transition kernel: The stochastic process
Z

(w)
n takes values in a Polish (complete, separable, metric) space Z with the Borel σ-field

Fn = σ(θl,wl,Z
(w)
l ,Hl, l 6 n), n > 0 .

For every measurable set A ⊂ Z and the parametrized transition kernel P(.;θn) we have:

P(Z
(w)
n+1 ∈ A | Fn) = P(Z

(w)
n+1 ∈ A | Z(w)

n ;θn) = P(Z(w)
n , A;θn) . (30)

We define for every measurable function f

Pθf(z) :=

∫
P(z,dz̄;θn) f(z̄) .

(A2) Assumptions on the learning rates:∑
n

b(n) = ∞ ,
∑
n

b2(n) < ∞ , (31)

∑
n

(
a(n)

b(n)

)d
< ∞ , (32)

for some d > 0.
(A3) Assumptions on the noise: The sequence M (w)

n is a k × k-matrix valued Fn-martingale
difference with bounded moments:

E
[
M (w)

n | Fn
]

= 0 , (33)

sup
n

E

[∥∥∥M (w)
n

∥∥∥d] < ∞ , ∀d > 0 . (34)

We assume slowly changing θ, therefore the random processHn satisfies

sup
n

E
[
‖Hn‖d

]
< ∞ , ∀d > 0 . (35)

(A4) Assumption on the existence of a solution of the fast iterate: We assume the existence of a
solution to the Poisson equation for the fast iterate. For each θ ∈ Rm, there exist functions
ḡ(θ) ∈ Rk, Ḡ(θ) ∈ Rk×k, ĝ(z;θ) : Z→ Rk, and Ĝ(z;θ) : Z→ Rk×k that satisfy the
Poisson equations:

ĝ(z;θ) = g(z;θ) − ḡ(θ) + (Pθĝ(.;θ))(z) , (36)

Ĝ(z;θ) = G(z;θ) − Ḡ(θ) + (PθĜ(.;θ))(z) . (37)

33

(A5) Assumptions on the update functions and solutions to the Poisson equation:

(a) Boundedness of solutions: For some constant C and for all θ:

max{‖ḡ(θ)‖} 6 C , (38)

max{‖Ḡ(θ)‖} 6 C . (39)

(b) Boundedness in expectation: All moments are bounded. For any d > 0, there exists
Cd > 0 such that

sup
n

E

[∥∥∥ĝ(Z(w)
n ;θ)

∥∥∥d] 6 Cd , (40)

sup
n

E

[∥∥∥g(Z(w)
n ;θ)

∥∥∥d] 6 Cd , (41)

sup
n

E

[∥∥∥Ĝ(Z(w)
n ;θ)

∥∥∥d] 6 Cd , (42)

sup
n

E

[∥∥∥G(Z(w)
n ;θ)

∥∥∥d] 6 Cd . (43)

(c) Lipschitz continuity of solutions: For some constant C > 0 and for all θ,θ̄ ∈ Rm:∥∥ḡ(θ) − ḡ(θ̄)
∥∥ 6 C ‖θ − θ̄‖ , (44)∥∥Ḡ(θ) − Ḡ(θ̄)
∥∥ 6 C ‖θ − θ̄‖ . (45)

(d) Lipschitz continuity in expectation: There exists a positive measurable function C(.)
on Z such that

sup
n

E
[
C(Z(w)

n)d
]
< ∞ , ∀d > 0 . (46)

Function C(.) gives the Lipschitz constant for every z:∥∥(Pθĝ(.;θ))(z) − (Pθ̄ĝ(.; θ̄))(z)
∥∥ 6 C(z) ‖θ − θ̄‖ , (47)∥∥∥(PθĜ(.;θ))(z) − (Pθ̄Ĝ(.; θ̄))(z)
∥∥∥ 6 C(z) ‖θ − θ̄‖ . (48)

(e) Uniform positive definiteness: There exists some α > 0 such that for allw ∈ Rk and
θ ∈ Rm:

wT Ḡ(θ) w > α ‖w‖2 . (49)

Convergence Theorem. We report Theorem 3.2 (see also Theorem 7 in [33]) and Theorem 3.13
from [31]:
Theorem 4 (Konda & Tsitsiklis). If the assumptions are satisfied, then for the iterates Eq. (28) and
Eq. (29) holds:

lim
n→∞

∥∥Ḡ(θn) wn − ḡ(θn)
∥∥ = 0 a.s. , (50)

lim
n→∞

∥∥wn − Ḡ−1(θn) ḡ(θn)
∥∥ = 0 . (51)

Comments.

(C1) The proofs only use the boundedness of the moments of Hn [31, 33], therefore Hn may
depend on wn. In his PhD thesis [31], Vijaymohan Konda used this framework for the
actor-critic learning, whereHn drives the updates of the actor parameters θn. However the
actor updates are based on the current parameters wn of the critic.

(C2) The random process Z(w)
n can affectHn as long as boundedness is ensured.

(C3) Nonlinear update rule. g
(
Z

(w)
n ;θn

)
+ G

(
Z

(w)
n ;θn

)
wn can be viewed as a linear approxi-

mation of a nonlinear update rule. The nonlinear case has been considered in [31] where
additional approximation errors due to linearization were addressed. These errors are treated
in the given framework [31].

34

A2.1.3 Additive Noise and Controlled Markov Processes

The most general iterates use nonlinear update functions g and h, have additive noise, and have
controlled Markov processes [28]. A similar analysis has been performed without controlled Markov
processes [47].

θn+1 = θn + a(n)
(
h
(
θn,wn,Z

(θ)
n

)
+ M (θ)

n

)
, (52)

wn+1 = wn + b(n)
(
g
(
θn,wn,Z

(w)
n

)
+ M (w)

n

)
. (53)

Required Definitions. Marchaud Map: A set-valued map h : Rl → {subsets of Rk} is called a
Marchaud map if it satisfies the following properties:

(i) For each θ ∈ Rl, h(θ) is convex and compact.

(ii) (point-wise boundedness) For each θ ∈ Rl, sup
w∈h(θ)

‖w‖ < K (1 + ‖θ‖) for some K > 0.

(iii) h is an upper-semicontinuous map.
We say that h is upper-semicontinuous, if given sequences {θn}n≥1 (in Rl) and {yn}n≥1

(in Rk) with θn → θ, yn → y and yn ∈ h(θn), n ≥ 1,y ∈ h(θ). In other words, the
graph of h,

{
(x,y) : y ∈ h(x), x ∈ Rl

}
, is closed in Rl × Rk.

If the set-valued map H : Rm → {subsets of Rm} is Marchaud, then the differential inclusion (DI)
given by

θ̇(t) ∈ H(θ(t)) (54)
is guaranteed to have at least one solution that is absolutely continuous. Σ is defined as the set of all
absolutely continuous maps Θ that satisfy Eq. (54).

Invariant Set: M ⊆ Rm is invariant if for every θ ∈M there exists a complete trajectory, Θ, entirely
in M with Θ(0) = θ. In other words, Θ ∈ Σ (complete trajectory) with Θ(t) ∈M , for all t ≥ 0.
Internally Chain Transitive Set: M ⊂ Rm is said to be internally chain transitive if M is compact
and for every θ,y ∈ M , ε > 0 and T > 0 we have the following: There exist Φ1, . . . ,Φn that are
n solutions to the differential inclusion θ̇(t) ∈ h(θ(t)), a sequence θ1(= θ), . . . ,θn+1(= y) ⊂M
and n real numbers t1, t2, . . . , tn greater than T such that: Φiti(θi) ∈ N

ε(θi+1) (N ε(θ) is the open
ε-neighborhood of θ) and Φi[0,ti](θi) ⊂M for 1 ≤ i ≤ n. The sequence (θ1(= x), . . . ,θn+1(= y))

is called an (ε, T) chain in M from θ to y.

Assumptions. We make the following assumptions [28]:

(A1) Assumptions on the controlled Markov processes: The controlled Markov process {Z(w)
n }

takes values in a compact metric space S(w). The controlled Markov process {Z(θ)
n }

takes values in a compact metric space S(θ). Both processes are controlled by the iterate
sequences {θn} and {wn}. Furthermore {Z(w)

n } is additionally controlled by a random
process {A(w)

n } taking values in a compact metric space U (w) and {Z(θ)
n } is additionally

controlled by a random process {A(θ)
n } taking values in a compact metric space U (θ). The

{Z(θ)
n } dynamics is

P(Z
(θ)
n+1 ∈ B(θ)|Z(θ)

l ,A
(θ)
l ,θl,wl, l 6 n) =

∫
B(θ)

p(θ)(dz|Z(θ)
n ,A(θ)

n ,θn,wn), n > 0 ,

(55)

for B(θ) Borel in S(θ). The {Z(w)
n } dynamics is

P(Z
(w)
n+1 ∈ B(w)|Z(w)

l ,A
(w)
l ,θl,wl, l 6 n) =

∫
B(w)

p(w)(dz|Z(w)
n ,A(w)

n ,θn,wn), n > 0 ,

(56)

35

for B(w) Borel in S(w).
(A2) Assumptions on the update functions: h : Rm+k × S(θ) → Rm is jointly continuous as

well as Lipschitz in its first two arguments uniformly w.r.t. the third. The latter condition
means that

∀z(θ) ∈ S(θ) : ‖h(θ,w, z(θ)) − h(θ′,w′, z(θ))‖ 6 L(θ) (‖θ − θ′‖+ ‖w −w′‖) .
(57)

Note that the Lipschitz constant L(θ) does not depend on z(θ).
g : Rk+m × S(w) → Rk is jointly continuous as well as Lipschitz in its first two arguments
uniformly w.r.t. the third. The latter condition means that

∀z(w) ∈ S(w) : ‖g(θ,w, z(w)) − g(θ′,w′, z(w))‖ 6 L(w) (‖θ − θ′‖+ ‖w −w′‖) .
(58)

Note that the Lipschitz constant L(w) does not depend on z(w).

(A3) Assumptions on the additive noise: {M (θ)
n } and {M (w)

n } are martingale difference sequence
with second moments bounded by K(1 + ‖θn‖2 + ‖wn‖2). More precisely, {M (θ)

n } is a
martingale difference sequence w.r.t. increasing σ-fields

Fn = σ(θl,wl,M
(θ)
l ,M

(w)
l ,Z

(θ)
l ,Z

(w)
l , l 6 n), n > 0 , (59)

satisfying

E
[
‖M (θ)

n+1‖2 | Fn
]
6 K (1 + ‖θn‖2 + ‖wn‖2) , (60)

for n > 0 and a given constant K > 0.

{M (w)
n } is a martingale difference sequence w.r.t. increasing σ-fields

Fn = σ(θl,wl,M
(θ)
l ,M

(w)
l ,Z

(θ)
l ,Z

(w)
l , l 6 n), n > 0 , (61)

satisfying

E
[
‖M (w)

n+1‖2 | Fn
]
6 K (1 + ‖θn‖2 + ‖wn‖2) , (62)

for n > 0 and a given constant K > 0.
(A4) Assumptions on the learning rates:∑

n

a(n) = ∞ ,
∑
n

a2(n) < ∞ , (63)∑
n

b(n) = ∞ ,
∑
n

b2(n) < ∞ , (64)

a(n) = o(b(n)) , (65)

Furthermore, a(n), b(n), n > 0 are non-increasing.
(A5) Assumptions on the controlled Markov processes, that is, the transition kernels: The state-

action map

S(θ) × U (θ) × Rm+k 3 (z(θ),a(θ),θ,w) → p(θ)(dy | z(θ),a(θ),θ,w) (66)

and the state-action map

S(w) × U (w) × Rm+k 3 (z(w),a(w),θ,w) → p(w)(dy | z(w),a(w),θ,w) (67)

are continuous.
(A6) Assumptions on the existence of a solution:

We consider occupation measures which give for the controlled Markov process the prob-
ability or density to observe a particular state-action pair from S × U for given θ and a
given control policy π. We denote by D(w)(θ,w) the set of all ergodic occupation measures
for the prescribed θ and w on state-action space S(w) × U (θ) for the controlled Markov

36

processZ(w) with policy π(w). Analogously we denote, byD(θ)(θ,w) the set of all ergodic
occupation measures for the prescribed θ and w on state-action space S(θ) × U (θ) for the
controlled Markov process Z(θ) with policy π(θ). Define

g̃(θ,w,ν) =

∫
g(θ,w, z) ν(dz, U (w)) (68)

for ν a measure on S(w) × U (w) and the Marchaud map

ĝ(θ,w) = {g̃(θ,w,ν) : ν ∈ D(w)(θ,w)} . (69)

We assume that the set D(w)(θ,w) is singleton, that is, ĝ(θ,w) contains a single function
and we use the same notation for the set and its single element. If the set is not a singleton, the
assumption of a solution can be expressed by the differential inclusion ẇ(t) ∈ ĝ(θ,w(t))
[28].
∀θ ∈ Rm, the ODE

ẇ(t) = ĝ(θ,w(t)) (70)

has an asymptotically stable equilibrium λ(θ) with domain of attraction Gθ where λ :
Rm → Rk is a Lipschitz map with constant K. Moreover, the function V : G → [0,∞)
is continuously differentiable where V (θ, .) is the Lyapunov function for λ(θ) and G =
{(θ,w) : w ∈ Gθ,θ ∈ Rm}. This extra condition is needed so that the set {(θ,λ(θ)) :
θ ∈ Rm} becomes an asymptotically stable set of the coupled ODE

ẇ(t) = ĝ(θ(t),w(t)) (71)

θ̇(t) = 0 . (72)

(A7) Assumption of bounded iterates:

sup
n
‖θn‖ < ∞ a.s. , (73)

sup
n
‖wn‖ < ∞ a.s. (74)

Convergence Theorem. The following theorem is from Karmakar & Bhatnagar [28]:

Theorem 5 (Karmakar & Bhatnagar). Under above assumptions if for all θ ∈ Rm, with probability
1, {wn} belongs to a compact subset Qθ (depending on the sample point) of Gθ “eventually”, then

(θn,wn) → ∪θ∗∈A0
(θ∗,λ(θ∗)) a.s. as n → ∞ , (75)

where A0 = ∩t>0{θ̄(s) : s > t} which is almost everywhere an internally chain transitive set of the
differential inclusion

θ̇(t) ∈ ĥ(θ(t)), (76)

where ĥ(θ) = {h̃(θ,λ(θ),ν) : ν ∈ D(w)(θ,λ(θ))}.

Comments.

(C1) This framework allows to show convergence for gradient descent methods beyond stochastic
gradient like for the ADAM procedure where current learning parameters are memorized
and updated. The random processes Z(w) and Z(θ) may track the current learning status for
the fast and slow iterate, respectively.

(C2) Stochastic regularization like dropout is covered via the random processes A(w) and A(θ).

(C3) Similar results have been derived without controlled Markov processes [47].

37

A2.2 Rate of Convergence of Two-Time Scale Stochastic Approximation Algorithms

A2.2.1 Linear Update Rules

First we consider linear iterates according to the PhD thesis of Konda [31] and Konda & Tsitsiklis
[34].

θn+1 = θn + a(n)
(
a1 − A11 θn − A12 wn + M (θ)

n

)
, (77)

wn+1 = wn + b(n)
(
a2 − A21 θn − A22 wn + M (w)

n

)
. (78)

Assumptions. We make the following assumptions:

(A1) The random variables (M
(θ)
n ,M

(w)
n), n = 0, 1, . . ., are independent of w0,θ0 and of each

other. The have zero mean: E[M
(θ)
n] = 0 and E[M

(w)
n] = 0. The covariance is

E
[
M (θ)

n (M (θ)
n)T

]
= Γ11 , (79)

E
[
M (θ)

n (M (w)
n)T

]
= Γ12 = ΓT21 , (80)

E
[
M (w)

n (M (w)
n)T

]
= Γ22 . (81)

(A2) The learning rates are deterministic, positive, nonincreasing and satisfy with ε > 0:∑
n

a(n) = ∞ , lim
n→∞

a(n) = 0 , (82)∑
n

b(n) = ∞ , lim
n→∞

b(n) = 0 , (83)

a(n)

b(n)
→ ε . (84)

We often consider the case ε = 0.

(A3) Convergence of the iterates: We define

∆ := A11 − A12A
−1
22 A21 . (85)

A matrix is Hurwitz if the real part of each eigenvalue is strictly negative. We assume that
the matrices −A22 and −∆ are Hurwitz.

(A4) Convergence rate remains simple:

(a) There exists a constant ā > 0 such that

lim
n

(a(n+ 1)−1 − a(n)−1) = ā . (86)

(b) If ε = 0, then

lim
n

(b(n+ 1)−1 − b(n)−1) = 0 . (87)

(c) The matrix

−
(
∆ − ā

2
I
)

(88)

is Hurwitz.

38

Rate of Convergence Theorem. The next theorem is taken from Konda [31] and Konda & Tsitsik-
lis [34].

Let θ∗ ∈ Rm and w∗ ∈ Rk be the unique solution to the system of linear equations

A11 θn + A12 wn = a1 , (89)
A21 θn + A22 wn = a2 . (90)

For each n, let

θ̂n = θn − θ∗ , (91)

ŵn = wn − A−1
22 (a2 − A21 θn) , (92)

Σn
11 = θ−1

n E
[
θ̂nθ̂

T
n

]
, (93)

Σn
12 =

(
Σn

21

)T
= θ−1

n E
[
θ̂nŵ

T
n

]
, (94)

Σn
22 = w−1

n E
[
ŵnŵ

T
n

]
, (95)

Σn =

(
Σn

11 Σn
12

Σn
21 Σn

22

)
. (96)

Theorem 6 (Konda & Tsitsiklis). Under above assumptions and when the constant ε is sufficiently
small, the limit matrices

Σ
(ε)
11 = lim

n
Σn

11 , Σ
(ε)
12 = lim

n
Σn

12 , Σ
(ε)
22 = lim

n
Σn

22 . (97)

exist. Furthermore, the matrix

Σ(0) =

(
Σ

(0)
11 Σ

(0)
12

Σ
(0)
21 Σ

(0)
22

)
(98)

is the unique solution to the following system of equations

∆ Σ
(0)
11 + Σ

(0)
11 ∆T − ā Σ

(0)
11 + A12 Σ

(0)
21 + Σ

(0)
12 A

T
12 = Γ11 , (99)

A12 Σ
(0)
22 + Σ

(0)
12 A

T
22 = Γ12 , (100)

A22 Σ
(0)
22 + Σ

(0)
22 A

T
22 = Γ22 . (101)

Finally,

lim
ε↓0

Σ
(ε)
11 = Σ

(0)
11 , lim

ε↓0
Σ

(ε)
12 = Σ

(0)
12 , lim

ε↓0
Σ

(ε)
22 = Σ

(0)
22 . (102)

The next theorems shows that the asymptotic covariance matrix of a(n)−1/2θn is the same as that of
a(n)−1/2θ̄n, where θ̄n evolves according to the single-time-scale stochastic iteration:

θ̄n+1 = θ̄n + a(n)
(
a1 − A11 θ̄n − A12 w̄n + M (θ)

n

)
, (103)

0 = a2 − A21 θ̄n − A22 w̄n + M (w)
n . (104)

The next theorem combines Theorem 2.8 of Konda & Tsitsiklis and Theorem 4.1 of Konda &
Tsitsiklis:

Theorem 7 (Konda & Tsitsiklis 2nd). Under above assumptions

Σ
(0)
11 = lim

n
a(n)−1 E

[
θ̄nθ̄

T
n

]
. (105)

If the assumptions hold with ε = 0, then a(n)−1/2θ̂n converges in distribution to N (0,Σ
(0)
11).

39

Comments.

(C1) In his PhD thesis [31] Konda extended the analysis to the nonlinear case. Konda makes a
linearization of the nonlinear function h and g with

A11 = − ∂h

∂θ
, A12 = − ∂h

∂w
, A21 = − ∂g

∂θ
, A22 = − ∂g

∂w
. (106)

There are additional errors due to linearization which have to be considered. However only
a sketch of a proof is provided but not a complete proof.

(C2) Theorem 4.1 of Konda & Tsitsiklis is important to generalize to the nonlinear case.
(C3) The convergence rate is governed byA22 for the fast and ∆ for the slow iterate. ∆ in turn

is affected by the interaction effects captured byA21 andA12 together with the inverse of
A22.

A2.2.2 Nonlinear Update Rules

The rate of convergence for nonlinear update rules according to Mokkadem & Pelletier is considered
[40].

The iterates are

θn+1 = θn + a(n)
(
h
(
θn,wn

)
+ Z(θ)

n + M (θ)
n

)
, (107)

wn+1 = wn + b(n)
(
g
(
θn,wn

)
+ Z(w)

n + M (w)
n

)
. (108)

with the increasing σ-fields

Fn = σ(θl,wl,M
(θ)
l ,M

(w)
l ,Z

(θ)
l ,Z

(w)
l , l 6 n), n > 0 . (109)

The terms Z(θ)
n and Z(w)

n can be used to address the error through linearization, that is, the difference
of the nonlinear functions to their linear approximation.

Assumptions. We make the following assumptions:

(A1) Convergence is ensured:

lim
n→∞

θn = θ∗ a.s. , (110)

lim
n→∞

wn = w∗ a.s. . (111)

(A2) Linear approximation and Hurwitz:
There exists a neighborhood U of (θ∗,w∗) such that, for all (θ,w) ∈ U(

h
(
θ,w

)
g
(
θ,w

)) =

(
A11 A12

A21 A22

) (
θ − θ∗

w − w∗

)
+ O

(∥∥∥∥ θ − θ∗

w − w∗

∥∥∥∥2
)
. (112)

We define

∆ := A11 − A12A
−1
22 A21 . (113)

A matrix is Hurwitz if the real part of each eigenvalue is strictly negative. We assume that
the matricesA22 and ∆ are Hurwitz.

(A3) Assumptions on the learning rates:

a(n) = a0 n
−α (114)

b(n) = b0 n
−β , (115)

where a0 > 0 and b0 > 0 and 1/2 < β < α 6 1. If α = 1, then a0 > 1/(2emin) with emin

as the absolute value of the largest eigenvalue of ∆ (the eigenvalue closest to 0).

40

(A4) Assumptions on the noise and error:
(a) martingale difference sequences:

E
[
M

(θ)
n+1 | Fn

]
= 0 a.s. , (116)

E
[
M

(w)
n+1 | Fn

]
= 0 a.s. . (117)

(b) existing second moments:

lim
n→∞

E

[(
M

(θ)
n+1

M
(w)
n+1

) (
(M

(θ)
n+1)T (M

(w)
n+1)T

)
| Fn

]
= Γ =

(
Γ11 Γ12

Γ21 Γ22

)
a.s.

(118)
(c) bounded moments:

There exist l > 2/β such that

sup
n

E
[
‖M (θ)

n+1‖l | Fn
]
< ∞ a.s. , (119)

sup
n

E
[
‖M (w)

n+1‖l | Fn
]
< ∞ a.s. (120)

(d) bounded error:
Z(θ)
n = r(θ)

n + O
(
‖θ − θ∗‖2 + ‖w − w∗‖2

)
, (121)

Z(w)
n = r(w)

n + O
(
‖θ − θ∗‖2 + ‖w − w∗‖2

)
, (122)

with
‖r(θ)
n ‖ + ‖r(w)

n ‖ = o(
√
a(n)) a.s. (123)

Rate of Convergence Theorem. We report a theorem and a proposition from Mokkadem & Pel-
letier [40]. However first we have to define the covariance matrices Σθ and Σw which govern the
rate of convergence.

First we define

Γθ := lim
n→∞

E

[(
M

(θ)
n+1 − A12 A

−1
22 M

(w)
n+1

) (
M

(θ)
n+1 − A12 A

−1
22 M

(w)
n+1

)T
| Fn

]
=

(124)

Γ11 + A12 A
−1
22 Γ22 (A−1

22)T AT
12 − Γ12(A−1

22)T AT
12 − A12 A

−1
22 Γ21 .

We now define the asymptotic covariance matrices Σθ and Σw:

Σθ =

∫ ∞
0

exp

((
∆ +

1a=1

2 a0
I

)
t

)
Γθ exp

((
∆T +

1a=1

2 a0
I

)
t

)
dt , (125)

Σw =

∫ ∞
0

exp (A22 t) Γ22 exp (A22 t) dt . (126)

Σθ and Σw are solutions of the Lyapunov equations:(
∆ +

1a=1

2 a0
I

)
Σθ + Σθ

(
∆T +

1a=1

2 a0
I

)
= − Γθ , (127)

A22 Σw + Σw A
T
22 = − Γ22 . (128)

Theorem 8 (Mokkadem & Pelletier: Joint weak convergence). Under above assumptions:(√
a(n)−1 (θ − θ∗)√
b(n)−1 (w − w∗)

)
D−→ N

(
0 ,

(
Σθ 0
0 Σw

))
. (129)

Theorem 9 (Mokkadem & Pelletier: Strong convergence). Under above assumptions:

‖θ − θ∗‖ = O


√√√√a(n) log

(
n∑
l=1

a(l)

) a.s. , (130)

‖w − w∗‖ = O


√√√√b(n) log

(
n∑
l=1

b(l)

) a.s. (131)

41

Comments.

(C1) Besides the learning steps a(n) and b(n), the convergence rate is governed by A22 for
the fast and ∆ for the slow iterate. ∆ in turn is affected by interaction effects which are
captured byA21 andA12 together with the inverse ofA22.

A2.3 Equal Time Scale Stochastic Approximation Algorithms

In this subsection we consider the case when the learning rates have equal time scale.

A2.3.1 Equal Time Scale for Saddle Point Iterates

If equal time scales assumed then the iterates revisit infinite often an environment of the solution [54].
In Zhang 2007, the functions of the iterates are the derivatives of a Lagrangian with respect to the
dual and primal variables [54]. The iterates are

θn+1 = θn + a(n)
(
h
(
θn,wn

)
+ Z(θ)

n + M (θ)
n

)
, (132)

wn+1 = wn + a(n)
(
g
(
θn,wn

)
+ Z(w)

n + M (w)
n

)
. (133)

with the increasing σ-fields

Fn = σ(θl,wl,M
(θ)
l ,M

(w)
l ,Z

(θ)
l ,Z

(w)
l , l 6 n), n > 0 . (134)

The terms Z(θ)
n and Z(w)

n subsum biased estimation errors.

Assumptions. We make the following assumptions:

(A1) Assumptions on update function: h and g are continuous, differentiable, and bounded. The
Jacobians

∂g

∂w
and

∂h

∂θ
(135)

are Hurwitz. A matrix is Hurwitz if the real part of each eigenvalue is strictly negative. This
assumptions corresponds to the assumption in [54] that the Lagrangian is concave in w and
convex in θ.

(A2) Assumptions on noise:

{M (θ)
n } and {M (w)

n } are a martingale difference sequences w.r.t. the increasing σ-fields
Fn. Furthermore they are mutually independent.
Bounded second moment:

E
[
‖M (θ)

n+1‖2 | Fn
]
< ∞ a.s. , (136)

E
[
‖M (w)

n+1‖2 | Fn
]
< ∞ a.s. . (137)

(A3) Assumptions on the learning rate:

a(n) > 0 , a(n) → 0 ,
∑
n

a(n) = ∞ ,
∑
n

a2(n) < ∞ . (138)

(A4) Assumption on the biased error:
Boundedness:

lim
n

sup ‖Z(θ)
n ‖ 6 α(θ) a.s. (139)

lim
n

sup ‖Z(w)
n ‖ 6 α(w) a.s. (140)

42

Theorem. Define the “contraction region” Aη as follows:

Aη = {(θ,w) : α(θ) > η ‖h(θ,w)‖ or α(w) > η ‖g(θ,w)‖, 0 6 η < 1} . (141)

Theorem 10 (Zhang). Under above assumptions the iterates return to Aη infinitely often with
probability one (a.s.).

Comments.

(C1) The proof of the theorem in [54] does not use the saddle point condition and not the fact
that the functions of the iterates are derivatives of the same function.

(C2) For the unbiased case, Zhang showed in Theorem 3.1 of [54] that the iterates converge.
However he used the saddle point condition of the Lagrangian. He considered iterates
with functions that are the derivatives of a Lagrangian with respect to the dual and primal
variables [54].

A2.3.2 Equal Time Step for Actor-Critic Method

If equal time scales assumed then the iterates revisit infinite often an environment of the solution of
DiCastro & Meir [13]. The iterates of DiCastro & Meir are derived for actor-critic learning.

To present the actor-critic update iterates, we have to define some functions and terms. µ(u | x,θ) is
the policy function parametrized by θ ∈ Rm with observations x ∈ X and actions u ∈ U . A Markov
chain given by P(y | x,u) gives the next observation y using the observation x and the action u. In
each state x the agent receives a reward r(x).

The average reward per stage is for the recurrent state x∗:

η̃(θ) = lim
T→∞

E

[
1

T

T−1∑
n=0

r(xn) | x0 = x∗,θ

]
. (142)

The estimate of η̃ is denoted by η.

The differential value function is

h̃(x,θ) = E

[
T−1∑
n=0

(r(xn) − η̃(θ)) | x0 = x,θ

]
. (143)

The temporal difference is

d̃(x,y,θ) = r(x) − η̃(θ) + h̃(y,θ) − h̃(x,θ) . (144)

The estimate of d̃ is denoted by d.

The likelihood ratio derivative Ψ ∈ Rm is

Ψ(x,u,θ) =
∇θµ(u | x,θ)

µ(u | x,θ)
. (145)

The value function h̃ is approximated by

h(x,w) = φ(x)T w , (146)

where φ(x) ∈ Rk. We define Φ ∈ R|X |×k

Φ =


φ1(x1) φ2(x1) . . . φk(x1)
φ1(x2) φ2(x2) . . . φk(x2)

...
...

...
φ1(x|X |) φ2(x|X |) . . . φk(x|X |)

 (147)

43

and

h(w) = Φ w . (148)

For TD(λ) we have an eligibility trace:

en = λ en−1 + φ(xn) . (149)

We define the approximation error with optimal parameter w∗(θ):

εapp(θ) = inf
w∈Rk

‖h̃(θ) − Φ w‖π(θ) = ‖h̃(θ) − Φ w∗(θ)‖π(θ) , (150)

where π(θ) is an projection operator into the span of Φw. We bound this error by

εapp = sup
θ∈Rk

εapp(θ) . (151)

We denoted by η̃, d̃, and h̃ the exact functions and used for their approximation η, d, and h,
respectively. We have learning rate adjustments Γη and Γw for the critic.

The update rules are:

Critic:
ηn+1 = ηn + a(n) Γη (r(xn) − ηn) , (152)

h(x,wn) = φ(x)T wn , (153)
d(xn,xn+1,wn) = r(xn) − ηn + h(xn+1,wn) − h(xn,wn) , (154)

en = λ en−1 + φ(xn) , (155)
wn+1 = wn + a(n) Γw d(xn,xn+1,wn) en . (156)

Actor:
θn+1 = θn + a(n) Ψ(xn,un,θn) d(xn,xn+1,wn) . (157)

Assumptions. We make the following assumptions:

(A1) Assumption on rewards:
The rewards {r(x)}x∈X are uniformly bounded by a finite constant Br.

(A2) Assumption on the Markov chain:
Each Markov chain for each θ is aperiodic, recurrent, and irreducible.

(A3) Assumptions on the policy function:
The conditional probability function µ(u | x,θ) is twice differentiable. Moreover, there
exist positive constants, Bµ1 and Bµ2 , such that for all x ∈ X , u ∈ U , θ ∈ Rm and
1 6 l1, l2 6 m we have∥∥∥∥∂µ(u | x,θ)

∂θl

∥∥∥∥ 6 Bµ1
,

∥∥∥∥∂2µ(u | x,θ)

∂θl1 ∂θl2

∥∥∥∥ 6 Bµ2
. (158)

(A4) Assumption on the likelihood ratio derivative:
For all x ∈ X , u ∈ U , and θ ∈ Rm, there exists a positive constant BΨ, such that

‖Ψ(x,u,θ)‖2 6 BΨ < ∞ , (159)

where ‖.‖2 is the Euclidean L2 norm.
(A5) Assumptions on the approximation space given by Φ:

The columns of the matrix Φ are independent, that is, the form a basis of dimension k. The
norms of the columns vectors of the matrix Φ are bounded above by 1, that is, ‖φl‖2 6 1
for 1 6 l 6 k.

(A6) Assumptions on the learning rate:∑
n

a(n) = ∞ ,
∑
n

a2(n) < ∞ . (160)

44

Theorem. The algorithm converged if ∇θη̃(θ) = 0, since the actor reached a stationary point
where the updates are zero. We assume that ‖∇θη̃(θ)‖ hints at how close we are to the convergence
point.

The next theorem from DiCastro & Meir [13] implies that the trajectory visits a neighborhood of
a local maximum infinitely often. Although it may leave the local vicinity of the maximum, it is
guaranteed to return to it infinitely often.
Theorem 11 (DiCastro & Meir). Define

B∇η̃ =
B∆td1

Γw
+

B∆td2

Γη
+ B∆td3 εapp , (161)

where B∆td1, B∆td2, and B∆td3 are finite constants depending on the Markov decision process and
the agent parameters.

Under above assumptions

lim
t→∞

inf ‖∇θη̃(θt)‖ 6 B∇η̃ . (162)

The trajectory visits a neighborhood of a local maximum infinitely often.

Comments.

(C1) The larger the critic learning rates Γw and Γη are, the smaller is the region around the local
maximum.

(C2) The results are in agreement with those of Zhang 2007 [54].
(C3) Even if the results are derived for a special actor-critic setting, they carry over to a more

general setting of the iterates.

A3 ADAM Optimization as Stochastic Heavy Ball with Friction

The Nesterov Accelerated Gradient Descent (NAGD) [43] has raised considerable interest due to
its numerical simplicity and its low complexity. Previous to NAGD there was Polyak’s Heavy Ball
method [44]. The idea of the Heavy Ball is a ball that evolves over the graph of a function f with
damping (due to friction) and acceleration. Therefore this is a second-order dynamical system that
can be described by the ODE for a Heavy Ball with Friction (HBF) [16]. HBF can overshoot a local
minimum and find a neighboring minium [3]. Therefore, HBF has some exploratory properties via
the ball’s motion and is a step towards global optimization [20]. See Figure A39

GANs suffer from “mode collapsing” where large masses of probability are mapped onto a few modes
that cover only small regions. While these regions represent meaningful samples, the variety of the
real world data is lost and only few prototype samples are generated. Different methods have been
proposed to avoid mode collapsing [10, 39]. We obviate model collapsing by using Adam stochastic
approximation [30]. Adam can be described as Heavy Ball with Friction (HBF) (see below), since it
averages over past gradients. This averaging corresponds to a velocity that makes a generator trained
with Adam more robust to discriminator signals that tend to push its probability mass into small
regions. Adam as an HBF method can overshoot local minima that correspond to model collapse
and find broader minima. Next, we analyze whether GANs trained with TTUR converge when using
Adam.

We recapitulate the Adam update rule at step n, with learning rate a, exponential averaging factors β1

for the first and β2 for the second moment of the gradient∇f(θn−1):

gn ←− ∇f(θn−1) (163)
mn ←− (β1/(1− βn1))mn−1 + ((1− β1)/(1− βn1)) gn
vn ←− (β2/(1− βn2)) vn−1 + ((1− β2)/(1− βn2)) gn � gn
θn ←− θn−1 − amn/(

√
vn + ε) ,

where following operations are meant componentwise: the product �, the square root √., and the
division / in the last line.

45

Figure A39: Heavy Ball with Friction, where the ball with mass overshoots the local minimum θ+

and settles at the flat minimum θ∗.

Instead of learning rate a, we introduce the damping coefficient a(n) with a(n) = an−τ for
τ ∈ (0, 1]. Adam has parameters β1 for averaging the gradient and β2 for averaging the squared
gradient. These parameters can be considered as defining a memory for Adam. To characterize β1

and β2 in the following, we define the exponential memory r(n) = r and the polynomial memory
r(n) = r/

∑n
l=1 a(l) for some positive constant r. The next theorem describes Adam by a differential

equation, which in turn allows to apply the idea of (T, δ) perturbed ODEs to TTUR. Consequently,
learning GANs with TTUR and Adam converges.
Theorem 12. If Adam is used with β1 = 1− a(n+ 1)r(n), β2 = 1− αa(n+ 1)r(n) and with∇f
as the full gradient of the lower bounded, continuously differentiable objective f , then for stationary
second moments of the gradient, Adam follows the differential equation for Heavy Ball with Friction
(HBF):

θ̈t + a(t) θ̇t + ∇f(θt) = 0 . (164)

Adam converges for gradients∇f that are L-Lipschitz.

Proof. Gadat et al. derived a discrete and stochastic version of Polyak’s Heavy Ball method [44], the
Heavy Ball with Friction (HBF) [16]:

θn+1 = θn − a(n+ 1)mn , (165)

mn+1 =
(
1 − a(n+ 1) r(n)

)
mn + a(n+ 1) r(n)

(
∇f(θn) + Mn+1

)
.

These update rules are the first moment update rules of Adam [30]. The HBF can be formulated as
the differential equation Eq. (164) [16]. Gadat et al. showed that the update rules Eq. (165) converge
for loss functions f with at most quadratic grow and stated that convergence can be proofed for ∇f
that are L-Lipschitz [16]. Convergence has been proved for continuously differentiable f that is
quasiconvex (Theorem 3 in Goudou & Munier [20]). Convergence has been proved for∇f that is
L-Lipschitz and bounded from below (Theorem 3.1 in Attouch et al. [3]).

46

Adam normalizes the averagemn by the second moments vn of of the gradient gn: vn = E [gn � gn].
mn is componentwise divided by the square root of the components of vn. We assume that the
second moments of gn are stationary, i.e., v = E [gn � gn]. In this case the normalization can be
considered as additional noise since the normalization factor randomly deviates from its mean. In the
HBF interpretation the normalization by

√
v corresponds to introducing gravitation. We obtain

vn =
1 − β2

1 − βn2

n∑
l=1

βn−l2 gl � gl , ∆vn = vn − v =
1 − β2

1 − βn2

n∑
l=1

βn−l2 (gl � gl − v) .

(166)

For a stationary second moments v and β2 = 1−αa(n+1)r(n), we have ∆vn ∝ a(n+1)r(n). We
use a componentwise linear approximation to Adam’s second moment normalization 1/

√
v + ∆vn ≈

1/
√
v−(1/(2v�

√
v))�∆vn+O(∆2vn), where all operations are meant componentwise. If we set

M
(v)
n+1 = −(mn�∆vn)/(2v�

√
va(n+1)r(n)), thenmn/

√
vn ≈mn/

√
v+a(n+1)r(n)M

(v)
n+1

and E
[
M

(v)
n+1

]
= 0, since E [gl � gl − v] = 0. For a stationary second moment v, the random

variable {M (v)
n } is a martingale difference sequence with a bounded second moment. Therefore

{M (v)
n+1} can be subsumed into {Mn+1} in update rules Eq. (165). The factor 1/

√
v can be

componentwise incorporated into the gradient g which corresponds to rescaling the parameters
without changing the minimum.

The differential equation for the Heavy Ball with Friction (HBF) is:

θ̈t + a θ̇t + ∇f(θt) = 0 , (167)

where a > 0 is the dampening coefficient. According to Attouch et al. [3] the energy is

E(t) =
1

2

∣∣∣θ̇(t)
∣∣∣2 + f(θ(t)) , (168)

which corresponds to the sum of kinetic and potential energy. This energy formulation leads to

Ė(t) = −a
∣∣∣θ̇(t)

∣∣∣2 . (169)

Thus, the energy is dissipated with increasing t. Therefore the trajectories asymptotically converge to
equilibria which are local minima of f .

Since Adam can be expressed as differential equation and has a Lyapunov function, the idea of (T, δ)
perturbed ODEs [7, 23, 6] carries over to Adam. Therefore the convergence of Adam with TTUR
can be proved via two time-scale stochastic approximation analysis like in Borkar [7] for stationary
second moments of the gradient.

A4 Experiments: Additional Details and Results

A4.1 CelebA

We compare TTUR to the original GAN training methods at the Large-scale CelebFaces Attributes
(CelebA) dataset [37]. CelebA is a well established benchmark to evaluate GANs [24]. The CelebA
images were center cropped to 64×64 pixels.

A4.1.1 BEGAN

We start to test TTUR with the Boundary Equilibrium GAN (BEGAN) [4]. The BEGAN discriminator
is a 3×3 convolutional autoencoder for 64×64 input/output images with exponential linear units
(ELUs) [12] as activation function. The autoencoder architecture is schematically depicted in
Figure A40. The encoder consists of a convolutional layer followed by a variable number of blocks
of convolutional layers. Each block consists of three convolutional layers, where the last layer in each
block except the last one is a down-sampling layer implemented as sub-sampling with stride 2. The

47

number of blocks is calculated by log2(image_height)− 2. The last layer is a fully-connected layer.
The decoder starts with a fully-connected layer followed by the same number of convolutional blocks
as the encoder, however the down-sampling layers are replaced by up-sampling layers implemented
by nearest neighbor. The last layer is a single convolutional layer. The generator architecture is a
clone of the discriminator decoder architecture. Mini-batch size is 16 and n = 128. The 128 hidden
units, the first layer of the generator, are uniform distributed between -1 und 1. BEGAN implements
a learning rate scheduling by halving the learning rates every 100,000 mini-batches. For optimization
we use Adam with default parameters β1 = 0.9 and β2 = 0.999 (see Section A6 for the original
implementation that we used).

Figure A40: BEGAN network architecture for the generator and discriminator. Left: Genera-
tor/Decoder. Right: Encoder. Figure is taken from Berthelot et al. 2017 [4].

Figure A41 shows the FID averaged over 8 runs during learning BEGAN models with the original
learning method and with TTUR. TTUR learning rates are given as pairs (b, a) of discriminator
learning rate b and generator learning rate a. We report the average FID and standard deviation for 8
runs for TTUR and the training procedure every 5,000 mini-batches. Figure A42 shows the FID at
the end of the training. TTUR outperformed the original training starting from mini-batch around
100k. The best FIDs that could be obtained with original BEGANs and TTUR trained BEGANs over
all runs are 28.55 and 26.19, respectively (see Table 1).

0 25 50 75 100 125 150 175 200
mini-batch x 1k

50

100

150

200

250

300

350

400

FI
D

orig 5e-5
TTUR 6e-5 4e-5

Figure A41: FID for BEGAN trained on CelebA.

48

100 120 140 160 180 200
mini-batch x 1k

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

FI
D

orig 5e-5
TTUR 6e-5 4e-5

Figure A42: FID for BEGAN trained on CelebA zoomed in starting from 100k mini-batches.

A4.1.2 DCGAN

The next experiment is to test TTUR for the deep convolutional GAN (DCGAN) [46] at CelebA.
The DCGAN discriminator consists of 4 convolution layers with batch normalization [26] and leaky
ReLUs [38]. The last layer is a fully-connected layer connected to a single sigmoid output unit.
The generator starts with a fully-connected layer followed by four transposed convolution layers
with ReLU activations [42], except for the last convolutional layer, which has tanh activations. The
100 hidden variables, which drive the generator, are uniformly distributed. DCGAN is trained with
mini-batches of size 64 and Adam. The Adam optimizer is used with its default parameters, except
β1 = 0.5 (for the implementation see Section A6).

Figure A43 shows the FID during learning DCGAN with the original learning method and with
TTUR. The original training method is faster at the beginning but TTUR achieves better performance.
Figure A44 zooms in at the region of 10k to 50k mini-batch updates of Figure A44 to show the
difference between TTUR and original learning of DCGANs. DCGAN achieves a lower FID than
BEGAN, therefore gives better results which we attribute to higher variety of the generated images.
TTUR reaches a lower FID than the original method.

0 10 20 30 40 50
mini-batch x 1k

0

100

200

300

400

FI
D

orig 5e-4
TTUR 1e-4 5e-4

Figure A43: FID for DCGAN trained on CelebA. The original training is faster at the beginning,
however TTUR reaches a lower FID.

49

10 15 20 25 30 35 40 45 50
mini-batch x 1k

20

25

30

35

40

FI
D

orig 5e-4
TTUR 1e-4 5e-4

Figure A44: FID for DCGAN trained on CelebA zoomed in at the region of 10k to 50k mini-batch
updates of Figure A43 to show the difference between TTUR and original learning of DCGANs. That
TTUR reaches a lower FID than the original method becomes more visible compared to Figure A43.

A4.2 One Billion Word

The One Billion Word Benchmark [11] serves to compare TTUR to the original training for the
Improved Wasserstein GAN (WGAN) [22]. The character-level generative language modelbatch is
a 1D convolutional neural network (CNN) which maps a latent vector into a sequence of one-hot
character vectors of dimension 32 given by the maximum of a softmax output. The discriminator is
also a 1D CNN applied to sequences of one-hot vectors of 32 characters. Both the discriminator and
the generator consist of 5 ResNet blocks with two 1d-convolutional layers each. The discriminator
has as last layer a fully-connected layer and one output unit. The generator has as first layer a
fully-connected layer and as last layer a softmax layer. The 128 hidden units in the first layer of the
generator are normally distributed. Mini-batch size is 64. The Improved WGAN for the language
model is trained by Adam with default parameters, except β1 = 0.5 and β2 = 0.9. For the used
implementation see Section A6. In contrast to the original code, where the critic is updated 10 times
for each generator update, TTUR updates the discriminator only once, therefore we align the training
progress with wall-clock time. TTUR can use a higher learning rate for the discriminator since TTUR
stabilizes learning. As the FID criterium only works for images, we measured the performance by the
Jensen-Shannon-divergence (JSD) between the model and the real world distribution of 4-gram and
6-gram statistics as has been done previously [22]. For calculating the JSD, we precomputed before
learning the 4-gram and 6-gram statistics on the whole dataset. During learning we computed every
100 iterations the same statistics for samples from the model, where the number of samples is 10
times the batch size. The JSD is calculated from the statistics of the whole dataset and the statistics
of model samples.

For original and TTUR training, we report in Figure A45 the normalized mean JSD averaged over
10 runs for 4-gram and 6-gram word evaluations. TTUR outperforms the standard training for both
evaluation measures. The 6-gram statistics shows TTUR enables to learn to generate more subtle
pseudo-words which better resembles real words than the original training. In Table A8 we show
randomly chosen samples from models trained with original method and TTUR.

50

Table A8: Samples of One Billion Word benchmark generated by Improved WGAN trained with
TTUR (left) the original method (right).

Dry Hall Sitning tven the concer
There are court phinchs hasffort
He scores a supponied foutver il
Bartfol reportings ane the depor
Seu hid , it ’s watter ’s remold
Later fasted the store the inste
Indiwezal deducated belenseous K
Starfers on Rbama ’s all is lead
Inverdick oper , caldawho ’s non
She said , five by theically rec
RichI , Learly said remain .‘‘‘‘
Reforded live for they were like
The plane was git finally fuels
The skip lifely will neek by the
SEW McHardy Berfect was luadingu
But I pol rated Franclezt is the

No say that tent Franstal at Bra
Caulh Paphionars tven got corfle
Resumaly , braaky facting he at
On toipe also houd , aid of sole
When Barrysels commono toprel to
The Moster suprr tent Elay diccu
The new vebators are demases to
Many ’s lore wockerssaow 2 2) A
Andly , has le wordd Uold steali
But be the firmoters is no 200 s
Jermueciored a noval wan ’t mar
Onles that his boud-park , the g
ISLUN , The crather wilh a them
Fow 22o2 surgeedeto , theirestra
Make Sebages of intarmamates , a
Gullla " has cautaria Thoug ly t

200 400 600 800 1000 1200 1400
minutes

0.38

0.40

0.42

0.44

0.46

0.48

JS
D

orig 1e-4
TTUR 3e-4 1e-4

200 400 600 800 1000 1200 1400
minutes

0.78

0.80

0.82

0.84

0.86

JS
D

orig 1e-4
TTUR 3e-4 1e-4

Figure A45: Performance of Improved WGAN models trained with the original (orig) and our TTUR
method on the One Billion Word benchmark. The performance is measured by the normalized
Jensen-Shannon-divergence based on 4-grams (left) and 6-grams (right) and averaged over 10 runs.
TTUR learning clearly improved the original learning which is more prominent at 6-gram than at
4-gram.

A4.3 LSUN Bedrooms

A4.3.1 BEGAN

TTUR is compared to original GAN training for BEGANs at the bedrooms category of the large
scale image database LSUN [53]. At the start of learning, the original method is faster than TTUR as
depicted in Figure A46. However, after 40k mini-batches, TTUR reaches a lower FID, which is more
obvious at the zoom-in given by Figure A47. TTUR leads to lower FID and improves the original
training procedure. Figure 12 shows examples of samples of BEGAN trained with the original
method and with TTUR.

51

0 20 40 60 80 100 120 140
mini-batch x 1k

100

150

200

250

300

350

400

450

FI
D

orig 2e-5
TTUR 3e-5 1e-5

Figure A46: FID for BEGAN trained on LSUN bedroom. TTUR leads to lower FID and improves
the original training procedure.

20 40 60 80 100 120 140
mini-batch x 1k

120

140

160

180

200

220

240

260

FI
D

orig 2e-5
TTUR 3e-5 1e-5

Figure A47: FID for BEGAN trained on LSUN bedroom zoomed in at the end of training of
Figure A46 to show the difference between TTUR and original learning of BEGANs. After 40k
mini-batches TTUR reaches a lower FID.

A4.3.2 DCGAN

TTUR is compared to original GAN training for DCGANs at the bedrooms category of the large
scale image database LSUN [53]. At the start of learning, the original method is faster than TTUR as
depicted in Figure A48. However, after 50k mini-batches, TTUR reaches a lower FID, which is more
obvious at the zoom-in given by Figure A49. TTUR leads to lower FID and improves the original
training procedure. Figure 14 shows examples of samples of DCGAN trained with the original
method and with TTUR.

52

0 50 100 150 200
mini-batch x 1k

100

150

200

250

300

350

400

FI
D

orig 5e-4
TTUR 1e-4 5e-4

Figure A48: FID for DCGAN trained on LSUN bedroom. TTUR clearly leads to lower FID and
improves the original training procedure.

25 50 75 100 125 150 175 200
mini-batch x 1k

75

80

85

90

95

100

105

FI
D

orig 5e-4
TTUR 1e-4 5e-4

Figure A49: FID for DCGAN trained on LSUN bedroom zoomed in at the end of training of
Figure A48 to show the difference between TTUR and original learning of DCGANs. After 50k
mini-batches TTUR reaches a lower FID.

A4.4 Fixed k BEGAN at CelebA

Here we introduce a BEGAN variant with fixed k. k trades-off real-world examples and generated
examples when training the discriminator. BEGAN maintains the equilibrium E[L(G(z))] =
γE[L(x)] with a variable kt by adjusting it with kt+1 = kt + λk(γL(x)− L(G(zG))). Figure A50
shows that fixing k to 0.08 and using a small learning rate leads to a smaller FID than in the original
BEGAN. However, TTUR does not show an improvement over the standard training procedure.

53

50 100 150 200 250
Minibatch x 1k

25

30

35

40

45

50

55

FI
D

orig 5e-5 k adapted
TTUR 1e-5 8e-6 k 0.08
orig 1e-5 k 0.08

Figure A50: FID for BEGAN with fixed k trained on CelebA. The shaded area is the standard
deviation for 10 runs for each experiment.

A5 Discriminator vs. Generator Learning Rate

The convergence proof for learning GANs with TTUR assumes that the generator learning rate will
eventually become small enough to ensure convergence of the discriminator learning. At some time
point, the perturbations of the discriminator updates by updates of the generator parameters are
sufficient small to assure that the discriminator converges. Crucial for discriminator convergence is
the magnitude of the perturbations which the generator induces into the discriminator updates. These
perturbations are not only determined by the generator learning rate but also by its loss function,
current value of the loss function, optimization method, size of the error signals that reach the
generator (vanishing or exploding gradient), complexity of generator’s learning task, architecture of
the generator, regularization, and others. Consequently, the size of generator learning rate does not
solely determine how large the perturbations of the discriminator updates are but serve to modulate
them. Thus, the generator learning rate may be much larger than the discriminator learning rate
without inducing large perturbation into the discriminator learning.

Even the learning dynamics of the generator is different from the learning dynamics of the discrimi-
nator, though they both have the same learning rate. Figure A51 shows the loss of the generator and
the discriminator for an experiment with DCGAN on CelebA, where the learning rate was 0.0005
for both the discriminator and the generator. However, the discriminator loss is decreasing while
the generator loss is increasing. This example shows that the learning rate neither determines the
perturbations nor the progress in learning for two coupled update rules. The choice of the learning
rate for the generator should be independent from choice for the discriminator. Also the search ranges
of discriminator and generator learning rates should be independent from each other, but adjusted to
the corresponding architecture, task, etc.

54

0 5 10 15 20
mini-batch x 1k

0

1

2

3

4

5

6

lo
ss

discriminator loss
generator loss

Figure A51: The respective losses of the discriminator and the generator show the different learning
dynamics of the two networks.

A6 Used Software, Datasets, and Pretrained Models

All experiments rely on the respective reference implementations for corresponding GAN model. The
software framework for our experiments was Tensorflow 1.1 [1] and Python 3.6. We used following
software, datasets and pretrained models:

• BEGAN in Tensorflow, https://github.com/carpedm20/BEGAN-tensorflow, Fixed
random seeds removed. Accessed: 2017-05-30

• DCGAN in Tensorflow, https://github.com/carpedm20/DCGAN-tensorflow, Fixed
random seeds removed. Accessed: 2017-04-03

• Improved Training of Wasserstein GANs, language model, https://github.com/
igul222/improved_wgan_training/blob/master/gan_language.py, Accessed:
2017-06-12

• Inception-v3 pretrained, http://download.tensorflow.org/models/image/
imagenet/inception-2015-12-05.tgz, Accessed: 2017-05-02

A7 References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-
fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Va-
sudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

[2] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. ArXiv e-prints, abs/1701.07875,
2017.

[3] H. Attouch, X. Goudou, and P. Redont. The heavy ball with friction method, I. the continu-
ous dynamical system: Global exploration of the local minima of a real-valued function by
asymptotic analysis of a dissipative dynamical system. Communications in Contemporary
Mathematics, 2(1):1–34, 2000.

[4] D. Berthelot, T. Schumm, and L. Metz. BEGAN: boundary equilibrium generative adversarial
networks. ArXiv e-prints, abs/1703.10717, 2017.

55

https://github.com/carpedm20/BEGAN-tensorflow
https://github.com/carpedm20/DCGAN-tensorflow
https://github.com/igul222/improved_wgan_training/blob/master/gan_language.py
https://github.com/igul222/improved_wgan_training/blob/master/gan_language.py
http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz

[5] D. P. Bertsekas and J. N. Tsitsiklis. Gradient convergence in gradient methods with errors.
SIAM Journal on Optimization, 10(3):627–642, 2000.

[6] S. Bhatnagar, H. L. Prasad, and L. A. Prashanth. Stochastic Recursive Algorithms for Optimiza-
tion. Lecture Notes in Control and Information Sciences. Springer-Verlag London, 2013.

[7] V. S. Borkar. Stochastic approximation with two time scales. Systems & Control Letters,
29(5):291–294, 1997.

[8] V. S. Borkar and S. P. Meyn. The O.D.E. method for convergence of stochastic approximation
and reinforcement learning. SIAM Journal on Control and Optimization, 38(2):447–469, 2000.

[9] J. H. Lim J. C. and Ye. Geometric GAN. ArXiv e-prints, abs/1705.02894, 2017.

[10] T. Che, Y. Li, A. P. Jacob, Y. Bengio, and W. Li. Mode regularized generative adversarial
networks. ArXiv e-prints, abs/1612.02136, 2016. The International Conference on Learning
Representations (ICLR), 2017.

[11] C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn, and T. Robinson. One billion
word benchmark for measuring progress in statistical language modeling. ArXiv e-prints,
abs/1312.3005, 2013.

[12] D.-A., T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning by exponential
linear units (ELUs). ArXiv e-prints, abs/1511.07289, 2015. The International Conference on
Learning Representations (ICLR), 2016.

[13] D. DiCastro and R. Meir. A convergent online single time scale actor critic algorithm. J. Mach.
Learn. Res., 11:367–410, 2010.

[14] D. C. Dowson and B. V. Landau. The Fréchet distance between multivariate normal distributions.
Journal of Multivariate Analysis, 12:450–455, 1982.

[15] M. Fréchet. Sur la distance de deux lois de probabilité. C. R. Acad. Sci. Paris, 244:689–692,
1957.

[16] S. Gadat, F. Panloup, and S. Saadane. Stochastic heavy ball. ArXiv e-prints, abs/1609.04228,
2016.

[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
27, pages 2672–2680, 2014.

[18] I. J. Goodfellow. On distinguishability criteria for estimating generative models. ArXiv e-prints,
abs/1412.6515, 2014.

[19] I. J. Goodfellow. NIPS 2016 tutorial: Generative adversarial networks. ArXiv e-prints,
abs/1701.00160, 2017.

[20] X. Goudou and J. Munier. The gradient and heavy ball with friction dynamical systems: the
quasiconvex case. Mathematical Programming, 116(1):173–191, 2009.

[21] P. Grnarova, K. Y. Levy, A. Lucchi, T. Hofmann, and A. Krause. An online learning approach
to generative adversarial networks. ArXiv e-prints, abs/1706.03269, 2017.

[22] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. Improved training of
Wasserstein GANs. ArXiv e-prints, abs/1704.00028, 2017.

[23] M. W. Hirsch. Convergent activation dynamics in continuous time networks. Neural Networks,
2(5):331–349, 1989.

[24] R. D. Hjelm, A. P. Jacob, T. Che, K. Cho, and Y. Bengio. Boundary-seeking generative
adversarial networks. ArXiv e-prints, abs/1702.08431, 2017.

[25] S. Hochreiter and J. Schmidhuber. Flat minima. Neural Computation, 9(1):1–42, 1997.

56

[26] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. Journal of Machine Learning Research, 37:448–456, 2015. Proceedings
of the 32nd International Conference on Machine Learning (ICML15).

[27] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional
adversarial networks. ArXiv e-prints, abs/1611.07004, 2016.

[28] P. Karmakar and S. Bhatnagar. Two timescale stochastic approximation with controlled Markov
noise and off-policy temporal difference learning. ArXiv e-prints, abs/1503.09105, 2017.

[29] P. Karmakar, S. Bhatnagar, and A. Ramaswamy. Dynamics of stochastic approximation with
Markov iterate-dependent noise with the stability of the iterates not ensured. ArXiv e-prints,
abs/1601.02217, 2016.

[30] D. P. Kingma and J. L. Ba. Adam: A method for stochastic optimization. ArXiv e-prints,
abs/1412.6980, 2014. The International Conference on Learning Representations (ICLR), San
Diego, 2015.

[31] V. R. Konda. Actor-Critic Algorithms. PhD thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, 2002.

[32] V. R. Konda and V. S. Borkar. Actor-critic-type learning algorithms for Markov decision
processes. SIAM J. Control Optim., 38(1):94–123, 1999.

[33] V. R. Konda and J. N. Tsitsiklis. Linear stochastic approximation driven by slowly varying
Markov chains. Systems & Control Letters, 50(2):95–102, 2003.

[34] V. R. Konda and J. N. Tsitsiklis. Convergence rate of linear two-time-scale stochastic approxi-
mation. The Annals of Applied Probability, 14(2):796–819, 2004.

[35] H. J. Kushner and D. S. Clark. Stochastic Approximation Methods for Constrained and
Unconstrained Systems. Applied Mathematical Sciences. Springer-Verlag New York, 1978.

[36] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. P. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi.
Photo-realistic single image super-resolution using a generative adversarial network. ArXiv
e-prints, abs/1609.04802, 2016.

[37] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In Proceedings
of International Conference on Computer Vision (ICCV), 2015.

[38] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural network
acoustic models. In Proceedings of the 30th International Conference on Machine Learning
(ICML13), 2013.

[39] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. Unrolled generative adversarial networks.
ArXiv e-prints, abs/1611.02163, 2016.

[40] A. Mokkadem and M. Pelletier. Convergence rate and averaging of nonlinear two-time-scale
stochastic approximation algorithms. The Annals of Applied Probability, 16(3):1671–1702,
2006.

[41] V. Nagarajan and J. Z. Kolter. Gradient descent GAN optimization is locally stable. ArXiv
e-prints, abs/1706.04156, 2017.

[42] V. Nair and G. E. Hinton. Rectified linear units improve restricted Boltzmann machines. In
J. Fürnkranz and T. Joachims, editors, Proceedings of the 27th International Conference on
Machine Learning (ICML10), pages 807–814, 2010.

[43] Y. Nesterov. A method of solving a convex programming problem with convergence rate
o(1/k2). Soviet Mathematics Doklady, 27:372–376, 1983.

[44] B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

57

[45] H. L. Prasad, L. A. Prashanth, and S. Bhatnagar. Two-timescale algorithms for learning Nash
equilibria in general-sum stochastic games. In Proceedings of the 2015 International Conference
on Autonomous Agents and Multiagent Systems (AAMAS ’15), pages 1371–1379, 2015.

[46] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolu-
tional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[47] A. Ramaswamy and S. Bhatnagar. Stochastic recursive inclusion in two timescales with an
application to the lagrangian dual problem. Stochastics, 88(8):1173–1187, 2016.

[48] T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved
techniques for training GANs. ArXiv e-prints, abs/1606.03498, 2016.

[49] V. B. Tadić. Almost sure convergence of two time-scale stochastic approximation algorithms.
In Proceedings of the 2004 American Control Conference, volume 4, pages 3802–3807, 2004.

[50] L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of generative models. ArXiv
e-prints, abs/1511.01844, 2015. The International Conference on Learning Representations
(ICLR), 2016.

[51] L. N. Wasserstein. Markov processes over denumerable products of spaces describing large
systems of automata. Probl. Inform. Transmission, 5:47–52, 1969.

[52] Y. Wu, Y. Burda, R. Salakhutdinov, and R. B. Grosse. On the quantitative analysis of decoder-
based generative models. ArXiv e-prints, abs/1611.04273, 2016. The International Conference
on Learning Representations (ICLR), 2017.

[53] F. Yu, Y. Zhang, S. Song, A. Seff, and J. Xiao. LSUN: construction of a large-scale image
dataset using deep learning with humans in the loop. ArXiv e-prints, abs/1506.03365, 2015.

[54] J. Zhang, D. Zheng, and M. Chiang. The impact of stochastic noisy feedback on distributed
network utility maximization. In IEEE INFOCOM 2007 - 26th IEEE International Conference
on Computer Communications, pages 222–230, 2007.

List of Figures

1 Oscillation in GAN training . 2

2 Heavy Ball with Friction . 4

3 FID for Gaussian noise. 7

4 The FID for BEGAN on CelebA. 8

5 FID for BEGAN trained on CelebA. 9

6 BEGAN CelebA samples FID 48. 9

7 BEGAN CelebA samples FID 26. 10

8 FID for DCGAN trained on CelebA. 10

9 Best DCGAN CelebA images . 11

10 Performance of Improved WGAN on One Billion Word. 11

11 FID of BEGANs on the LSUN bedroom dataset. 13

12 BEGAN LSUN samples. 13

13 FID of DCGANs on the LSUN bedroom dataset. 14

14 DCGAN LSUN samples. 14

A15 FID for Gaussian noise. 18

A16 FID for Gaussian blur . 18

58

A17 FID for implanted block rectangles. 19

A18 FID for swirls. 19

A19 FID salt and pepper noise. 19

A20 FID ImageNet contamination. 20

A21 CelebA BEGAN mini-batch 0 FID 403. 21

A22 CelebA BEGAN mini-batch 5000 FID 105. 21

A23 CelebA BEGAN mini-batch 20000 FID 48. 21

A24 CelebA BEGAN mini-batch 100000 FID 39. 21

A25 CelebA BEGAN mini-batch 200000 FID 33. 22

A26 CelebA DCGAN mini-batch 0, FID 453. 22

A27 CelebA DCGAN mini-batch 5000, FID 111. 23

A28 CelebA DCGAN mini-batch 15000, FID 29. 24

A29 CelebA DCGAN mini-batch 45000, FID 18. 25

A30 LSUN BEGAN mini-batch 0 FID 445. 25

A31 LSUN BEGAN mini-batch 25000 FID 233. 26

A32 LSUN BEGAN mini-batch 50000 FID 174. 26

A33 LSUN BEGAN mini-batch 100000 FID 129. 26

A34 LSUN BEGAN mini-batch 150000 FID 123. 26

A35 LSUN Bedroom DCGAN mini-batch 0 FID 360. 27

A36 LSUN Bedroom DCGAN mini-batch 10000 FID 200. 28

A37 LSUN Bedroom DCGAN mini-batch 20000 FID 110. 29

A38 LSUN Bedroom DCGAN mini-batch 110000 FID 69. 30

A39 Heavy Ball with Friction. 46

A40 BEGAN network architecture. 48

A41 FID for BEGAN trained on CelebA. 48

A42 FID for BEGAN trained on CelebA at the end of training. 49

A43 FID for DCGAN trained on CelebA. 49

A44 FID for DCGAN trained on CelebA at the end of training. 50

A45 Performance of Improved WGAN models on the One Billion Word benchmark. . . . 51

A46 FID for BEGAN trained on LSUN bedroom. 52

A47 FID for BEGAN trained on LSUN bedroom zoomed in at the end of training. . . . 52

A48 FID for DCGAN trained on LSUN bedroom. 53

A49 FID for DCGAN trained on LSUN bedroom zoomed in at the end of training. . . . 53

A50 BEGAN CelebA k fixed. 54

A51 Learning dynamics of two networks. 55

List of Tables

1 BEGAN CelebA . 9

2 DCGAN CelebA . 10

59

3 WGAN-GP Billion Word . 12

4 One Billion Word samples. 12

5 BEGAN LSUN . 13

6 DCGAN LSUN . 14

A7 FID and IND for different disturbances. 20

A8 Samples of One Billion Word benchmark generated by Improved WGAN. 51

60

	A1 Fréchet Inception Distance (FID)
	A2 Two-Time Scale Stochastic Approximation Algorithms
	A2.1 Convergence of Two-Time Scale Stochastic Approximation Algorithms
	A2.1.1 Additive Noise
	A2.1.2 Linear Update, Additive Noise, and Markov Chain
	A2.1.3 Additive Noise and Controlled Markov Processes

	A2.2 Rate of Convergence of Two-Time Scale Stochastic Approximation Algorithms
	A2.2.1 Linear Update Rules
	A2.2.2 Nonlinear Update Rules

	A2.3 Equal Time Scale Stochastic Approximation Algorithms
	A2.3.1 Equal Time Scale for Saddle Point Iterates
	A2.3.2 Equal Time Step for Actor-Critic Method

	A3 ADAM Optimization as Stochastic Heavy Ball with Friction
	A4 Experiments: Additional Details and Results
	A4.1 CelebA
	A4.1.1 BEGAN
	A4.1.2 DCGAN

	A4.2 One Billion Word
	A4.3 LSUN Bedrooms
	A4.3.1 BEGAN
	A4.3.2 DCGAN

	A4.4 Fixed k BEGAN at CelebA

	A5 Discriminator vs. Generator Learning Rate
	A6 Used Software, Datasets, and Pretrained Models
	A7 References
	List of figures
	List of tables

