
Sequence Classification For Protein Analysis

Sepp Hochreiter and Klaus Obermayer

Technische Universität Berlin

To analyze the sequential data obtained from genome sequencing (DNA and
the translated protein sequences), from EEG and ECG measurements, from
environmental sensors (e.g. to detect earth quakes), or from sensors used in
machine fault detection, sequences must be classified. These examples show
that in biology, medicine, and control a great demand for sequence classification
methods exists in order to evaluate recorded sequences and to understand the
data generation process. But until now machine learning techniques failed to
offer sufficient solutions for sequence classification.

The classifying sequences by treating them as vectors is not feasible because
the sequences have different length and the model complexity increases with
sequence length which in turn decreases the generalization capability. Recent
approaches to sequence classification first extract features from the sequence
and then apply classification algorithms on the feature vectors, e.g. kernel meth-
ods using kernels which were designed for sequences. However, the quality of
these approaches rise and fall with the quality of the extracted features, i.e.
constructed kernels. If not enough prior knowledge about relevant sequence
features is available these feature extraction approaches are not reliable.

In principle the automatic extraction of appropriate sequence features can
be realized by time series methods, i.e. by dynamical systems. However, se-
quence classification differs from traditional time series prediction because only
at sequence end the system must supply an output, the class label. Here new
problems arise. At each sequence position the classifier may receive impor-
tant class information needed at the sequence end, therefore it must deal with
long-term dependencies which leads to the problem of the “vanishing gradient”
[3, 1]. The “vanishing gradient” addresses the characteristics of non-chaotic
dynamical systems that the gradient of states with respect to previous states
vanishes exponentially with the temporal distance between these states. This
feature of non-chaotic systems results from the fact that initial conditions do
not have large influence on later states. Therefore non-chaotic system are pre-
vented from learning to store information over time. However learning to store
relevant information till sequence end is essential for sequence classification.

To avoid the “vanishing gradient” problem we have introduced the “Long
Short-Term Memory” (LSTM, [3]) and now report its application to protein
motif and fold recognition. A volume conserving mapping of LSTM’s central
subarchitecture keeps information and avoids the “vanishing gradient”. Volume

1



conservation is realized by the identity of one unit after applying the sigmoid
unit (“memory cell input”) to the incoming signals. However during sequence
processing relevant information is superimposed by irrelevant information. To
avoid the disturbance from irrelevant information LSTM contains an unit, called
“input gate”, which controls the information storage. The identity unit together
with the “input gate” and an analogous unit for the output (“output gate”)
serves as memory subarchitecture (“memory cell”). An LSTM network is build
of these subarchitectures, where all units are fully interconnected within one
memory cell and between memory cells.

We applied LSTM networks to protein sequences in order to predict its func-
tional class or its 3D structure. The sequence of locally coded amino acids is
processed by shifting a window over the sequence. The gating mechanism identi-
fies and extracts sequence regions which contribute to classification, therefore we
can extract motifs typical for a class. These tasks are important for extracting
binding or active sites of the protein in order to develop new drugs. Further 3D
protein folding features can be identified which would allow understand diseases
resulting from protein misfolding.

In the first experiment the task is to predict the functional class of proteins.
We used the PROSITE motif data base where class labels are extracted by lit-
erature search and functional motifs are constructed by biochemistry experts.
LSTM was trained on 15 PROSITE classes and on the “SwissProt” data set
(140,000 proteins). In seven out of the 15 protein classes LSTM re-discovered
the known PROSITE motifs – without expert knowledge. For the remaining
eight classes, LSTM found novel motifs which yielded on average superior clas-
sification results compared to the PROSITE motifs.

In a second set of experiments the task was to predict the 3D structure of
proteins by predicting their fold classes. We used the SCOP fold domain data
base. This task is more difficult than the previous because single motifs are not
enough to predict the folding class. We trained LSTM models for 187 SCOP fold
classes after randomly withdrawing 100 test sequences which sequence identities
≤ 30 %. The model selection set was divided into a training set (90 %) and a
validation set (10 %), which was used to determine the optimal stopping time
for learning, number of memory cells, and window size. A test sequence is
classified to the class for which the according network had the largest output.
As accuracy measure we used the Q percentage [2] and obtained 51 % accuracy
with LSTM. In [2] two SVM methods applied to feature vectors derived from
the sequences obtained 33.5 % and 43.5 % while a neural network yielded 20.5
% accuracy. Note, that the task in [2] was easier because the sequence identity
was ≤ 35 % on only 27 SCOP folds, i.e. LSTM had 7 times more possibilities
to do wrong.

References
[1] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult. IEEE

Transactions on Neural Networks, 5(2):157–166, 1994.

[2] C. Ding and I. Dubchak. Multi-class protein fold recognition using support vector machines and neural networks.
Bioinformatics, 17(4):349–358, 2001.

[3] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997.

2


