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Abstract

The goal of this paper is to demonstrate that established rank correlation
measures are not ideally suited for measuring rank correlation for numerical
data that are perturbed by noise. We propose to use robust rank correlation
measures based on fuzzy orderings. We demonstrate that the new measures
overcome the robustness problems of existing rank correlation coefficients. As
a first step, this is accomplished by illustrative examples. The paper closes
with an outlook on future research and applications.

1 Introduction

Correlation measures are among the most basic tools in statistical data analysis
and machine learning. They are applied to pairs of observations (n ≥ 2)

(xi, yi)n
i=1 (1)

to measure to which extent the two observations comply with a certain model.
The most prominent representative is surely Pearson’s product moment coefficient
[1, 18], often nonchalantly called correlation coefficient for short. Pearson’s product
moment coefficient is applicable to numerical data and assumes a linear relationship
as the underlying model; therefore, it can be used to detect linear relationships,
but no non-linear ones.

Rank correlation measures [11, 13, 16] are intended to measure to which extent
a monotonic function is able to model the inherent relationship between the two
observables. They neither assume a specific parametric model nor specific distribu-
tions of the observables. They can be applied to ordinal data and, if some ordering
relation is given, to numerical data too. Therefore, rank correlation measures are
ideally suited for detecting monotonic relationships, in particular, if more specific
information about the data is not available. The two most common approaches
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are Spearman’s rank correlation coefficient (short Spearman’s rho) [20, 21] and
Kendall’s tau (rank correlation coefficient) [2, 12, 13].

This paper argues why these well-known rank correlation measures are not
ideally suited for measuring rank correlation for numerical data that are perturbed
by noise. Consequently, we propose a robust rank correlation measure on the basis
of fuzzy orderings. The superiority of the new measure is demonstrated by means
of illustrative examples.

2 An Overview of Rank Correlation Measures

Assume that we are given a family of pairs as in (1), where all xi and yi are from
linearly ordered domains X and Y , respectively. Spearman’s rho is computed as

ρ = 1− 6
∑n

i=1(r(xi)− r(yi))2

n(n2 − 1)
,

where r(xi) is the rank of value xi if we sort the list (x1, . . . , xn); r(yi) is defined
analogously. So, Spearman’s rho measures the sum of quadratic distances of ranks
and scales this measure to the interval [−1, 1]. It can be checked easily that a value
of 1 is obtained if the two rankings coincide and that a value of −1 is obtained if
one ranking is the reverse of the respective other. Note that the above definition of
r(xi) and r(yi) was simplified, because it did not take coinciding values, so-called
ties, into account. In such a case, the values r(xi) are usually defined as the mean
value of all ranks of consecutive coinciding values in the sorted list.

To define the Kendall tau rank correlation coefficient, we need to introduce the
concepts of concordance, discordance and ties first. For a given pair of indices
(i, j) ∈ {1, . . . , n}2, we say that (i, j) is concordant if xi < xj and yi < yj ; we say
that (i, j) is discordant if xi < xj and yi > yj . If xi = xj , we say that (i, j) is
a tie in the first component. If yi = yj , we say that (i, j) is a tie in the second
component. We simply say that (i, j) is a tie if (i, j) is a tie in either component.

Let us denote the numbers of concordant, discordant and tied pairs as follows:

C = |{(i, j) | xi < xj and yi < yj}|
D = |{(i, j) | xi < xj and yi > yj}|

T = |{(i, j) | xi = xj}|
U = |{(i, j) | yi = yj}|

Then the basic variant of Kendall’s tau which we denote with τa is computed as
the quotient

τa =
C −D

1
2n(n− 1)

.

If there are no ties and the two rankings coincide, we have 1
2n(n − 1) concordant

and no discordant pairs, so τa = 1; if we have no ties and one ranking is the reverse
of the respective other, we have no concordant and 1

2n(n− 1) discordant pairs, so
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a value of τa = −1 is obtained. So, in these extremal cases, Kendall’s tau gives the
same results as Spearman’s rho.

Ties, no matter whether in the first or in the second list, are not counted in the
above definition of τa, so they lower the absolute value of τa. Therefore, τa is best
suited for detecting strictly monotonic relationships, but not ideally suited in the
presence of ties. A well-established second variant [13] is the following:

τb =
C −D√

1
2n(n− 1)− T

√
1
2n(n− 1)− U

,

It takes ties into account, but is still not fully robust to ties (see next section).
A simple and tie-robust rank correlation measure is the gamma rank correlation
measure according to Goodman and Kruskal [11] that is defined as

γ =
C −D
C +D

.

Finally, we remark that τa, τb and γ coincide in all cases where no ties occur in the
data.

3 Motivation

Historically, all rank correlation measures highlighted above have been introduced
with the aim to measure rank correlation of ordinal data (e.g. natural numbers,
marks, quality classes, ranks). The measurement of rank correlation for real-valued
data, however, is equally important in statistics and machine learning, but raises
completely new issues. Depending on the source, numerical data are almost always
subject to random perturbations—noise. The concepts introduced above do not
take this into account. Pairs are counted as concordant or discordant only on the
basis of ordering relations, but without taking into account that only minimal dif-
ferences may decide whether a pair is concordant or discordant. If one observable
depends on the other in a clearly monotonic way and if the level of noise is low,
then the rank correlation measures introduced above will still reveal this strictly
monotonic relationship and will not be compromised by minor local effects of noise.
In the presence of a larger percentage of ties, however, already the slightest per-
turbations may lead to situations in which the above rank correlation coefficients
cannot yield meaningful results anymore.

Consider the data sets in Figure 1. We see a monotonic, yet not strictly mono-
tonic, relationship. The left plot shows data without noise, i.e. yi = f(xi) for a non-
decreasing function f . For these data, we obtain ρ = 0.737, τb = 0.639 and γ = 1
(which confirms that γ is most robust to ties). The middle plot shows the same
data, but with additive normally distributed noise with zero mean and σ = 0.001.
Although the noise can hardly be seen from the plot, we obtain ρ = 0.519 and
τb = γ = 0.387. These results indicate that none of the three measures can ad-
equately handle a large proportion of ties in the presence of noise. For σ = 0.01
(right plot), the values are slightly lower, but not significantly: ρ = 0.456 and
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Figure 1: Scatter plots of a simple monotonic relationship with different noise
levels.

τb = γ = 0.331. So we can conclude that it is rather the presence of noise in gen-
eral than the magnitude of noise that distracts the three rank correlation measures.

The obvious reason for the weakness described above is the fact that all mea-
sures only take ordering relationships into account, but neglect similarities/closeness
of data points. To illustrate that, consider two pairs (a, c) and (b, c), where b > a.
Obviously, this is a tie in the second component. If we add some noise to the second
component of the second pair, i.e., if we replace (b, c) by (b, c + ε), then ε decides
whether ((a, c), (b, c + ε)) is a tie (for ε = 0), concordant (ε > 0), or discordant
ε < 0), where the magnitude of ε plays no role at all. So we observe a discon-
tinuous behavior. This toy example thereby serves as a proof that all measures
introduced above depend on the data in a discontinuous way. Figure 2 illustrates
this: it shows graphically how the pairs (i, j) and (j, i) are classified by keeping
(xi, yi) constant and considering (xj , yj) variable. It is obvious that, in close-to-tie
situations like the simple example above, little variations of the data can lead to
drastic (i.e. discontinuous) changes of the classification of a pair (i, j).

The question arises how we can define a robust rank correlation measure that
depends continuously on the data by taking similarities into account, but still serves
as a meaningful measure of rank correlation. Obviously, the measure should be
designed such that close-to-tie pairs receive less attention than pairs that are clearly
concordant or discordant. A reasonable idea would be to base such a concept on the
probabilities to which concordant/discordant pairs are observed as such compared
to the probabilities that they are falsely observed as something else. That may be a
reasonable approach. Note, however, that such probabilities can only be computed
if we know the joint distribution of x and y values or at least if we make distribution
assumptions. In practice, such information is most often unavailable and, surely,
we do not want to sacrifice the unique feature of rank correlation measures that
they are distribution-free.

In our opinion, fuzzy orderings provide a meaningful way to overcome the dif-
ficulties explained above.
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Hi,jL is discordant

Hj,iL is discordant

Hj,iL is concordant
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Figure 2: Visualization of the concepts of concordance, discordance and ties for
fixed (xi, yi) and variable (xj , yj). The horizontal axis corresponds to xj , while the
vertical axis corresponds to yj .

4 Fuzzy Orderings

Before we can introduce a fuzzy ordering-based rank correlation coefficient, we need
to provide some basics of fuzzy orderings. We restrict to an absolutely necessary
minimum and refer to literature for details. We assume that the reader is aware of
the most basic concepts of triangular norms [15] and fuzzy relations [6, 10, 17].

A fuzzy relation L : X2 → [0, 1] is called fuzzy ordering with respect to a t-norm
T and a T -equivalence E : X2 → [0, 1], for brevity T -E-ordering, if and only if the
following three axioms for all x, y, z ∈ X:

(i) E-Reflexivity: E(x, y) ≤ L(x, y)

(ii) T -E-antisymmetry: T (L(x, y), L(y, x)) ≤ E(x, y)

(iii) T -transitivity: T (L(x, y), L(y, z)) ≤ L(x, z)

Moreover, we call a T -E-ordering L strongly complete if max(L(x, y), L(y, x)) = 1
for all x, y ∈ X [4].

Several correspondences between distances and fuzzy equivalence relations are
available [7, 8, 14, 23]. From these results, we can easily infer that (assume r > 0
in the following)

Er(x, y) = max(0, 1− 1
r |x− y|)

is a TL-equivalence on R, where TL(x, y) = max(0, x+y−1) denotes the  Lukasiewicz
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t-norm. Analogously,
E′r(x, y) = exp(− 1

r |x− y|)

is a TP-equivalence on R, where TP(x, y) = xy denotes the product t-norm.1

Based on a general representation theorem for strongly complete fuzzy orderings
[4, Theorem 4.2], we can further prove that

Lr(x, y) = min(1,max(0, 1− 1
r (x− y)))

is a strongly complete TL-Er-ordering on R and that

L′r(x, y) = min(1, exp(− 1
r (x− y))

is a strongly complete TP-E′r-ordering on R. As TL ≤ TP, we can trivially conclude
that L′r is also a strongly complete TL-E′r-ordering.

In order to generalize the notion of concordant and discordant pairs, we need
the notion of a strict fuzzy ordering. We call a binary fuzzy relation R : X2 → [0, 1]
a strict fuzzy ordering with respect to T and a T -equivalence E : X2 → [0, 1], for
brevity strict T -E-ordering, if it is irreflexive (i.e. R(x, x) = 0 for all x ∈ X),
T -transitive, and E-extensional, that is,

T (E(x, x′), E(y, y′), R(x, y)) ≤ R(x′, y′)

for all x, x′, y, y′, z ∈ X [5].
Given a T -E-ordering L : X2 → [0, 1],

R(x, y) = min(L(x, y), NT (L(y, x))), (2)

where NT (x) = sup{y ∈ [0, 1] | T (x, y) = 0} is the residual negation of T , is the
most appropriate choice for extracting a strict fuzzy ordering from a given fuzzy
ordering L (for a detailed argumentation, see [5]). From this construction, we can
infer that the fuzzy relation

Rr(x, y) = min(1,max(0, 1
r (y − x)))

is a strict TL-Er-ordering and that

R′r(x, y) = max(0, 1− exp(− 1
r (y − x)))

is a strict TL-E′r-ordering.
If a given TL-E-ordering L : X2 → [0, 1] is strongly complete, it can be proved

that the fuzzy relation R defined as in (2) simplifies to

R(x, y) = 1− L(y, x)

and that the following holds:

R(x, y) + E(x, y) +R(y, x) = 1 (3)
min(R(x, y), R(y, x)) = 0 (4)

1In the following, we will further use the well-known minimum t-norm TM(x, y) = min(x, y).
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5 A Fuzzy Ordering-Based Rank Correlation
Coefficient

The previous section has provided us with the apparatus that is necessary to de-
fine a generalized rank correlation measure. Assume that the data are given as
in (1) again (with xi ∈ X and yi ∈ Y for all i = 1, . . . , n). Further assume
that we are given two TL-equivalences EX : X2 → [0, 1] and EY : Y 2 → [0, 1],
a strongly complete TL-EX -ordering LX : X2 → [0, 1] and a strongly complete
TL-EY -ordering LY : Y 2 → [0, 1]. Then we can define a strict TL-EX -ordering
on X as RX(x1, x2) = 1 − LX(x2, x1) and a strict TL-EY -ordering on Y as
RY (y1, y2) = 1− LY (y2, y1).

Spearman’s rho is based on rankings. Rankings are crisp concepts in which
it is not easy to accommodate degrees of relationship in a straightforward way.
Thus it is more meaningful to use pairwise comparisons to define a concept of rank
correlation, just like Kendall’s tau and the gamma measure do.

Given an index pair (i, j), we can compute the degree to which (i, j) is a con-
cordant pair as

C̃(i, j) = T̄ (RX(xi, xj), RY (yi, yj))

and the degree to which (i, j) is a discordant pair as

D̃(i, j) = T̄ (RX(xi, xj), RY (yj , yi)),

where T̄ is some t-norm to aggregate the relationships of x and y components.
It is easy to prove that, for all index pairs (i, j), the equality

C̃(i, j) + C̃(j, i) + D̃(i, j) + D̃(j, i) + T̃ (i, j) = 1 (5)

holds. In this equation, T̃ (i, j) denotes the degree to which (i, j) is a tie in either
variable

T̃ (i, j) = S̄(EX(xi, xj), EY (yi, yj)),

where S̄ is the dual t-conorm of T̄ (i.e. S̄(x, y) = 1 − T̄ (1 − x, 1 − y)). Note that
(5) does not hold in general. The properties (3) and (4), however, are sufficient
conditions for the fulfillment of (5).

If we adopt the simple sigma count idea to measure the cardinality of a fuzzy
set [9], we can compute the numbers of concordant pairs C̃ and discordant pairs
D̃, respectively, as

C̃ =
n∑

i=1

∑
j 6=i

C̃(i, j), D̃ =
n∑

i=1

∑
j 6=i

D̃(i, j).

The question arises whether we should attempt to generalize τa, τb or γ. As the
main motivation is to get rid of the influence of close-to-ties pairs in the presence
of noise, it is immediate that the idea behind γ is the most promising one. So, with
the assumptions from above, we define our fuzzy ordering-based rank correlation
measure γ̃ as

γ̃ =
C̃ − D̃
C̃ + D̃
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Figure 3: C̃(i, j)+C̃(j, i) (left), D̃(i, j)+D̃(j, i) (middle), and T̃ (i, j) (right) plotted
as functions of xj and yj for fixed xi and yi (using the relations Er and Rr and
the minimum t-norm T̄ = TM for aggregation).

Then we can also infer the following:

C̃ =
n∑

i=1

∑
j>i

(C̃(i, j) + C̃(j, i)) D̃ =
n∑

i=1

∑
j>i

(D̃(i, j) + D̃(i, j))

Thus, by (5), C̃ + D̃ equals the number of non-tie pairs if we consider each choice
of indices i, j only once (in contrast to considering (i, j) and (j, i) independently
for each i and j). So γ̃ measures the difference of concordant and discordant pairs
relative to the number of non-tie pairs; the concept of “tiedness” is a fuzzy one,
however.

It is obvious that, in case that EX and EY are crisp equalities and that RX and
RY are crisp linear strict orderings, γ̃ coincides with γ. So what is the difference
if RX and RY are non-trivial fuzzy relations? We will see shortly that concor-
dant/discordant pairs are counted more if they are dissimilar and less if they are
similar—which perfectly corresponds to our intention. Let us demonstrate this fact
with an example.

Assume X = Y = R, EX = EY = Er, and RX = RY = Rr for some r > 0.
Fixing some xi and yi and considering C̃(i, j)+ C̃(j, i), D̃(i, j)+D̃(j, i), and T̃ (i, j)
as functions of the two variables xj and yj , the graphs shown in Figure 3 can be
obtained. It can be seen that pairs are counted fully if |xi−xj | > r and |yi−yj | > r
(i.e. like in the classical γ measure). If one of the two distances is smaller than r,
the pair is considered as a tie to the corresponding degree T̃ (i, j) and only counted
to a degree of 1 − T̃ (i, j). If the relations EX = EY = E′r, and RX = RY = R′r
are used, the effect is qualitatively similar, r also controls to which degree a close-
to-tie pair is counted, also in a monotonic, yet asymptotic fashion (see Figure 4).
It is obvious that the fuzzy sets depicted in Figures 3 and 4 are nothing else but
continuous fuzzifications of the crisp partition depicted in Figure 2.

It is clear from the above examples that, the smaller r, the more γ̃ resembles to
γ. For both, the variant based on Er/Rr and the variant based on E′r/R′r, it can
be proved that γ̃ converges to γ for r → 0. One also sees that, if r is chosen so large
that |xi−xj | ≤ r and |yi−yj | ≤ r for all pairs, γ̃ based on Rr with T̄ = TM counts
all pairs to a degree proportionally to the minimum of these two distances—which
is a meaningful rank correlation coefficient, too. For T̄ = TP, γ̃ based on Rr counts
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Figure 4: C̃(i, j)+C̃(j, i) (left), D̃(i, j)+D̃(j, i) (middle), and T̃ (i, j) (right) plotted
as functions of xj and yj for fixed xi and yi (using the relations E′r and R′r and
the product t-norm T̄ = TP for aggregation).

pairs to a degree proportionally to the product of the two distances. With more
effort, it is possible to prove that the R′r-based variants of γ̃, with r →∞, converge
to the same limit values as the Rr-based variants.

Another property of γ̃ is immediate to see: if the fuzzy relations RX and RY

are continuous and if T̄ is a continuous t-norm, then γ̃ depends continuously on
the data set (xi, yi)n

i=1.

6 Experiments

Let us first reconsider the example from Section 3. More specifically, we are given
100 uniformly distributed random values (x1, . . . , x100) from the unit interval. The
list (y1, . . . , y100) is computed as yi = f(xi), where f is a simple, piecewise linear,
non-decreasing function that has a relatively large flat area. In order to study how
different rank correlation measures react to noise, we contaminated the data points
with additive, independent, normally distributed noise with 0 mean and standard
deviation σ. Figure 5 shows these data sets. Figure 6 displays the results that
we obtained for different rank correlation measures. We compared ρ, τb, γ and
different variants of γ̃. Every line in Figure 6 corresponds to the results obtained
by one rank correlation measure depending on the noise level σ. The two lines for
τb (dotted, black) and γ (dotted, light gray) coincide except for no noise (σ = 0).
Both lines reveal that these two measures react to noise in a non-robust way. More
or less the same is true for ρ (dotted, medium gray). The other lines correspond
to different variants of γ̃. Solid lines correspond to γ̃ using Rr and dashed lines
denote the results for γ̃ using R′r (where we use the same r for both components
and T̄ = TM). We used r = 0.05 (black), r = 0.2 (medium gray), and r = 0.5 (light
gray). We see that all six different variants react to the noise in a more robust way
than the three crisp measures. Clearly, the higher r, the more noise is neglected.
Note, however, that, the larger r, the more difficult it is for γ̃ to find out whether
there are slightly non-monotonic parts in the data.

So let us consider a different setting. Now we fix the noise level σ = 0.01 and
use different functions to create the second list (y1, . . . , y100). Right of x = 0.5, we
use f(x) = x

2 + 1
4 and, to the left of x = 0.5, we linearly interpolate between (0, q)
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Figure 5: Different data sets obtained from contaminating a non-decreasing rela-
tionship by normally distributed noise with different standard deviations.
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Figure 6: Results obtained by applying different rank correlation measures to the
data sets shown in Figure 5.
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Figure 7: Noisy data sets that correspond to monotonic (q ≤ 0.5) and non-
monotonic relationships (q > 0.5).

and (0.5, 0.5). It is clear, that this relationship is monotonic if and only if q ≤ 0.5.
The data sets are displayed in Figure 7 and the results are presented in Figure 8,
where we use the same conventions to distinguish the lines as in Figure 6. We
see that all variants of γ̃ show acceptable results for q ≤ 0.5, whereas ρ, τb and γ
again have problems to handle the noise in case of the large proportion of ties that
occurs for q = 0.5. We also see that γ̃ already yields significantly lower values for
q = 0.6 in the case r = 0.05 (no matter which of the two variants is considered).
For larger r, however, we see that γ̃ cannot detect the slight non-monotonicity for
q = 0.6 that well. These two examples demonstrate that, when choosing r, there is
a trade-off between robustness (the larger r, the better) and sensitivity (the smaller
r, the better).

As a third set of experiments, we have tried to figure out the variance of γ̃.
For this study, we have computed all rank correlation measures used in the above
experiments for different test data several times and computed the variance of the
results. In all experiments, we have encountered that τb and γ had higher variances
than all variants of γ̃. The variances we obtained for different variants of γ̃ obeyed
a simple and unsurprising rule: the larger r, the smaller the variance. Interestingly,
the variances we obtained for Spearman’s ρ were also very low, comparable to the
lower values for γ̃ with a large r.
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Figure 8: Results obtained by applying different rank correlation measures to the
data sets shown in Figure 7.
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7 Concluding Remarks

This paper, as the title suggests, attempts to present initial ideas that the authors
consider promising. The examples of the previous section are intended to support
this viewpoint. They are illustrative and indicative, but they cannot replace a
formal investigation of the properties of γ̃. As it has been done exhaustively for
Spearman’s rho and Kendall’s tau, a significance analysis and a variance analysis
have to be carried out. Note, however, that this cannot be done analogously for γ̃.
Both Spearman’s rho and Kendall’s tau are fully determined by the ranking of the
lists (x1, . . . , xn) and (y1, . . . , yn). Thus, combinatorial techniques can be used to
study variances and significance levels [13]—not so for γ̃ that always depends on
the distance relationships of the values, too, so this analysis can only be done by
some distribution assumptions. These studies are left to future research.

To determine the right choice for the parameter r is another open question. As
we have noted above, there is a trade-off between robustness on the one side and
sensitivity/significance on the other side. So this topic goes hand in hand with a
more formal statistical analysis. Profound results concerning the choice of r, again,
can only be expected with specific distribution assumptions. In any case, we want
to note in advance that γ̃ depends continuously on r, so at least we can be sure
that γ̃ will react robustly to slightly sub-optimal choices of r.

We would like to remark that this investigation was inspired by a problem in
bioinformatics: how to infer sets of co-transcribed genes in procaryotic genomes (so-
called operons) from the gene expression levels measured by microarray experiments
[3, 19, 22]. It will also be subject of future research to evaluate the rank correlation
measures introduced in this paper in this domain. First experiments have been
very promising.
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