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Abstract 
With the rise of model-driven software development, more and more development tasks are 
being performed on models. A rich variety of modeling tools is available supporting different 
tasks, such as model creation, model simulation, model checking, and code generation. 
Seamless exchange of models among different modeling tools increasingly becomes a 
crucial prerequisite for effective software development processes. Due to lack of 
interoperability, however, it is often difficult to use tools in combination, thus the potential of 
model-driven software development cannot be fully utilized – unless we find some scalable 
way of integration. 
We are aiming at providing a semantic infrastructure for model-based tool integration, 
enabling to facilitate any tool appropriate for the modeling task at hand. The key innovations 
provided are a set of scalable architectural model integration patterns supported by a high-
level metamodel integration language, thus going beyond existing low-level model 
transformation approaches. Ontology-based metamodel integration considerably lowers the 
manual effort required for tool integration, enabling a novel synergic use of technologies 
from the model engineering and ontology engineering domains. An open knowledge base for 
tool integration captures essential knowledge about modeling languages and tools in terms 
of ontologies, fostering reuse within and beyond the scope of this project. 
These innovations will be realized within the ModelCVS prototype and case study. The core 
of the system will be based on a versioning system such as CVS, thus providing a loosely-
coupled and well-proofed integration architecture. Transparent transformation of models 
between different tools’ languages and exchange formats, as well as versioning capabilities 
exploiting the rich syntax and semantics of models represent the key functionalities of 
ModelCVS. In this way, ModelCVS will serve as both, a research vehicle and testbed for 
exploring applications of semantic technologies in model-based tool integration and a 
prototype for a succeeding industrial product. 
 
 

1  Introduction  

Motivation for model-based tool integration. Seamless exchange of models among 
different modeling tools becomes an important prerequisite for effective software 
development processes. With the rise of model-driven software development, more and 
more development tasks are being performed on models, to exploit the higher level of 
abstraction, the richness of visualization, and the power of expressiveness, as compared to 
general-purpose programming language code. A rich variety of tools is available supporting 
different tasks, such as model creation, model simulation, model checking, and code 
generation. Due to a lack of interoperability, however, it is often difficult to use tools in 
combination, thus the potential of model-driven software development cannot be fully 
exploited – unless we find some way of integrating the variety of existing modeling tools. 
What we are looking for is model-based tool integration, enabling to facilitate any tool 
appropriate for the modeling task at hand. Although one could want complete tool 
integration, i.e., integration also addressing processes, user interfaces, etc., complete  post-
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hoc integration of modeling tools is very expensive in terms of effort and scalability 
compared to its benefits, and therefore out of scope of this project. 
Problems of model-based tool integration. Integration of modeling tools in terms of model 
exchange poses several difficult problems, resulting in high effort and costs.  

First, there is heterogeneity in textual representation, syntax, semantics, and scope of 
modeling languages and exchange formats used by different tools. Detecting and resolving 
these heterogeneities is a matter of both, size of modeling language and subtleties of 
syntactic and semantic differences.  

Second, implementation of an integration solution, i.e., basically a program that takes 
models in one tool’s format and transforms it into another tool’s format and vice versa, is a 
cumbersome and error-prone task. Although there are specific technologies emerging that 
can be used solving this task, e.g., in the context of OMG’s model-driven architecture 
(MDA)1 specific model transformation languages and tools are being developed, these are 
not tailored for the integration task, and furthermore require specific skills. Similarly, tools 
from the enterprise information/application integration (EII/EAI) markets [26] are not 
appropriate for handling data as complex as models typically are. 

Third, inconsistency in the handling of models becomes an issue when the development 
process proceeds in parallel branches such that different tools concurrently modify a model 
and model versions must be merged. Concurrent development arises in any development 
team and must be correctly dealt with.  

Finally, repetitive effort occurs when tools are updated by new versions or when tools 
similar to already known ones need to be integrated. Although during integration of a set of 
tools a huge amount of integration knowledge will build up, that knowledge is not captured 
explicitly in a form that facilitates re-use and automation support when integrating new tools 
or new tool versions. 
Semantic technologies for model-based tool integration. We believe that semantic 
technologies can improve model-based tool integration in multiple ways. Schema matching 
and ontology mapping solutions can be adapted to the modeling domain to tackle the 
heterogeneity problem. Research results from ontology mapping can serve as a basis for 
developing concepts and operators for specifying model transformations at a higher level of 
abstraction. Advanced model merging techniques can be developed based on semantically 
enriched descriptions of modeling languages. And finally, ontologies can be used to build a 
knowledge base capturing essential tool integration experience. 

Our approach – ModelCVS. Therefore, we propose to build ModelCVS, a semantic 
infrastructure that serves as both a research vehicle and testbed for exploring applications of 
semantic technologies in model-based tool integration and a prototype for a succeeding 
industrial product. The core of the system will be based on a versioning system like the 
concurrent versioning system (CVS)2, thus providing a loosely-coupled and well-proofed 
integration architecture. Transparent transformation of models between different tools’ 
languages and exchange formats, as well as versioning capabilities exploiting the rich syntax 
and semantics of models enhance the system’s core.  

To keep the system evolvable, a scalable architecture for realizing tool integration is 
provided that minimizes the effort necessary for integrating new tools while maximizing 
reuse of integration knowledge. Integration is specified both at syntactic and semantic levels. 
The syntactic level deals with metamodels which define the structures and datatypes of 
models, whereas the semantic level uses ontologies which describe the semantics of 
modeling concepts. Semantic level integration and reuse of integration knowledge will be 
specifically supported through dedicated component of the semantic infrastructure that 
facilitates lifting metamodels to the semantic level, finding mappings between metamodels to 
be integrated, and finding semantic merge conflicts. Another dedicated component, the 
knowledge base, will comprise generic modeling concepts, selected important modeling 
domains, e.g., workflow, as well as reference examples. 

                                                 
1 http://www.omg.org/docs/omg/03-06-01.pdf  
2  https://www.cvshome.org/ 
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Example 

Overview of the case study. To exemplify the complexity of model-based tool integration 
and to point out the specific challenges we want to tackle, we consider a real-world scenario3 
that deals with the integration of three tools, the CASE tool AllFusion Gen (Gen for short)4, 
the UML tool Rational Software Modeler5, and the Oracle BPEL Process Manager6. In this 
scenario, Gen is a legacy tool under which many existing applications have been developed. 
UML should be employed for new projects, to link up with current technologies. And BPEL 
(Business Process Execution Language for Web Services)7 is required for developing certain 
web-enabled workflow applications. The UML and BPEL tools are stand-alone tools, with 
integration support restricted to file exchange using some particular file format, i.e., XMI 
(XML Metadata Interchange)8 for UML and XML for BPEL. Gen is actually a well integrated 
suite of tools covering a wide range of tasks, following a common modeling paradigm. The 
integration capabilities of Gen, however, are not open for external tools. Without proper 
infrastructure support, integration of these tools poses severe problems as introduced 
above, which are very costly to solve. 
Different format, representation, scope, syntax, and semantics. First of all, the model 
exchange formats  of these tools are quite different. The differences in representation – 
textual data by Gen, XMI by the UML tool, and XML by the BPEL tool – are the least 
problem, since there are tools to cope with that. A big problem, however, is difference in 
scope. Gen supports a variety of modeling domains, ranging from database via GUI to 
definition of functions. UML also has a rather broad scope, which is a subset of Gen’s. 
BPEL, in contrary, has a very limited scope focusing on process modeling, which is related 
to Gen’s process model and UML’s activity diagram. Therefore, it is not possible to simply 
take a Gen model and translate it to UML or BPEL as only parts of it can be translated. 
Conversely, to allow for a translation back to Gen, precautions need to be taken to enable 
reassembly of any changed parts with the overall Gen model. No less of a problem are the 
differences in syntax and semantics. E.g., the control flow primitives of UML activity 
diagrams and BPEL are somewhat different, although they express the same concepts, e.g., 
parallelism. In some cases, however, there are also differences in expressiveness that 
cannot be translated. An integration infrastructure has to deal with that, too. 
Large and complex metamodels. The metamodels especially of Gen and UML are very 
large and complex. For instance, Gen’s metamodel comprises more that 800 classes and 
the metamodel of UML2 more than 260 classes. Even if specific implementation technology 
for model transformations is used, e.g., the forthcoming QVT 
(Query/Views/Transformations)-standard [48], it is clear that implementing a transformation 
for Gen and UML will require a lot of effort and not least due to the overall complexity will be 
a very error-prone process. Part of the problem is here, that existing implementation 
technologies such as object-oriented programming languages but also emerging model 
transformation languages are not optimized for the problem at hand. The problem is not just 
to implement a single translation, but to also deal with the scalability problem. If BPEL is 
added to the tool chain, two new translations have to be implemented. If even more tools 
need to be integrated, simple point-to-point integration quickly comes to its limits and the 
need for more powerful architectures arises. 
Conflicting modifications. When, in the course of concurrent development, changes to a 
model are merged, much care has to be taken to keep the model consistent. As we have 
seen above, if a model is translated from Gen to BPEL, only some part of it can be 
translated, thus the BPEL developer may not be aware of all implications that any changes 
to the BPEL-relevant part may have on the overall model. The situation is even exacerbated 
when models are modified concurrently. Since we want to enable collaborative development 

                                                 
3  This scenario is envisioned as case study to evaluate the results of this project. The tools have been selected according to the 

requirements of the demonstrator of our project and to cover a broad range of integration issues. 
4  http://www3.ca.com/Solutions/Product.asp?ID=256 
5  http://www-306.ibm.com/software/awdtools/modeler/swmodeler/ 
6  http://www.oracle.com/technology/bpel/ 
7 http://www-128.ibm.com/developerworks/library/specification/ws-bpel/ 
8 http://www.omg.org/technology/documents/formal/xmi.htm 
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and flexible working processes, we have to deal with the facts that experts working on some 
specific part, e.g., the BPEL part, use very specific tools and that development in related 
parts may proceed concurrently. Although the task of merging concurrent modifications is 
not genuine to model-based tool integration and is addressed by existing versioning tools, in 
our case we cannot rely on individual tools to help detecting and resolving potential 
inconsistencies, since a change performed in one tool may propagate to parts of the model 
that are outside that tool’s scope. Therefore, appropriate infrastructure support is required. 
Different versions of metamodels. Finally, let’s consider the process of updating a tool to a 
new version with an updated metamodel. If not already supported by the tool, the update 
process involves implementing translators for migrating existing models to the new version 
and possibly back again. Less obviously, also all of the existing integration specifications 
need to be updated to the new version, and the tool will certainly not support this task. Lot of 
repetitive effort will be required unless it is possible to automatically migrate existing 
integration specifications. A similar situation and potential of re-use occurs when tools 
supporting equal modeling languages have to be integrated. Typically these tools, although 
supporting the same modeling language, interpret and realize the associated metamodels in 
different ways, in case that the semantics of the metamodel is not clearly defined (which is, 
e.g., a major concern in the current UML 2.0 standard). Also in this case, reuse could be 
supported through higher-level integration knowledge, thus reducing the manual integration 
effort to validation, precision, and completion. 
 

2 Research Goals 

The main research goal that has to be achieved in the proposed project is the finding of 
novel methods and the development of new technologies for a model-based approach to tool 
integration. The innovation in our approach is clearly the employment of semantic 
technologies in the form of ontologies to facilitate tool integration. Apart from the basic 
requirement of providing interoperability between tools, our focus on model driven 
development rises new requirements, in the form of providing model integration capabilities 
supported by semantic technologies for scalability reasons, advanced versioning 
mechanisms for practical applicability, and the construction of a tool integration specific 
knowledge base for the effective reuse of concept semantics for modeling languages.  

The unique character of the proposed project stems from being rooted in several traditionally 
disparate research fields such as ontology engineering, model driven development, 
versioning, and tool integration in general. Thus, the specific research goals associated with 
the proposed project as listed below, are expected to contribute to various research areas.  

Motivated by this overall research focus, three specific research goals can be derived, 
which are followed in this project (cf. Figure 1-1). 
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Figure 1-1: Research Goals of ModelCVS 
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(1) New Language for Scalable Model-Based Tool Integration 

Metamodel bridging. Model-based tool integration comprises creating so-called metamodel 
bridges between the different tool metamodels (i.e., the metamodels of the modeling 
languages supported by the tools). These metamodel bridges define the model 
transformations facilitating transparent model translation. The main problems in creating 
such bridges arise due to metamodel heterogeneity in various aspects and due to the fact 
that existing implementation technologies are not exactly appropriate for the metamodel 
bridging task. While we do not attempt to fully solve metamodel heterogeneity in any case – 
for certain reasons heterogeneity is actually considered a necessity – we aim at providing 
improved technologies for dealing with metamodel heterogeneity in more efficient and 
evolvable ways. 
Existing approaches. As already discussed, there exist specific languages for defining 
model transformations as required in the area of model-driven development. Requirements 
for such languages are, e.g., to transform complex high-level models into platform-specific 
models and ultimately into code. Although model transformation capabilities form the base of 
a model-based tool integration solution, generic model transformation languages operate at 
a very low level of abstraction, such that the specifics of tool integration are not explicitly 
supported (cf. Section 1.2). There also exist a wide range of EII/EAI tools, that support, e.g., 
conversions between different data formats (cf. Sections 5.2 and 5.4). These tools, however, 
do not focus, as already mentioned, on model-based tool integration and therefore are not 
able to deal with the complexities of metamodel bridging as envisioned in our approach. 
Integration patterns and bridging operators. For these reasons, we aim at defining a 
language specifically tailored to metamodel bridging. We will identify architectural model 
integration patterns (integration patterns for short) that ensure openness, scalability, and 
evolvability of a tool integration solution. These will serve as basis to define specific bridging 
tasks and to develop appropriate bridging operators forming a metamodel bridging language 
that supports the identified integration patterns. Concerning these integration patterns and 
bridging operators, our research can build on a few closely related approaches in the areas 
of model management (e.g., [39]) and model integration (e.g., [6]) as well as in the area of 
aspect-oriented modeling (e.g., [54]) which can be used as a first starting point (for a 
detailed overview, cf. Section 1.2).  
An initial set of integration patterns is proposed in Section 1.4, namely translation (i.e., 
bridging syntactic and semantic heterogeneity between largely overlapping tool 
metamodels), alignment (i.e., bridging cross-cutting concerns of partly overlapping tool 
metamodels), modularization (i.e., decomposing monolithic tool metamodels as a pre-
requisite for scalable bridging), and versioning (i.e., semantic-based migration of different 
versions of tool metamodels).  

 
(2) Innovative Technologies for Ontology-Based Metamodel Integration 

Ontologies for metamodel integration. The proposed project makes extensive use of 
semantic technologies for the integration of tool metamodels as well as for the realization of 
semantically aware model versioning mechanisms. We assume that addressing the 
integration problem at the semantic level using ontologies improves the quality of automation 
support that can be achieved. Given the fact that a huge amount of work already exists in 
the area of ontology integration, the question arises as how these research results can be 
employed for ontology-based metamodel integration. 

The essential difference between metamodels and ontologies is that metamodels define 
the concepts of a modeling language in terms of their syntax, whereas ontologies focus on 
the semantics of concepts, disregarding syntactical concerns. Therefore, in order to harness 
the potential of ontologies for metamodel integration and semantic versioning, the difference 
in abstraction level and semantic expressiveness between metamodels and ontologies 
needs to be dealt with. 
Metamodel lifting. In this respect, we aim to enable transitioning from the mostly syntactic 
metamodel level to the semantic ontology level in terms of a translation and subsequent 
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syntax abstraction and semantic enrichment, furtheron called metamodel lifting. The lifting 
process should result in a mapping between metamodel level and ontology level such that 
both levels can be used synergically. 

Regarding utilization of the expressiveness and reasoning capabilities of the semantic 
level, we aim in particular at supporting the various integration tasks as outlined in goal (1). 
Therefore, existing work on lifting data sources to ontologies (e.g., [59]), integration of 
ontologies (e.g., [41]) as well as modularization (e.g., [56]), and versioning of ontologies 
(e.g., [32]) has to be considered and adapted to the specific requirements of metamodel 
integration in terms of integration patterns and bridging operators. 

 
(3) Open Knowledge Base for Tool Integration 

Reuse capabilities. The basic idea behind the semantic infrastructure in ModelCVS is to 
enrich metamodels with specific semantics. As suggested above, this can be achieved by 
deriving tool ontologies from tool metamodels, which provide proper semantics for modeling 
languages. The entailment of specific semantics through an enrichment of tool ontologies, 
however, shall be possible with reasonable effort. Therefore, a key requirement is to provide 
reuse capabilities for the process of defining specific semantics for a tool ontology. 
Tool integration knowledge base. Hence, our research aims at constructing a tool 
integration knowledge base that, similar to a library, provides reusable concepts for the 
enrichment of individual tool ontologies. The knowledge base should enable semantic 
support for ontology-based metamodel bridging as discussed in goal (2), as well as 
improved detection of versioning conflicts as motivated by the introductory example. The 
knowledge base should furthermore be open for usage outside the scope of ModelCVS. 
Content of the knowledge base. Specific research tasks comprise, first, identification of 
generic, reusable concepts  and development of a structure to organize the contents of the 
knowledge base and to enable efficient reuse. Second, devising a set of reference 
examples, which will be the result of our case study, to populate the tool integration 
knowledge base with, to be used to enhance ModelCVS’ matching and reuse capabilities. 
Third, defining knowledge about semantic merging conflicts  as required for enhanced model 
versioning capabilities, i.e., automated identification and subsequent resolution of such 
conflicts. Fourth, establishment of a public platform enabling Internet-wide access and 
contributions to the knowledge base as to maximize reuse effects. 
 
 

3 State of the Art 
 

In the following, the state of the art is described with respect to our research goals outlined in 
Section 1.1. For this, in a first step, a brief overview on tool integration in general is given, 
followed by a discussion of more closely related approaches in the area of model-based tool 
integration and concluded finally, by a review of ontology research for integration purposes.  
 

3.1 State of the Art in Tool Integration 

Research in tool integration has been a “hot” topic since the Stoneman Model9 was 
proposed at the end of the 70's and summarized by Brown [8] in two categories, the 
conceptual level (“what is integration?”) and the mechanical level (“how do we provide 
integration?”).  
Conceptual level of integration. In general, commercial of the shelf (COTS) tools are 
meant to be integrated if they function coherently and effectively in an environment as a 
whole, as is the case in an integrated development environment (IDE). Wasserman [60] is 
regarded as the first author who has suggested a categorization to describe the integration 
of tools from a functional point of view comprising integration in terms of platforms, GUIs , 
data, control, and processes. Other categorizations used for characterizing tool integration 

                                                 
9 http://www.adahome.com/History/Stoneman/stoneint.htm 
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comprises depth of integration, varying from exchanging byte streams to semantics-
preserving integration, and the universal applicability of the integration approach.  
Mechanical level of integration. The research efforts at the mechanical level of tool 
integration include (1) a series of standardization efforts and middleware services like CAIS 
[45], PCTE [2], CDIF [20], CORBA10, and OMG’s recent RFP OTIF 11 (open tool integration 
framework) to support tool interoperability, (2) architecture models, infrastructures, and tool 
suites like the ECMA toaster model [17], the ToolBus architecture [5], and finally (3) basic 
tool integration mechanisms such as data sharing, data linkage, data interchange, and 
message passing [52]. 

Some of these efforts were often grounded in large initiatives but have not been widely 
accepted. The European standardization effort PCTE, e.g., supporting data integration by 
providing tools with a common repository and services to store, retrieve, and manipulate 
data was not widely adopted in industry, not least because of its heavyweight architecture 
and high usage costs. Another example, CDIF, a standard for model exchange has been in 
the meanwhile replaced by MOF and XMI (cf. Section 1.2.2). Regarding, e.g., tool suites, 
they are often incomplete with respect to the various development activities requiring tool 
support, and most often do not allow to select between “best of class” tools (apart from 
promising exceptions like Eclipse12) [52].  

Despite of all these important efforts, tool integration is still a challenging task, leading most 
often to hand-crafted bilateral integration solutions [52]. These “solutions” suffer from high 
maintenance overheads not least in case of evolutions of the underlying data or tools 
themselves, are often strongly technology-dependent and, most importantly, do not scale. 
With the advent of model-driven development (MDD) and in particular the introduction of 
MDA, new possibilities have been opened up to cope with these challenges. 

 
3.2 State of the Art Relevant for Model-Based Tool Integration 

Model-driven development. The key idea of MDA is to focus on models instead of code as 
the major artefact in software development. This allows modeling tools to be integrated on 
basis of the metamodels of modeling languages supported by the tools (i.e., the tool 
metamodels), thus paving the way for another generation of (meta)model-based tool 
integration approaches and providing a basis to overcome the above mentioned limitations 
of existing integration approaches. For this, MDA includes a set of interrelated standards13, 
comprising a language for metamodel definition (Meta Object Facility – MOF), and the MOF-
compliant languages for constraint specification (Object Constraint Language – OCL), model 
transformation (QVT), and metadata interchange (XML Metadata Interchange – XMI). 

 
Model transformation as key technology 

Model transformation languages. Model transformation is one of the major building blocks 
in the context of model-based tool integration and a very active research area. Existing 
approaches in this area having been either submitted to OMG’s QVT request for proposals 
or being already part of existing MDA tools range from algorithmic and imperative 
approaches, via graph-transformation-based approaches to template rule-driven, and hybrid 
approaches [14]. Tratt et al. [57], e.g., provide an extensible, imperative model 
transformation language with some rule-based elements for pattern matching purposes, 
whereas Becker et al. [4] use purely rule-based mechanisms based on graph-
transformations and generates wrapper for tool integration following a kind of programming-
by-example approach. Highly relevant for our approach seems to be transformation 
languages such as BOTL14, which allows the definition of modular, rule-based 
transformations, with independent rules for sets of metamodel elements – a property 
important for realizing the versioning interaction pattern as introduced in Section 1.1. 

                                                 
10 http://www.omg.org/corba 
11 http://www.omg.org/docs/mic/04-08-01.pdf  
12 http://www.eclipse.org 
13 http://www.omg.org/technology/documents/modeling_spec_catalog.htm 
14 http://www4.in.tum.de/~marschal/botl/ 
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Infrastructures based on transformation languages. Based on these several kinds of 
QVT-like transformation language proposals, infrastructures and frameworks have been built 
for tool integration (cf. the special issue of SoSym on model-based tool integration [52]). For 
example, WOTIF (Web-based open tool integration framework)15 uses a graph-
transformation mechanism and realises different tool integration patterns (e.g., direct tool 
integration and integration via a common metamodel), but requires that every tool to be 
integrated supports certain APIs for installing plugins which is in contrast to our approach. 
GeneralStore [50] being in fact a MOF-based repository, allows bi-directional 
transformations between models, but uses XSLT or ad-hoc approaches for model 
transformation, only. Finally, MDDi, (Model-driven Development Integration Project of 
Eclipse)16, although providing some interesting ideas for model integration in terms of a bus 
architecture similar to AMMA (cf. below) is still in its draft proposal phase. 
Deficiencies of pure model transformations. Although, QVT-like model transformation 
languages are a cornerstone also for our project, existing proposals are too generic and lack 
appropriate abstraction mechanisms for different kinds of model integration patterns, which 
are highly needed in practice and well-known from other research areas such as federated 
and multi database systems [53], megaprogramming [61] and web service composition [35]. 
Such integration patterns (cf. Section 1.4) would require a series of basic model 
transformations which will simply not scale up when manually specified for complex models.  
 
Beyond pure model transformation – integration patterns and bridging operators 

There are only few closely related approaches providing abstraction mechanisms in terms 
of, e.g., high-level bridging operators or modularisation techniques in the areas of model 
management and model integration as well as in the area of aspect-oriented modeling which 
are described in the following in more detail. 
Rondo. Having a similar intent in mind, the generic model management initiative from 
Bernstein et al. [39] provides a prototypical implementation called Rondo, which aims at 
keeping the matching of large XML schemata scalable. An approach to matching is 
introduced that operates on fragments of a large schema to lower the complexity of matching 
tasks. Besides this modularisation, model management operators on relational and XML 
schemata are provided, comprising, e.g., the automatic derivation of semantic 
correspondences or differences, the merging of models, and the derivation of a mapping 
from other mappings.  

Although set in the context of relational and XML schema matching, this idea seems to be 
transferable to tool metamodels. Nevertheless our approach is not only aimed at finding 
semantic correspondences between metadata, but also to support certain model integration 
patterns, keeping a later code-generation step in mind in terms of deriving appropriate model 
transformation programs thereof. Another difference is that our focus goes beyond 
integrating XML and database schemata, by allowing the integration of arbitrary MOF-
models in the sense of MDA. 
AMMA / AMW. The ATLAS Model Weaver (AMW) which is part of the AMMA model 
engineering platform (soon to be released under the Eclipse GMT project17) proposed by 
Bézivin et al. [6], allows to perform a weaving operation in terms of establishing semantic 
correspondences between two metamodels, which are stored in a weaving model. Model 
weaving seems to be – different to Rondo – a manual operation, requiring an explicit 
specification of appropriate semantics for correspondences.  

Our approach, in contrast, aims at both, inferring semantics of correspondences from 
ontological knowledge and providing a predefined set of higher-level bridging operators. In 
addition, ModelCVS extends the notion of weaving from an activity that solely establishes 
correspondences between metamodels, to a mechanism that interprets operators specified 
between metamodel elements and carries out transformation programs accordingly.  

                                                 
15 http://escher.isis.vanderbilt.edu/tools/get_tool?WOTIF 
16 http://www.eclipse.org/proposals/eclipse-mddi/ 
17 http://www.eclipse.org/gmt/ 
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Aspect-orientation. The research efforts associated with aspect-orientation also deal with 
modularization in terms of factoring out cross cutting concerns into modules called aspects . 
This idea manifests in aspect-oriented programming languages [33], but also in aspect-
oriented modeling, which allows to modularize cross-cutting-concerns in an implementation 
independent manner (cf. the approaches below).  

Our approach focuses on tool integration, meaning that metamodels are, e.g., decomposed 
according to certain concerns they cover. Weaving as in aspect-orientation can be compared 
in our approach to the re-assemblage of models after modularization. In a tool integration 
setting, one can assume modularization to take place by detecting join points, e.g., in the 
form of meta-associations and point-cuts, e.g., in the form of links between model elements, 
to offer automatic support for a future re-assemblage. Most of the following approaches 
more or less use ideas from aspect-orientation for model integration purposes. 
Model Composition Semantics. Clarke [12] introduces a composition mechanism for UML 
class diagrams, representing different separated concerns. Overlapping concepts are 
identified in these models and thus merged as specified by a composition relationship, 
following so-called merge and override strategies. Based on this basic integration behavior, 
composition patterns [11] are introduced as an extension to UML templates.  

This approach focuses on UML models, only, and does not allow, e.g., the deletion of 
obsolete model elements after an integration is performed, as required for our approach. In 
addition, we focus on the derivation of model transformation programs during the integration 
stage, which are capable of automatically performing, e.g., the merging of models. 
Model Composition Directives. Based on [12], Straw et al. [54] propose so called 
composition directives for composing UML class diagrams. These basically include name 
rewriting, adding, and deleting of model elements, change of references, and control of 
execution order. Inspired by aspect-oriented programming, so-called primary models are 
composed with aspect models, which represent a crosscutting concern to be interwoven.  

Although composition directives are comparable to our envisioned model bridging 
operators, their primary focus seems to be on model weaving but not on meta-model 
weaving. We believe that our metamodel bridging operators could in turn be transformed into 
composition directives at the model level. Since we avoid an ad-hoc integration of models, 
with our approach, licit integrated models can be generated, only. 
GME. The Generic Modeling Environment (GME) proposed by Karsai et al. [31] is a 
modeling and metamodeling toolkit based on UML notation and a GME specific meta 
metamodel. GME allows for the composition of metamodels similar to our approach. The 
composition mechanisms comprise an equivalence operator creating a union of two model 
elements, similar to the merge semantics in [12] and two different inheritance operators, 
realizing implementation inheritance and interface inheritance. 

Differerent to our approach is that GME is not based on the MOF standard. Furthermore, 
our approach goes beyond the functionalities for metamodel composition in GME by 
supporting different model integration patterns, not just composition of metamodels. 
C-SAW. C-SAW, developed as a plug-in for GME by Gray et al. [23] is a so called cross-
cutting-concern weaver. Aspects  are specified using the Embedded Constraint Language 
(ECL), a OCL superset, additionally providing imperative constructs for model manipulation.  

The transformation capabilities of ECL are, however, limited to models of the same 
metamodel, it lacks support for abstract integration mechanisms and is, instead of MOF, 
based on a meta-metamodel specific to GME, making the approach not applicable for us. 
Domain Composition Approach. Estublier et al. [18] propose a UML profile allowing the 
composition of separately designed domain models, as required when facing the federation 
of immutable components off the shelf. UML associations and association classes are 
specialized by stereotypes to express feature correspondence and concept overlapping.  

In principle, this approach is similar to our envisioned alignment interaction pattern, but 
does not support other interaction patterns as targeted in our project. In addition, only UML 
models are supported instead of arbitrary MOF-models. 
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Summary. Summarizing, although there are already few approaches targeting model-based 
tool integration from a meta-modeling point of view and providing some basic abstraction 
mechanisms in terms of modularization techniques and bridging operators, each of them 
suffers from certain deficiencies with respect to the focus of our project as outlined above. 
Nevertheless, several ideas and concepts of these approaches could be of high value for 
ModelCVS, which has to be investigated in-depth in the course of the project. It has to be 
noted however, to the best of our knowledge, none of these approaches uses ontologies to 
facilitate the semantic aspect of model-based tool integration, as done in our approach.  

 
3.3 State of the Art Relevant for Ontology-Based Metamodel Integration 

History of semantic integration. The research field mainly relevant for ontology-based 
metamodel integration is the broad area of semantic integration. The history of semantic 
integration goes back to the early 1980s, where Brodie et al. [7] addressed semantic 
relativism in data modeling, leading to a comprehensive taxonomy of semantic 
heterogeneities introduced by Shet et al. [53] in the early 1990s and an in-depth survey of 
automatic schema matching approaches in 2001, published by Rahm et al. [49]. Although 
the problem of semantic integration is tackled in various ways by different communities, as 
could be seen at the remarkable Dagstuhl workshop on semantic interoperability and 
integration in 200418, in recent years, ontologies became very popular to facilitate various 
semantic integration tasks. This is not least since, in comparison to other techniques, 
integration based on ontologies can rely heavily on the high expressive power of ontology 
languages and on appropriate reasoning techniques.  

As already stated in Section 1.1, our approach will utilize ontologies as a base mechanism 
to semantically enrich tool metamodels, thus facilitating tool metamodel integration. In this 
respect related work in the area of lifting metadata to ontologies, issues of integrating 
ontologies, and the usage of integration patterns for ontologies is highly relevant for our 
approach, as discussed in the following. 

 
Lifting Metamodels to Ontologies 

A basic question to be investigated is the derivation of ontologies from the tool metamodels, 
often referred to as lifting. Few existing work, although approaching the lifting problem from 
somewhat different angles, could be used as starting point to resolve this research question. 
OntoLIFT . Lifting is, e.g., dealt with in the WonderWeb project in terms of the OntoLIFT 
prototype [59], which helps to semi-automatically create ontologies from database schemata 
by using syntactical patterns as employed for mapping database schemata to ER models. 
Although these ontologies have to be further refined to infer specific semantics, OntoLIFT 
provides a useful entry point for the establishment of ontologies.  
Ferdinand et al. Another approach from Ferdinand at al. [19] proposes an automatic 
mechanism to lift XML Schema to the Web Ontology Language (OWL)19 via RDF and 
provide according mapping rules. 

Although both approaches deal with the derivation of ontologies from structured sources, 
methods applied in these two approaches cannot be immediately reused, since ModelCVS 
requires the derivation of ontologies from metamodels. Further research has to be put into 
the question of how to facilitate the creation of ontologies from MOF-based metamodels. 
ODM. A way to bridge between model engineering and ontology engineering could be the 
Ontology Definition Metamodel (ODM)20, an upcoming OMG standard for the definition of 
ontologies in terms of MOF models. 
Guizzardi et al. [24] provide an evaluation framework to estimate the appropriateness and 
the comprehensibility of a modeling language for describing concepts in terms of domain 
knowledge captured in an ontology. Such considerations are relevant in the context of 

                                                 
18 http://www.dagstuhl.de/04391/ 
19 http://www.w3.org/TR/owl-features/ 
20 http://www.omg.org/cgi-bin/doc?ad/2003-03-40 
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ModelCVS to define ontologies for modeling languages or to estimate to what extent existing 
ontologies can be reused. 
 
Basics of Integrating Ontologies 

As ModelCVS is able to perform tool metamodel integration on basis of semantics covered 
by tool ontologies, these individual tool ontologies have to be integrated. The central burden 
making ontology integration a rather comprehensive challenge are heterogeneity issues that 
have to be coped with [34], which are similar to heterogeneities in database research [53]. 
Thus, our approach has to deal with different forms of heterogeneity, establish a certain 
ontology integration architecture, and provide appropriate mechanisms for mapping 
discovery, representation and reasoning [44]. Although having different goals in mind since 
we use ontologies as a basic vehicle for the integration of tool metamodels, we can benefit 
from a large body of literature which may provide useful input for our approach. For a 
comprehensive overview about this active research area compare, e.g., [1], [30], and [44]. 
Ontology integration architecture. Concerning the architecture for ontology integration, 
one can basically distinguish three alternatives (cf. e.g., [44]): (1) a direct mapping between 
ontologies, (2) an indirect mapping via a common, shared ontology further on called upper 
ontology (sometimes also referred to as toplevel, or reference ontology), e.g., the Standard 
Upper Merged Ontology (SUMO) [42] and DOLCE [21] and (3) a mapping based on a library 
of already mapped ontologies [58]. This is again similar to database integration research, 
where peer-to-peer database systems are similar to the direct mapping approach, and 
federated database systems relying on a global schema are similar to the indirect mapping 
approach with the difference that an upper ontology is usually more general since it needs to 
encompass the top level for ontologies yet to be developed [44].  

We intend to use a hybrid approach, involving all three architectures in order to ensure a 
balance between reuse capabilities, provided by upper ontologies as well as ontology 
libraries, and overhead induced, which can be reduced by using direct mappings for special, 
non-recurring mappings. For this, existing approaches as mentioned above can provide a 
valuable input, although they have to be adapted in order to deal with our special focus of 
deriving appropriate metamodel bridges. 

Mapping discovery. Based on a certain ontology integration architecture, mappings 
between ontologies have to be established, i.e., similar concepts have to be related to each 
other. Mapping discovery techniques deal with finding such correspondences (also called 
matches) between ontologies. This can be done either in a fully manual way or by utilizing 
heuristic-based or machine learning techniques that use various characteristics of 
ontologies, such as their schemata (schema-based matching), their instances (instance-
based matching) as well as lexical reference systems [49], [15], [44].  

It has to be emphasized, that it is not the intent of this project to develop yet another 
mapping discovery technique. Rather, it is foreseen to either use a single existing technique 
or a combination thereof which can be easily adapted to best fit our requirements. A 
selection of some of these approaches which may be (partly) useful for our purposes are 
sketched out in the following. 
Chimaera. Chimaera [38] provides support for ontology merging by interactively relating 
concepts that are identical or related by subsumption or instance relationships. Further, it 
supports to manipulate the ontologies as to improve alignment by suggesting modifications. 
PROMPT . PROMPT [43] supports interactive, guided ontology merging, starting from 
linguistic and structural similarity matches. Merge operations can be performed, and based 
on the results and potential conflicts arising from the merge (e.g., name conflicts, dangling 
references, or redundancies in class hierarchies), further operations are proposed. 
KRAFT. KRAFT [47] supports the finding of mappings by special mediator agents which can 
be customized with respect to support particular ontologies as well as ontology languages. 
Although the approach provides great flexibility in supporting various mappings, the user is 
able to specify arbitrary mappings since the semantic of concepts is not regarded, thus 
risking wrong and even conflicting mappings. Within our approach it is of major importance 
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to guide the user and prevent useless mappings exploiting the provided semantics. 
PUZZLE. The goal of PUZZLE [29] is to construct a consensus  ontology, i.e., a common, 
shared ontology, from independently designed ontologies. Both, linguistic as well as 
contextual features of ontology concepts are considered, there is no need for a previous 
agreement on the semantics of the used terminology and WordNet is used to support, e.g., 
synonyms and homonyms. Reasoning rules are based on the relationships subclass, 
superclass, equivalentclass, and sibling, and on property lists of ontology concepts to find 
new relationships among concepts. 

Representation of mappings. Having found appropriate mappings, they have to be 
properly represented in order to facilitate reasoning on mappings. Concerning the 
representation of mappings several approaches can be found in literature [44]. Note that 
also combinations thereof are possible. First, similar to traditional data integration, views  can 
be used to describe mappings, e.g., between upper ontology and local ontologies, either 
using the global-as-view (GAV) or the local-as-view (LAV) approach, well known from 
database integration research [25] and used, e.g., within the OIS framework [9]. Second, 
mappings can be represented in terms of bridging axioms in first-order logic to express 
transformation rules, relating classes and properties of two ontologies, as it is done in the 
OntoMerge system [16]. Finally, mappings can be represented as instances in an ontology 
of mappings. The mapping ontology usually provides different ways of linking concepts from 
the source ontology to the target ontology, transformation rules to specify how values should 
be changed, and conditions and effects of such rules. Examples are the Semantic Bridge 
Ontology of the MAFRA framework [37] or the mapping ontology [13].  

Within our project we will have to investigate the proposed alternatives to find an 
appropriate one, whereby specific mapping ontologies seem to provide a great potential for 
mapping representation as well as reasoning. 
Reasoning with mappings. In general, reasoning aims at drawing a conclusion, e.g. to 
perform semantic integration tasks. In ModelCVS reasoning over ontology mappings is 
required to facilitate metamodel integration. Reasoning hardly depends on the underlying 
representation form [44]. In the OIS framework [9] mappings are expressed on basis of a 
GAV/LAV approach, using description logics and therefore a special description logics 
reasoner. PROMPT [43] takes a mapping ontology and automatically merges the 
corresponding ontologies based on the specified mapping. In case that we utilize a mapping 
ontology, corresponding existing approaches will be taken as base and adapted for our 
special purposes. 
 
Model Integration Patterns and Ontologies 

As our approach provides different model integration patterns such as alignment and 
modularization to allow metamodel integration in a scalable way, also the tool ontologies 
have to support these model integration patterns.  

Klein, e.g., [34], suggests several kinds of integration, applied to ontologies as a whole, 
which are comparable to our integration patterns. In the Onion system [41], an algebra for 
ontology composition is proposed, supporting several operators, e.g., filter, extract, union, 
intersection, and difference. There already exist approaches in the field of ontology 
modularization, e.g., [55], [56] and [22], aiming at modularizing ontologies for the purposes 
of efficient reasoning, distribution, and maintainability. 

In our approach, however, not an ontology is the target of integration patterns, but the tool 
metamodel it is associated with and as a consequence to that, finding ways for dealing with 
ontologies in the same semantics preserving way. Therefore, the approaches described 
above are not immediately reusable in our context, but could provide a useful starting point.  

To support ontology versioning, Kauppinen et al. [32] define a so-called change bridge 
ontology that enables reasoning about an evolved ontology. The goal is not interoperability, 
as with ontology mapping in general, but rather to align the revisions of a single ontology in 
time. Important in our context are also maintenance and evolution techniques for mappings, 
as proposed, e.g., by Maedche et al. [36], providing a reusable ontology of semantic bridges.  
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Our interest is, in addition to relating versions of metamodels and corresponding 
ontologies, also in performing model migration, a capability that is not readily supported by 
ontology mappings. In the area of databases, schema evolution has been addressed in 
terms of schema change operations that also define corresponding updates to instances. 
Banerjee et al. [3] defines a comprehensive taxonomy of schema change operations. Using 
such operations, however, presupposes that a trace of change operations is available, which 
is typically not the case when a new version of a tool metamodel becomes available. 
Summary. As outlined in this section, there is already a huge amount of work in the area of 
semantic integration dealing with ontologies, providing a proper basis for ModelCVS. There 
is, however, to the best of our knowledge, no literature available, dealing with the usage of 
ontologies for metamodel integration, thus leaving open research questions in several 
directions. We are sure that a combination of existing techniques in the area of model 
management and integration with semantic technologies in terms of ontologies will allow to 
fully exploit the potential of model-based tool integration in a semantic-preserving way, thus 
representing an example for future commercial products in this area. 
 
 

4  Proposed Technical Solution 
 
The solution description provided in this section is split into two subsections. The first 
subsection focuses on conceptual solutions and deals with the resolution of the research 
goals for ModelCVS established in Section 1.1. The second subsection puts a focus on the 
realization of ModelCVS from a technological point of view, describing a component-oriented 
system architecture. 
 

4.1 Approaches taken for the Resolution of Research Goals 
 
(1) New Language for Scalable Model-Based Tool Integration 

The basis for our solution to this goal is a set of integration patterns that define requirements 
and working context for the bridging language to be developed. We propose four initial 
integration patterns that address openness, scalability, and evolvability covering various 
situations relevant for model-based tool integration. These patterns are elaborated in the 
following paragraphs. 
Metamodel translation. The basic case of tool integration occurs when two different tools’ 
modeling languages conceptually overlap to a large extent. This means, that both modeling 
languages cover the same or very similar domains, in a way that semantically equivalent 
concepts can be identified in either metamodel and models can be translated 
correspondingly. 

As an example, we refer to two modelers jointly modeling a workflow: One of the modelers 
employs a dedicated BPEL modeling tool, whereas the other colleague makes use of UML 
activity diagrams. Both modelers are able to transparently check-out versions of the latest 
model, edit it, and check it in again without having to deal with modeling languages other 
than their own, as the language heterogeneity between modeling languages is implicitly 
taken care of through translation by ModelCVS. 

Variations of this pattern address directionality and completeness of translation. A 
translation may be bidirectional, allowing two-way transformations between metamodels. In 
case a tool, for instance a code generator, is purely consuming and not producing models, 
unidirectional translations suffice. In case modeling languages do not entirely overlap, 
meaning that some concepts expressible in one modeling language cannot be expressed in 
another, a translation may be lossy. A solution to solve this problem is to explicitly store 
information that would get lost in the course of a transformation and to reincorporate it when 
performing the roundtrip [10]. 

A further variation, which is advisable in case multiple tools with similar domain have to be 
integrated, is to construct a so-called pivot metamodel, which can be seen as representing a 
universal language covering a certain domain. In practice, however, such a universal 
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language encompassing all possible concepts that can occur in a certain domain is hard to 
find. Nevertheless, finding a pivot metamodel for a specific enough modeling domain can be 
feasible, yielding the advantage of reducing the amount of mappings required when 
translating between n-many tools from n*(n-1) to n.  

Figure 1-2 shows the translation approach involving the process metamodel of Gen 
(MMGen), UML’s activity diagram metamodel (MMUML-AD), and BPEL’s metamodel (MMBPEL). 
The domain common to all three could be described in a generic, tool independent workflow 
metamodel (MMWF), which serves as a pivot facilitating tool integration in a scalable way. As 
starting point, lets assume that a Gen2UML-AD translation already existed and that for 
integration of further metamodels like MMBPEL, the establishment of a pivot metamodel was 
chosen. Then a specific requirement on bridging operators resulting from this scenario is re-
usability of the existing bridge Gen2UML-AD for construction of the pivot metamodel and the 
translations Gen2WF and UML-AD2WF. Now the pivot metamodel MMWF can be used in 
order to generate a translation to MMBPEL, namely BPEL2WF. 

 
Figure 1-2: Translation using a pivot metamodel MMWF 

Metamodel alignment. The alignment pattern deals with interrelating rather than translating 
models. This requirement occurs when a system to be modeled cross-cuts several domains, 
and several modeling languages or better to say modeling tools, tailored to specific domains, 
participate in modeling that system. Although these domains are typically very different, they 
will overlap to some extent, making it necessary to integrate these domains to cohesively 
represent the entire system’s domain. As modeling languages in this case do not cover 
same or similar domains, the focus is shifted from a complete translation of concepts onto an 
alignment of concepts, manifesting in the creation of relationships that enforce certain 
constraints or alignment rules imposed on the integrated domains. 

The example scenario depicted in Figure 1-3 shows the alignment of two different tool 
metamodels (MMGUI and MMUML-CD), provided by a tool for modeling GUIs and a UML tool, 
which are used jointly to model a single system. It is important to note, that these two 
metamodels do not cover same or similar domains. It would therefore not make sense to find 
a mapping which would translate a UML class diagram of a system into a GUI, as the GUI 
design would rather be undertaken independently. Depending on the underlying system, 
however, a specific overlap is necessary to integrate the two domains. As an example 
similar to the model-view-control paradigm, the tool metamodels are aligned (GUI2UML-CD) 
to establish a behavior that transparently sets the labels of GUI components to the value of a 
certain attribute of a model element in a UML class diagram. To furthermore avoid 
inconsistencies, model elements representing GUI components should be transparently 
deleted if a corresponding model element in the UML model is deleted, which also has to be 
defined as an alignment rule. 
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Figure 1-3: Alignment of two metamodels MMGUI and MMUML-CD 

Metamodel modularization. The modularization pattern addresses the scalability issue of 
two related integration scenarios. On the one hand, to fulfill the scalability requirement, the 
effectiveness of a tool integration process may not be affected by the size of the metamodels 
involved. Hence, a model-based tool integration approach must allow to deal with large, 
monolithic tool metamodels in a manageable way. As an example, the integration of two 
large tool metamodels, like those of UML and Gen, has to be supported in a way that keeps 
the integration task comprehensible. On the other hand, scalability is required when it comes 
to the integration of tools with a varying scope, regarding the domain specificity of the 
underlying modeling languages. As an example, it should be possible to integrate a UML tool 
with a BPEL tool. Thereby, the domain specific BPEL tool will conceptually overlap with the 
domain covered by the UML tool to a certain extent, only. Nevertheless, the integration of 
the BPEL metamodel with the overlapping part of the UML metamodel should not become 
unwieldy. 

To keep the integration of large metamodels with varying scopes manageable, 
modularization enables the decomposition of these metamodels according to certain 
concerns, resulting in smaller metamodels, so-called metamodel fragments, each expressing 
a certain aspect of the entire metamodel. Analogous to the decomposition of a metamodel, 
models conforming to such a metamodel are modularized accordingly to allow model 
exchange in a scalable way. 

The example depicted in Figure 1-4 shows the integration of tools with differing scopes 
using modularization. The top section of the figure shows the Gen metamodel (MMGen) 
modularized into several smaller metamodel fragments representing more specific domains 
(MMGenGUI, MMGenWF, MMGenClasses, and MMGenStates). As shown, the metamodel fragments may 
overlap each other, which can result in interdependencies that shall be taken care of in a 
transparent way as described in the alignment example. The bottom left part of the figure 
shows the integration of domain specific GUI and BPEL modeling tools, which are directly 
mapped to metamodel fragments of the Gen tool. Similar to the modularization of MMGen, the 
bottom right part of the figure illustrates a UML tool’s metamodel (MMUML) being modularized 
(MMUML-AD, MMUML-CD, and MMUML-SM). The integration of large tools is made possible in a 
scalable way, as the metamodel fragments of either tool covering semantically equal 
domains are mapped onto each other instead of mapping the original huge metamodels. 

 
Figure 1-4: Modularization of Gen and UML metamodels facilitating scalable integration 

At check-out time, models conforming to metamodel fragments have to be reassembled. 
This implies that links between model elements that have been cut off during the 
modularization phase have to be re-established. The rules specifying how the various 
models should be reassembled have to be derived from the applied bridging operators. To 
enable reassembly, in certain cases information about linked model elements must be 
explicitly stored during the modularization phase. 
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Metamodel versioning. Tool metamodels may need to change if a new version of a tool 
becomes available. To ensure the evolvability requirement by not rendering existing assets 
unusable, it is necessary to migrate existing models towards the new metamodel. 
Furthermore, in case different tool versions remain in use at the same time, it has to be 
possible to access models using different versions of that metamodel. 

As an example, a UML 1.4 compliant modeling tool may be replaced with a UML 2.0 
modeling tool. Therefore, models compliant to UML 1.4 have to be migrated to the current 
UML 2.0 metamodel. However, a code generator taking UML 1.4 models as input should still 
remain in use. Hence, addressing the requirement for evolvability can be associated with the 
need for so-called metamodel versioning. 

Metamodel versioning includes keeping track of different versions of tool metamodels and 
migrating models towards newer versions of tool metamodels. Through defining translations 
between versions of a tool metamodel, various versions of tools can remain in use. Different 
to the general translation case, the typically rather small difference between metamodel 
versions can be exploited. Furthermore, also existing metamodel bridges must be taken care 
of by providing migration support for bridges, too. 

Figure 1-5 illustrates the required migrations facilitating metamodel versioning when a new 
tool version UML2 and a corresponding tool metamodel version for UML2 activity diagrams 
MMUML2-AD is introduced into an existing tool chain. What needs to be done is (1) to define a 
model migration bridge from the old version of the metamodel (MMUML-AD) to the new version 
(MMUML2-AD), and migrate the existing models accordingly, and (2) to define a new version of 
the translation to the pivot metamodel (UML2-AD2WF), assuming that the existing pivot 
metamodel MMWF is not affected by the changes. 
Since the purpose of these patterns is to identify bridging tasks as specific as possible to 
enable definition of well-suited bridging operators, we aim to enrich these patterns and 
include additional ones in the course of the project. 
Bridging operators. The bridging language containing bridging operators to be developed, 
has to specifically support the identified integration patterns at a suitable abstraction level 
and with appropriate range of functionality according to specific bridging tasks. Taking into 
account the peculiarities of specific tasks will enable us to develop a descriptive high-level 
language that can be more efficiently used than, e.g., generic model transformation 
languages. For elicitation of more specific requirements and identification of typical bridging 
problems, the integration patterns and exemplary tool metamodels from our case study will 
be investigated. The language must support evolvability in terms of bridge migration as 
required in the metamodel versioning pattern. Still, the language needs to be executable in 
that model transformation code can be generated out of it. With respect to modularization, 
for instance, transformation programs for the modularization of models, the alignment of 
overlaps in fragment models, as well as the automatic assembly of fragment models at 
check-out time will be derived. Definition and implementation of a mapping from the bridging 
language to an executable model transformation language will be the final task in resolving 
this research goal, serving as a proof of concept for the bridging language and as a 
component of the overall system architecture. 

 
Figure 1-5: Versioning of UML metamodel and involved migrations 
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Achieving these goals can build on initial work already carried out by the project partners 
(cf., e.g., [51], [62] and Section 2) as well as on several branches of existing research in the 
areas of model transformation languages, model management and integration, aspect-
oriented modeling, as well as ontology modularization and versioning (cf. Section 1.2). 

 
(2) Innovative Technologies for Ontology-Based Metamodel Integration 

Our approach to ontology-based metamodel integration basically comprises a technology for 
transitioning from the mostly syntactic metamodel level to the semantic level in terms of 
ontologies, i.e., metamodel lifting, and adaptations of existing research results in the area of 
ontology integration for the purposes of metamodel integration facilitated by the generation 
of bridges between metamodels as described above. 
Metamodel lifting. The creation of an ontology from some kind of metadata like an XML 
schema [19] or a DB schema [59] is generally referred to as lifting. Metamodel lifting in 
particular encompasses a mapping of elements in the metamodel to concepts in the 
ontology, thereby performing a step of abstraction and semantical enrichment such that the 
ontology defines the semantics of the modeling concepts whose syntax is defined by the 
metamodel. A so-called lifting mapping keeps track of the relationship between syntax and 
semantics of modeling concepts. 

Automatic as well as semi-automatic approaches to lifting have already been presented in 
literature (cf. Section 1.2). The challenge in all of these approaches is to define a kind of 
reverse engineering procedure which extracts the “pure” knowledge from the metadata, 
abstracting away application specific concerns and limitations of the implementation 
language. In case of lifting a relational schema, e.g., lifting equals reverse engineering from 
the relational schema to an ER model [59]. In that case, it can be performed semi-
automatically since typically the well known patterns for mapping ER models to relations are 
used. Our case of metamodel lifting is more complex since, first, there are no patterns 
established for mapping certain language concepts to a metamodel, and second, we want to 
support any kind of MOF-based metamodel, thus there is a need for a generic solution. 

To improve quality of automated mapping and semantic versioning, specific semantics 
expressed in terms of concepts defined in a so-called tool integration knowledge base 
should be reused. The relationship between lifted metamodel concepts and concepts in the 
tool integration knowledge base could be established through subsumption relationships, for 
instance. Since an ontology has to appropriately capture the semantics of the domain 
covered by the modeling language [24] which, however, is not appropriately captured by a 
tool metamodel, additional semantics have to be manually incorporated into the ontology.  

We nevertheless envision a lifting process that proceeds semi-automatically, based on a 
number of options for automation support: 
§ A lifting editor can provide interactive guidance in the lifting process. Examples of 

interactive guidance for integration tasks can be found, e.g., in ontology integration tools 
such as [43]. An interactive lifting editor can be designed learning from such systems. A 
lifting guidance mechanism can exploit in particular several sources of knowledge, like 
information from the metamodel, e.g., generalizations and associations between 
metamodel concepts, or, can be based on already existing mappings from metamodel 
concepts to concepts in the tool integration knowledge base, such that related concepts 
and potential lifting mappings may be derived.  

§ A mapping discovery mechanism can be employed to automatically propose 
relationships between metamodel concepts and concepts from the tool integration 
knowledge base. Such a mapping can be based on heuristics and specific assumptions 
about the domain of the metamodel and corresponding domain specific ontologies can 
be made. Furthermore, to enable instance-based matching, it is necessary to use the 
tool to be integrated and model a reference example, which is specified as part of the 
tool integration knowledge base. Based on the gathered model, an automatic mapping of 
concepts from the tool metamodel to the knowledge base can be established. 

§ Syntax patterns can be used to help defining the mapping between semantic concepts 
and their syntactical representation in the metamodel, similar to the way patterns for 
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mapping ER models to relations are employed in [59]. As an example, lets consider two 
syntax patterns for representing a directed association (according to UML terminology) in 
a metamodel. In UML, this involves a model element of metaclass Association, two 
model elements of metaclass Property , and corresponding links between them. In 
contrast, the representation of a reference in MOF, which is semantically equivalent to 
the UML directed association, syntactically just consists of a link between two classes. 
Syntax patterns can be used for predefining mapping operations for lifting, as well as for 
interactive guidance and improved matching. Since currently no library of such patterns 
exists, we aim at creating one by identifying syntactical structures recurring in the 
metamodels of our case study. 

Considering the manual effort involved in lifting a metamodel, the question arises whether 
that effort pays off by the improved support in defining metamodel bridges and in semantic 
versioning. We assume that moving to the more abstract semantic level becomes beneficial 
especially if a metamodel is large and complex, as is the case, e.g., in our case study with 
more than 800 classes of Gen. The ontology will express semantics of concepts and 
consequently integration mappings much more concisely, thus helping to keep mappings 
comprehensible and manageable. Furthermore, with the prospect of Internet scale reuse by 
publishing metamodel liftings, economy of scale will be an additional motivating factor. 
Nevertheless, the design of the semantic infrastructure will be such that lifting is optional or 
that it is possible to lift just core concepts of a metamodel. 
Ontology integration architecture and mapping discovery. When it comes to 
establishing a bridge between two tool metamodels, ModelCVS offers support in the form of 
semantic technologies by performing a mapping of the respective tool ontologies. The 
resulting mapping between ontologies is used to derive a bridge between the underlying 
metamodels, as a strictly manual bridging specification can become an error prone and time 
consuming task.  

ModelCVS supports a hybrid integration architecture. Basically mapping two tool ontologies 
is facilitated indirectly by a common upper tool ontology (cf. research goal (3)), which 
describes the domain covered by the two modeling languages, or directly by mapping them 
in a point to point manner, or using already existing mappings to deduce new ones. Mapping 
discovery can be supported by heuristics finding correspondences based on criteria such as 
name matching and structural equivalence or simply done manually. Mapping mechanisms 
can also operate directly on the metamodel level in case not all metamodel concepts have 
been lifted to the ontology level. 

Although semantic technologies can alleviate the burden when creating a mapping, a user 
is still needed to check the appropriateness of a proposed mapping and to eventually give it 
a finishing touch. Furthermore, it lies in the responsibility of the user to choose an 
appropriate method to support the mapping process. To find a mapping between 
metamodels representing for instance different versions of a modeling language, heuristics 
based on structural and naming similarity may work well to establish a direct mapping, 
whereas the mapping of metamodels exposing very different structure and naming 
conventions may require the use of an upper ontology-based approach, combined with a 
manual mapping, for instance. Especially the mapping on basis of upper tool ontologies and 
heuristics, although providing several benefits, is a challenging task in the context of 
ModelCVS, because of several reasons. 
Upper tool ontology. The establishment of mappings between tool metamodels by means 
of an upper tool ontology requires the tool metamodels to be semantically enriched, meaning 
a lifting onto tool ontologies exists. From each of these tool ontologies mappings are made 
onto an upper tool ontology. The explicit mapping to an upper tool ontology gives a user 
concise control in terms of which ontology concepts are related to each other. Utilizing this 
upper tool ontology, semantic correspondences between concepts in both tool ontologies 
can be deduced, of which subsequently a bridge between metamodels can be derived. 

Figure 1-6 illustrates this approach by showing the lifting of metamodels to the ontology 
level which furthermore is associated with an upper ontology level. From the upper ontology, 
mappings between the ontologies are deduced which are used to derive bridges between 
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metamodels that in turn define a series of model transformation operations to ultimately 
carry out the necessary transformation operations on models to realize, e.g., translation. 
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Figure 1-6: Using ontologies and upper ontologies for model integration 

Heuristic mapping. Heuristic mappings are based on finding structural and linguistic 
similarities in ontologies. The estimation of naming similarity need not only be 
orthographically based. The possible utilization of lexical reference systems (e.g., [21]) 
allows to identify and relate names in question as for instance being synonyms, homonyms, 
antonyms and the like. Furthermore, the results of heuristic matching techniques can be 
greatly enhanced when incorporating instance data into the ontology matching process [29] 
(cf. instance-based matching), which could be accomplished by populating both tool 
ontologies with data of a common reference example. 

Once semantic correspondences between tool ontologies are established, a bridging 
between the underlying metamodels can be derived. As an example, we assume that a 
matching on the ontology level results in the finding of two semantically equivalent classes. 
In a derived bridge between metamodels, depending on the integration pattern in use, 
namely translation, alignment, modularization, or metamodel versioning, this semantic 
correspondence can be expressed by certain metamodel bridging operators to be 
investigated. In case of alignment, a bridging operator might denote the propagation of a 
certain attribute value, whereas in the modularization case, a bridging operator could denote 
that two metamodel elements should be merged into one at check-out. 
 
(3) Open Knowledge Base for Tool Integration 

Our approach to realizing a tool integration knowledge base comprises development of a 
range of ontologies capturing the semantics of modeling languages from typical domains. To 
foster efficient knowledge reuse among ontologies within the field of tool integration, a 
hierarchical structure comprising tool ontologies, upper tool ontologies, and generic 
modeling ontologies will be imposed. Furthermore, we will include instance data forming a 
reference example developed in the course of our case study, and define language 
semantics as relevant to enable semantic model merging. The resulting knowledge base will 
be published on an Internet platform, enabling Internet-wide reuse. 
Tool ontologies. Bottom-up development of the knowledge base starts with modeling 
languages and corresponding metamodels from various domains. In particular, Gen, UML, 
and BPEL will be considered. According to the lifting mechanism described above, tool 
ontologies will be constructed for selected parts of these modeling languages. In the same 
way as tool metamodels may either represent conceptual modeling languages (e.g., UML) or 
domain-specific languages (e.g., BPEL), tool ontologies will also vary in their domain 
specificity accordingly. 
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Tool independent ontologies. Tool independent ontologies exist independent of certain 
tool metamodels. In particular, an upper tool ontology facilitates the integration of several 
tools pertaining to a common modeling domain. For example, the tool ontologies of a BPEL 
tool, a UML activity diagram tool, and the Gen process modeling tool (cf. Translation in 
Section 1.4.1) all belong to a common modeling domain, which could be described by a tool 
independent Workflow ontology. An upper tool ontology can be constructed by generalizing 
concepts from various tool ontologies covering the same or similar domains, as well as by 
directly taking into account domain conceptualizations. Furthermore, generic modeling 
ontologies provide a reuse base of generic concepts for other ontologies. Generic modeling 
ontologies can be constructed by abstracting concepts common to different domains such as 
generalization and by reuse of existing foundational ontologies, e.g., UFO-A [24]. 

The resulting knowledge base will comprise a range of foundational and generic, as well as 
domain-specific ontologies, to facilitate reuse in specifying semantics for tool ontologies 
during lifting. Additional knowledge useful for our purposes, e.g., a lexical reference such as 
WordNet [21], will be kept external to the tool integration knowledge base. Figure 1-7 
illustrates the relationships between tool metamodels, tool ontologies, and tool independent 
ontologies administered by the tool integration knowledge base. Tool ontologies, as created 
by lifting tool metamodels, reuse knowledge organized in specific modeling domains 
according to the respective scope of the tool. For instance, the UML ontology can reuse 
concepts from the Workflow domain. Furthermore, generic ontologies such as a Process 
ontology can facilitate mapping between related domains such as Workflow and Sequence, 
for instance to facilitate definition of an alignment between corresponding metamodel 
fragments of Gen and UML. 

Ontology design. Design principles for the establishment of an ontological knowledge 
base for a certain field of domain can be founded upon existing work such as SUMO [42]. A 
structuring principle specifically relevant to our case of ontologies over metamodels and 
modeling languages is to separately consider both domain conceptualizations, and certain 
representations of domain conceptualizations as defined by modeling languages and 
metamodels [24]. Therefore, in addition to domain specificity, concept representation forms 
an additional structuring dimension. For example, in the Process domain ontology, 
representational variants may include network languages and algebraic (block-structured) 
languages, a variation that is also found, e.g., within UML activity diagrams [28]. 
Quality of integration. Considering the fact that we use an ontology rather than a mapping 
to some semantic domain [27] to denote the semantics of a modeling language, this is 
reasonable since ontologies have been developed as a means for integration, whereas 
semantic domains are more appropriate for reasoning about intrinsic properties of a model. 
Furthermore, it is often difficult or even impossible to define a mapping from a modeling 
language to a semantic domain, as is the case with UML [27]. The consequences of not 
using a semantic domain are that a mapping between ontologies and therefore a derived 
bridging between metamodels may not be precise enough as to ensure exact equivalence of 
models – a property that would be important if executable code should be generated from 
models. Ontologies can, however, be used to explicitly keep track of the quality of a 
mapping, i.e., whether a mapping is precise or not, and which caveats have to be 
considered. Therefore, the knowledge base and bridging operators should support this kind 
of quality control. Furthermore, we aim at using concepts which already have a mapping to a 
semantic domain for building the upper and generic ontologies, to ensure precise 
understanding of these ontologies. Using semantic domains for integration purposes, 
however, is out of scope of this project. 
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Figure 1-7: Reuse of tool independent ontologies  

Reference example. The ontologies within the proposed tool integration knowledge base 
will be populated with specific instance data, stemming from reference examples of our case 
study. These reference examples contained in the knowledge base enable the semi-
automatic mapping with newly created tool ontologies that are populated with instance data 
from a suitable reference model. Thus, the process of specifying semantics for tool 
ontologies can be enhanced considerably. The reference models have to be made up such 
that they produce satisfying results with respect to enhance ModelCVS’ matching and reuse 
capabilities. 
Semantic merging. To ensure consistency of concurrently developed models, automated 
detection of merge conflicts is required. Conflict detection will be performed at both syntactic 
and semantic levels. Syntactic conflict detection is based upon the graph structure of 
models, and on metamodels defining constraints on that structure. Semantic conflict 
detection is based upon the meaning of (syntactic) model elements. Essentially, semantic 
conflict detection improves upon syntactic detection by also taking into account semantic 
changes to a model element that are implied by changes to other model elements but do not 
manifest in syntactical changes of that model element. 

As an example of a semantic merge conflict which can arise in merging UML models, 
consider Figure 1-8, which shows models Model2 and Model3 copied from common ancestor 
Model1. In Model2, operation a in class A has been modified. Note, that class B is also 
affected by this change as B inherits that operation from A. In Model3, class B has been 
modified to include an operation a, which overrides operation a as inherited from class A. 
When merging the concurrent changes from Model2 and Model3 into Model4 and considering 
only structural changes, no conflict can be detected. However, when taking into account the 
meaning of the generalization relationship, it becomes obvious that the two changes are in 
conflict with each other. 
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Figure 1-8: Example of a merge conflict caused by inheritance semantics 

To enable automatic identification of merge conflicts, the knowledge base will capture both 
generic and domain-specific conflicts. Generic knowledge about conflicts will be based on 
generic language constructs, e.g, dependency or inheritance, and conflict detection rules 
based on them. Specific knowledge will take into account constructs of specific domains, 
and furthermore conflict patterns dealing with conflicts that arise from typical usages of a set 
of language constructs, e.g., workflow patterns. Patterns are an approach to declaratively 
cover certain kinds of conflicts which would otherwise require specification of appropriate 
algorithms such as a data flow analysis. The knowledge base will be built up using examples 
from literature (cf. [40]) as well as investigating selected modeling languages. 

Knowledge about such semantic merge conflicts will be captured in the knowledge base by 
enhancing the definition of language concept semantics as relevant to conflict detection, 
e.g., rules defining the semantics of generalization, i.e., inheritance of features with the 
ability to redefine inherited features. The semantic conflict detection mechanism employs 
these rules to deduce the semantic changes made to models and compute potential conflicts 
based on that. Because of this, semantic merge conflict detection becomes available as 
soon as a tool metamodel has been lifted to the semantic level. 

Since the merge operation is performed during each check-in, runtime performance needs 
to be considered. Assuming that a solution based on lifting metamodels to the ontology level 
and performing online reasoning will not provide the required performance, we aim at 
automatic generation of executable conflict detection programs. Therefore we will investigate 
in automated translation of rules expressed at the ontology level to rules expressed at the 
metamodel level, such that they can be performed more efficiently. For instance, one could 
envision to realize the inheritance example as shown above by defining a derived attribute 
for inherited features using OCL and by extending the syntactic conflict checks to that 
derived attribute. 
Open platform. An open, Internet-accessible platform containing the knowledge base will be 
provided to the community (cf. Section 7.2). The platform will not only be used to 
communicate the research results, but also enable community contributions to a growing 
knowledge base of ontologies and furthermore also tool metamodels and corresponding 
liftings, mappings, and bridgings, thus enabling reuse of integration solutions. Care has to be 
taken, however, not to violate copyrights regarding tool metamodels. Therefore, it will not be 
possible to publish the complete integration solution as developed within the case study. 
Nevertheless, a lifting and bridging of UML and BPEL metamodels as developed within the 
project can be safely published. 
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4.2 Proposed System Architecture 

The proposed system ModelCVS establishes a semantic infrastructure for model-based tool 
integration incorporating the output of research goals (1-3) and putting them into a working 
environment that serves as both a testbed for evaluation of research results and a prototype 
for a succeeding industrial product. As can be seen in Figure 1-9, the proposed architecture 
of ModelCVS is organized into three major components. First, a Technological Framework 
provides the actual tool integration services and comprises among others, a repository 
supporting semantic versioning and transparent model transformation. It is supported by 
Tool Adapters, i.e., external components that mediate between proprietary tool interfaces 
and ModelCVS. Second, the Metamodel Bridging Toolkit provides support for defining 
bridges as to realize integration patterns, manually or automatically. Third, the Ontology 
Toolkit supports ontology-based metamodel integration in terms of lifting, mapping, and 
editing capabilities. In the following we will elaborate ModelCVS’ components in more detail. 
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Figure 1-9: ModelCVS’ system architecture and related research goals 

Technological framework. The Technological Framework performs the actual tool 
integration, based on the configurations defined using the Metamodel Bridging Toolkit and 
the Ontology Toolkit. Its main component is the Repository which provides persistent storage 
and versioning of complex artefacts. The Repository is divided into two sections. First, the 
Model and Metamodel Base is dedicated to artefacts of the model and metamodel level, 
comprising, e.g., models, metamodels, and bridging definitions. Second, the Tool Integration 
Knowledge Base contains the ontology level artefacts as defined by research goals (2) and 
(3), i.e., tool ontologies, upper and generic ontologies as well as associated mappings and 
liftings. In building the Repository, existing technologies should be facilitated and integrated. 
It is planned to use a versioning system , e.g., CVS21 or Subversion22, as repository back-
end, providing persistence and basic versioning capabilities. As front-ends, an existing MOF-
repository, e.g., MDR23, along with an existing ontology repository, e.g., Sesame24, should be 
used as access layer. Thus, they provide access interfaces for their respective clients.  

The Model Transformer plugs into the Repository to provide model transformation 
capabilities as required for the various tasks defined by the integration patterns. A QVT 
Engine implementing model transformation as requested by QVT [48] will be used. Several 
implementations of QVT engines exist, e.g., ATL25 and MTF26. However, as already 
mentioned, the standardization of a model transformation language is still work in progress. 
Therefore, available transformation engines and their respective transformation languages 
will be evaluated as to select one which provides suitable runtime performance and 
language expressiveness. The metamodel bridges that are specified in a high-level 

                                                 
21  https://www.cvshome.org/ 
22 http://subversion.tigris.org/ 
23 http://mdr.netbeans.org/ 
24 http://www.openrdf.org/ 
25 http://www.eclipse.org/gmt/ 
26 http://www.alphaworks.ibm.com/tech/mtf 
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language (cf. Section 1.4.1) using the Metamodel Bridging Toolkit have to be translated into 
that transformation language. A QVT Generator needs to be developed performing this 
compilation task. Note the bridges are specified independently of the actual transformation 
language to be used, therefore we are free to choose different transformation languages and 
engines for different kinds of integration patterns as to achieve optimal performance. 

The Model Merger also plugs into the Repository to provide syntactic and semantic 
merging [40] thus enhancing the textual merging capabilities already provided by the 
repository back-end. While syntactic merging capabilities can be built based on existing 
research results [40], for the semantic merging capabilities appropriate concepts and 
reasoning tasks, as defined with respect to the tool integration knowledge base (cf. Section 
1.4.3), have to be developed. Since conflict detection is a time-critical function that has to be 
performed during each check-in, the Model Merger implementation will use precompiled 
conflict detection programs, derived from metamodel-level rules, such as OCL constraints.  

Tools interact with the Repository using some access protocol to perform operations such 
as browse or model check-out. Preferably an already existing access protocol such as CVS 
or WebDAV27 can be reused for this purpose. Requirements on the protocol include (a) 
support for the required repository operations (see Repository), (b) support for handling XMI 
data, (c) built-in support in existing modeling tools, and (d) platform independence. Existing 
protocols will be evaluated and either an appropriate protocol will be selected or a new one 
will be developed. Regarding the data format used for exchanging models, XMI is a natural 
candidate as it is based on MOF, and supported by many tools, particularly UML tools. The 
choice of XMI does not substantially restrict the kinds of modeling tools which can be 
integrated, since XMI can represent any model that exhibits a graph-based structure. 

Tool adaptors are a practical necessity, since it cannot be assumed that all tools to be 
integrated in a tool chain support the access protocol and data format of ModelCVS. The 
purpose of a tool adaptor, thus, is to mediate between the tool and ModelCVS. A typical 
example is to convert between textual formats and XMI as is the case with Gen. Regarding 
the latter task, a prototypical implementation already exists developed by one of the partners 
[62]. A framework for tool adapter development will be created, along with concrete tool 
adapters for Gen and BPEL required for testing and for performing the case study. 
Metamodel Bridging Toolkit. This component provides all functionalities dealing with the 
handling of metamodels and especially the creation of metamodel bridges according to the 
integration patterns, i.e., translation, alignment, modularization, and versioning of 
metamodels. In particular, the Bridging Editor supports creation of bridges using the bridging 
language defined by research goal (1). Options that will be considered for implementing this 
editor are, (a) reuse of a generic mapping tool like the Atlas Model Weaver [6] that can be 
customized to accommodate the specific concepts of the bridging language, (b) definition of 
a textual syntax for the bridging language and reuse of a text editor, or (c) definition of a 
graphical syntax and editor, requiring that a suitable development environment for domain 
specific languages will already be available at the time of development. Furthermore, the 
Bridging Generator makes use of any mappings created at the ontology level to 
automatically derive bridges between metamodels, taking into account the ontology-level 
mappings, liftings, as well as any mappings between metamodel elements. Automatically 
generated bridges will have to be reviewed and refined by the user, using the Metamodel 
Bridging Editor. 
Ontology Toolkit. Finally, the Ontology Toolkit provides the means for realizing research 
goal (2), i.e., metamodel lifting as well as mapping and editing of ontologies. Its key 
component is the Metamodel Lifting Jack, which provides means for the creation of an 
ontology from a metamodel through lifting. The lifting mechanism can be built on 
experiences gained from lifters working with database or XML schemata. To facilitate the 
lifting implementation, we aim on defining a concise mapping from the MOF 2.0 meta-
metamodel onto an ontology language definition, such that any MOF compatible modeling 
language can be lifted and expressed in an ontology language like OWL for instance, 
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simplifying the further process of semantic enrichment. To actually manipulate and make use 
of the resulting ontologies further, tools like Protégé, the Eclipse plug-in Semantic Web 
Development Environment (SWeDe)28, the JENA API29 as well as several specialized 
inference engines like F-OWL30 can be used, contributing to the Ontology Mapper and the 
Ontology Editor. 
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