
 1

ModelCVS
A Semantic Infrastructure for Model-based Tool Integration

G. Kappel, G. Kramler

Business Informatics Group,
Vienna University of

Technology

E. Kapsammer, T. Reiter,
W. Retschitzegger

Dept. of Information Systems,
Johannes Kepler University

Linz

W. Schwinger

Dept. of Telecooperation,
Johannes Kepler University

Linz

Abstract
With the rise of model-driven software development, more and more development tasks are
being performed on models. A rich variety of modeling tools is available supporting different
tasks, such as model creation, model simulation, model checking, and code generation.
Seamless exchange of models among different modeling tools increasingly becomes a
crucial prerequisite for effective software development processes. Due to lack of
interoperability, however, it is often difficult to use tools in combination, thus the potential of
model-driven software development cannot be fully utilized – unless we find some scalable
way of integration.
We are aiming at providing a semantic infrastructure for model-based tool integration,
enabling to facilitate any tool appropriate for the modeling task at hand. The key innovations
provided are a set of scalable architectural model integration patterns supported by a high-
level metamodel integration language, thus going beyond existing low-level model
transformation approaches. Ontology-based metamodel integration considerably lowers the
manual effort required for tool integration, enabling a novel synergic use of technologies
from the model engineering and ontology engineering domains. An open knowledge base for
tool integration captures essential knowledge about modeling languages and tools in terms
of ontologies, fostering reuse within and beyond the scope of this project.
These innovations will be realized within the ModelCVS prototype and case study. The core
of the system will be based on a versioning system such as CVS, thus providing a loosely-
coupled and well-proofed integration architecture. Transparent transformation of models
between different tools’ languages and exchange formats, as well as versioning capabilities
exploiting the rich syntax and semantics of models represent the key functionalities of
ModelCVS. In this way, ModelCVS will serve as both, a research vehicle and testbed for
exploring applications of semantic technologies in model-based tool integration and a
prototype for a succeeding industrial product.

1 Introduction

Motivation for model-based tool integration. Seamless exchange of models among
different modeling tools becomes an important prerequisite for effective software
development processes. With the rise of model-driven software development, more and
more development tasks are being performed on models, to exploit the higher level of
abstraction, the richness of visualization, and the power of expressiveness, as compared to
general-purpose programming language code. A rich variety of tools is available supporting
different tasks, such as model creation, model simulation, model checking, and code
generation. Due to a lack of interoperability, however, it is often difficult to use tools in
combination, thus the potential of model-driven software development cannot be fully
exploited – unless we find some way of integrating the variety of existing modeling tools.
What we are looking for is model-based tool integration, enabling to facilitate any tool
appropriate for the modeling task at hand. Although one could want complete tool
integration, i.e., integration also addressing processes, user interfaces, etc., complete post-

 2

hoc integration of modeling tools is very expensive in terms of effort and scalability
compared to its benefits, and therefore out of scope of this project.
Problems of model-based tool integration. Integration of modeling tools in terms of model
exchange poses several difficult problems, resulting in high effort and costs.

First, there is heterogeneity in textual representation, syntax, semantics, and scope of
modeling languages and exchange formats used by different tools. Detecting and resolving
these heterogeneities is a matter of both, size of modeling language and subtleties of
syntactic and semantic differences.

Second, implementation of an integration solution, i.e., basically a program that takes
models in one tool’s format and transforms it into another tool’s format and vice versa, is a
cumbersome and error-prone task. Although there are specific technologies emerging that
can be used solving this task, e.g., in the context of OMG’s model-driven architecture
(MDA)1 specific model transformation languages and tools are being developed, these are
not tailored for the integration task, and furthermore require specific skills. Similarly, tools
from the enterprise information/application integration (EII/EAI) markets [26] are not
appropriate for handling data as complex as models typically are.

Third, inconsistency in the handling of models becomes an issue when the development
process proceeds in parallel branches such that different tools concurrently modify a model
and model versions must be merged. Concurrent development arises in any development
team and must be correctly dealt with.

Finally, repetitive effort occurs when tools are updated by new versions or when tools
similar to already known ones need to be integrated. Although during integration of a set of
tools a huge amount of integration knowledge will build up, that knowledge is not captured
explicitly in a form that facilitates re-use and automation support when integrating new tools
or new tool versions.
Semantic technologies for model-based tool integration. We believe that semantic
technologies can improve model-based tool integration in multiple ways. Schema matching
and ontology mapping solutions can be adapted to the modeling domain to tackle the
heterogeneity problem. Research results from ontology mapping can serve as a basis for
developing concepts and operators for specifying model transformations at a higher level of
abstraction. Advanced model merging techniques can be developed based on semantically
enriched descriptions of modeling languages. And finally, ontologies can be used to build a
knowledge base capturing essential tool integration experience.

Our approach – ModelCVS. Therefore, we propose to build ModelCVS, a semantic
infrastructure that serves as both a research vehicle and testbed for exploring applications of
semantic technologies in model-based tool integration and a prototype for a succeeding
industrial product. The core of the system will be based on a versioning system like the
concurrent versioning system (CVS)2, thus providing a loosely-coupled and well-proofed
integration architecture. Transparent transformation of models between different tools’
languages and exchange formats, as well as versioning capabilities exploiting the rich syntax
and semantics of models enhance the system’s core.

To keep the system evolvable, a scalable architecture for realizing tool integration is
provided that minimizes the effort necessary for integrating new tools while maximizing
reuse of integration knowledge. Integration is specified both at syntactic and semantic levels.
The syntactic level deals with metamodels which define the structures and datatypes of
models, whereas the semantic level uses ontologies which describe the semantics of
modeling concepts. Semantic level integration and reuse of integration knowledge will be
specifically supported through dedicated component of the semantic infrastructure that
facilitates lifting metamodels to the semantic level, finding mappings between metamodels to
be integrated, and finding semantic merge conflicts. Another dedicated component, the
knowledge base, will comprise generic modeling concepts, selected important modeling
domains, e.g., workflow, as well as reference examples.

1 http://www.omg.org/docs/omg/03-06-01.pdf
2 https://www.cvshome.org/

 3

Example

Overview of the case study. To exemplify the complexity of model-based tool integration
and to point out the specific challenges we want to tackle, we consider a real-world scenario3
that deals with the integration of three tools, the CASE tool AllFusion Gen (Gen for short)4,
the UML tool Rational Software Modeler5, and the Oracle BPEL Process Manager6. In this
scenario, Gen is a legacy tool under which many existing applications have been developed.
UML should be employed for new projects, to link up with current technologies. And BPEL
(Business Process Execution Language for Web Services)7 is required for developing certain
web-enabled workflow applications. The UML and BPEL tools are stand-alone tools, with
integration support restricted to file exchange using some particular file format, i.e., XMI
(XML Metadata Interchange)8 for UML and XML for BPEL. Gen is actually a well integrated
suite of tools covering a wide range of tasks, following a common modeling paradigm. The
integration capabilities of Gen, however, are not open for external tools. Without proper
infrastructure support, integration of these tools poses severe problems as introduced
above, which are very costly to solve.
Different format, representation, scope, syntax, and semantics. First of all, the model
exchange formats of these tools are quite different. The differences in representation –
textual data by Gen, XMI by the UML tool, and XML by the BPEL tool – are the least
problem, since there are tools to cope with that. A big problem, however, is difference in
scope. Gen supports a variety of modeling domains, ranging from database via GUI to
definition of functions. UML also has a rather broad scope, which is a subset of Gen’s.
BPEL, in contrary, has a very limited scope focusing on process modeling, which is related
to Gen’s process model and UML’s activity diagram. Therefore, it is not possible to simply
take a Gen model and translate it to UML or BPEL as only parts of it can be translated.
Conversely, to allow for a translation back to Gen, precautions need to be taken to enable
reassembly of any changed parts with the overall Gen model. No less of a problem are the
differences in syntax and semantics. E.g., the control flow primitives of UML activity
diagrams and BPEL are somewhat different, although they express the same concepts, e.g.,
parallelism. In some cases, however, there are also differences in expressiveness that
cannot be translated. An integration infrastructure has to deal with that, too.
Large and complex metamodels. The metamodels especially of Gen and UML are very
large and complex. For instance, Gen’s metamodel comprises more that 800 classes and
the metamodel of UML2 more than 260 classes. Even if specific implementation technology
for model transformations is used, e.g., the forthcoming QVT
(Query/Views/Transformations)-standard [48], it is clear that implementing a transformation
for Gen and UML will require a lot of effort and not least due to the overall complexity will be
a very error-prone process. Part of the problem is here, that existing implementation
technologies such as object-oriented programming languages but also emerging model
transformation languages are not optimized for the problem at hand. The problem is not just
to implement a single translation, but to also deal with the scalability problem. If BPEL is
added to the tool chain, two new translations have to be implemented. If even more tools
need to be integrated, simple point-to-point integration quickly comes to its limits and the
need for more powerful architectures arises.
Conflicting modifications. When, in the course of concurrent development, changes to a
model are merged, much care has to be taken to keep the model consistent. As we have
seen above, if a model is translated from Gen to BPEL, only some part of it can be
translated, thus the BPEL developer may not be aware of all implications that any changes
to the BPEL-relevant part may have on the overall model. The situation is even exacerbated
when models are modified concurrently. Since we want to enable collaborative development

3 This scenario is envisioned as case study to evaluate the results of this project. The tools have been selected according to the

requirements of the demonstrator of our project and to cover a broad range of integration issues.
4 http://www3.ca.com/Solutions/Product.asp?ID=256
5 http://www-306.ibm.com/software/awdtools/modeler/swmodeler/
6 http://www.oracle.com/technology/bpel/
7 http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
8 http://www.omg.org/technology/documents/formal/xmi.htm

 4

and flexible working processes, we have to deal with the facts that experts working on some
specific part, e.g., the BPEL part, use very specific tools and that development in related
parts may proceed concurrently. Although the task of merging concurrent modifications is
not genuine to model-based tool integration and is addressed by existing versioning tools, in
our case we cannot rely on individual tools to help detecting and resolving potential
inconsistencies, since a change performed in one tool may propagate to parts of the model
that are outside that tool’s scope. Therefore, appropriate infrastructure support is required.
Different versions of metamodels. Finally, let’s consider the process of updating a tool to a
new version with an updated metamodel. If not already supported by the tool, the update
process involves implementing translators for migrating existing models to the new version
and possibly back again. Less obviously, also all of the existing integration specifications
need to be updated to the new version, and the tool will certainly not support this task. Lot of
repetitive effort will be required unless it is possible to automatically migrate existing
integration specifications. A similar situation and potential of re-use occurs when tools
supporting equal modeling languages have to be integrated. Typically these tools, although
supporting the same modeling language, interpret and realize the associated metamodels in
different ways, in case that the semantics of the metamodel is not clearly defined (which is,
e.g., a major concern in the current UML 2.0 standard). Also in this case, reuse could be
supported through higher-level integration knowledge, thus reducing the manual integration
effort to validation, precision, and completion.

2 Research Goals

The main research goal that has to be achieved in the proposed project is the finding of
novel methods and the development of new technologies for a model-based approach to tool
integration. The innovation in our approach is clearly the employment of semantic
technologies in the form of ontologies to facilitate tool integration. Apart from the basic
requirement of providing interoperability between tools, our focus on model driven
development rises new requirements, in the form of providing model integration capabilities
supported by semantic technologies for scalability reasons, advanced versioning
mechanisms for practical applicability, and the construction of a tool integration specific
knowledge base for the effective reuse of concept semantics for modeling languages.

The unique character of the proposed project stems from being rooted in several traditionally
disparate research fields such as ontology engineering, model driven development,
versioning, and tool integration in general. Thus, the specific research goals associated with
the proposed project as listed below, are expected to contribute to various research areas.

Motivated by this overall research focus, three specific research goals can be derived,
which are followed in this project (cf. Figure 1-1).

Tool A
(e.g. AllFusionGen)

Tool B
(e.g. Oracle BPEL
ProcessManager)

(1)

New Language for Scalable Model-basedTool Integration

Tool C
(e.g. Rational Software Modeler)

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class

Class

Class Class Class

Class

C l a s s Class

Class

Class Class Class

Class

Class Class Class

Class

C l a s s Class

Class

C l a s s Class

C l a s s

Class C l a s s Class

Class

Class Class

C l a s s

Class C l a s s Class

C l a s s

Class C l a s s Class

Class

Class Class

Class

Class Class

<XML>
<tag1>

<tag2>
</tag2>

</tag1>
<tag2>

</tag2>
...

</XML>

<XML>
<tag1>

<tag2>
</tag2>

</tag1>
<tag2>

</tag2>
...

</XML>

< X M L >

<tag1>
<tag2>

</tag2>
</tag1>

<tag2>
</tag2>

...
</XML>

(2)

Innovative Technologies for Ontology-Based
Metamodel Integration

(3)

Open
Knowledge Base

for Tool Integration

Tool A
(e.g. AllFusionGen)

Tool B
(e.g. Oracle BPEL
ProcessManager)

(1)

New Language for Scalable Model-basedTool Integration

Tool C
(e.g. Rational Software Modeler)

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class

Class

Class Class Class

Class

C l a s s Class

Class

Class Class Class

Class

Class Class Class

Class

C l a s s Class

Class

C l a s s Class

C l a s s

Class C l a s s Class

Class

Class Class

C l a s s

Class C l a s s Class

C l a s s

Class C l a s s Class

Class

Class Class

Class

Class Class Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class

Class

Class Class Class

Class

C l a s s Class

Class

Class Class Class

Class

Class Class Class

Class

C l a s s Class

Class

C l a s s Class

C l a s s

Class C l a s s Class

Class

Class Class

C l a s s

Class C l a s s Class

C l a s s

Class C l a s s Class

Class

Class Class

Class

Class Class

<XML>
<tag1>

<tag2>
</tag2>

</tag1>
<tag2>

</tag2>
...

</XML>

<XML>
<tag1>

<tag2>
</tag2>

</tag1>
<tag2>

</tag2>
...

</XML>

< X M L >

<tag1>
<tag2>

</tag2>
</tag1>

<tag2>
</tag2>

...
</XML>

<XML>
<tag1>

<tag2>
</tag2>

</tag1>
<tag2>

</tag2>
...

</XML>

<XML>
<tag1>

<tag2>
</tag2>

</tag1>
<tag2>

</tag2>
...

</XML>

< X M L >

<tag1>
<tag2>

</tag2>
</tag1>

<tag2>
</tag2>

...
</XML>

(2)

Innovative Technologies for Ontology-Based
Metamodel Integration

(3)

Open
Knowledge Base

for Tool Integration

Figure 1-1: Research Goals of ModelCVS

 5

(1) New Language for Scalable Model-Based Tool Integration

Metamodel bridging. Model-based tool integration comprises creating so-called metamodel
bridges between the different tool metamodels (i.e., the metamodels of the modeling
languages supported by the tools). These metamodel bridges define the model
transformations facilitating transparent model translation. The main problems in creating
such bridges arise due to metamodel heterogeneity in various aspects and due to the fact
that existing implementation technologies are not exactly appropriate for the metamodel
bridging task. While we do not attempt to fully solve metamodel heterogeneity in any case –
for certain reasons heterogeneity is actually considered a necessity – we aim at providing
improved technologies for dealing with metamodel heterogeneity in more efficient and
evolvable ways.
Existing approaches. As already discussed, there exist specific languages for defining
model transformations as required in the area of model-driven development. Requirements
for such languages are, e.g., to transform complex high-level models into platform-specific
models and ultimately into code. Although model transformation capabilities form the base of
a model-based tool integration solution, generic model transformation languages operate at
a very low level of abstraction, such that the specifics of tool integration are not explicitly
supported (cf. Section 1.2). There also exist a wide range of EII/EAI tools, that support, e.g.,
conversions between different data formats (cf. Sections 5.2 and 5.4). These tools, however,
do not focus, as already mentioned, on model-based tool integration and therefore are not
able to deal with the complexities of metamodel bridging as envisioned in our approach.
Integration patterns and bridging operators. For these reasons, we aim at defining a
language specifically tailored to metamodel bridging. We will identify architectural model
integration patterns (integration patterns for short) that ensure openness, scalability, and
evolvability of a tool integration solution. These will serve as basis to define specific bridging
tasks and to develop appropriate bridging operators forming a metamodel bridging language
that supports the identified integration patterns. Concerning these integration patterns and
bridging operators, our research can build on a few closely related approaches in the areas
of model management (e.g., [39]) and model integration (e.g., [6]) as well as in the area of
aspect-oriented modeling (e.g., [54]) which can be used as a first starting point (for a
detailed overview, cf. Section 1.2).
An initial set of integration patterns is proposed in Section 1.4, namely translation (i.e.,
bridging syntactic and semantic heterogeneity between largely overlapping tool
metamodels), alignment (i.e., bridging cross-cutting concerns of partly overlapping tool
metamodels), modularization (i.e., decomposing monolithic tool metamodels as a pre-
requisite for scalable bridging), and versioning (i.e., semantic-based migration of different
versions of tool metamodels).

(2) Innovative Technologies for Ontology-Based Metamodel Integration

Ontologies for metamodel integration. The proposed project makes extensive use of
semantic technologies for the integration of tool metamodels as well as for the realization of
semantically aware model versioning mechanisms. We assume that addressing the
integration problem at the semantic level using ontologies improves the quality of automation
support that can be achieved. Given the fact that a huge amount of work already exists in
the area of ontology integration, the question arises as how these research results can be
employed for ontology-based metamodel integration.

The essential difference between metamodels and ontologies is that metamodels define
the concepts of a modeling language in terms of their syntax, whereas ontologies focus on
the semantics of concepts, disregarding syntactical concerns. Therefore, in order to harness
the potential of ontologies for metamodel integration and semantic versioning, the difference
in abstraction level and semantic expressiveness between metamodels and ontologies
needs to be dealt with.
Metamodel lifting. In this respect, we aim to enable transitioning from the mostly syntactic
metamodel level to the semantic ontology level in terms of a translation and subsequent

 6

syntax abstraction and semantic enrichment, furtheron called metamodel lifting. The lifting
process should result in a mapping between metamodel level and ontology level such that
both levels can be used synergically.

Regarding utilization of the expressiveness and reasoning capabilities of the semantic
level, we aim in particular at supporting the various integration tasks as outlined in goal (1).
Therefore, existing work on lifting data sources to ontologies (e.g., [59]), integration of
ontologies (e.g., [41]) as well as modularization (e.g., [56]), and versioning of ontologies
(e.g., [32]) has to be considered and adapted to the specific requirements of metamodel
integration in terms of integration patterns and bridging operators.

(3) Open Knowledge Base for Tool Integration

Reuse capabilities. The basic idea behind the semantic infrastructure in ModelCVS is to
enrich metamodels with specific semantics. As suggested above, this can be achieved by
deriving tool ontologies from tool metamodels, which provide proper semantics for modeling
languages. The entailment of specific semantics through an enrichment of tool ontologies,
however, shall be possible with reasonable effort. Therefore, a key requirement is to provide
reuse capabilities for the process of defining specific semantics for a tool ontology.
Tool integration knowledge base. Hence, our research aims at constructing a tool
integration knowledge base that, similar to a library, provides reusable concepts for the
enrichment of individual tool ontologies. The knowledge base should enable semantic
support for ontology-based metamodel bridging as discussed in goal (2), as well as
improved detection of versioning conflicts as motivated by the introductory example. The
knowledge base should furthermore be open for usage outside the scope of ModelCVS.
Content of the knowledge base. Specific research tasks comprise, first, identification of
generic, reusable concepts and development of a structure to organize the contents of the
knowledge base and to enable efficient reuse. Second, devising a set of reference
examples, which will be the result of our case study, to populate the tool integration
knowledge base with, to be used to enhance ModelCVS’ matching and reuse capabilities.
Third, defining knowledge about semantic merging conflicts as required for enhanced model
versioning capabilities, i.e., automated identification and subsequent resolution of such
conflicts. Fourth, establishment of a public platform enabling Internet-wide access and
contributions to the knowledge base as to maximize reuse effects.

3 State of the Art

In the following, the state of the art is described with respect to our research goals outlined in
Section 1.1. For this, in a first step, a brief overview on tool integration in general is given,
followed by a discussion of more closely related approaches in the area of model-based tool
integration and concluded finally, by a review of ontology research for integration purposes.

3.1 State of the Art in Tool Integration

Research in tool integration has been a “hot” topic since the Stoneman Model9 was
proposed at the end of the 70's and summarized by Brown [8] in two categories, the
conceptual level (“what is integration?”) and the mechanical level (“how do we provide
integration?”).
Conceptual level of integration. In general, commercial of the shelf (COTS) tools are
meant to be integrated if they function coherently and effectively in an environment as a
whole, as is the case in an integrated development environment (IDE). Wasserman [60] is
regarded as the first author who has suggested a categorization to describe the integration
of tools from a functional point of view comprising integration in terms of platforms, GUIs ,
data, control, and processes. Other categorizations used for characterizing tool integration

9 http://www.adahome.com/History/Stoneman/stoneint.htm

 7

comprises depth of integration, varying from exchanging byte streams to semantics-
preserving integration, and the universal applicability of the integration approach.
Mechanical level of integration. The research efforts at the mechanical level of tool
integration include (1) a series of standardization efforts and middleware services like CAIS
[45], PCTE [2], CDIF [20], CORBA10, and OMG’s recent RFP OTIF 11 (open tool integration
framework) to support tool interoperability, (2) architecture models, infrastructures, and tool
suites like the ECMA toaster model [17], the ToolBus architecture [5], and finally (3) basic
tool integration mechanisms such as data sharing, data linkage, data interchange, and
message passing [52].

Some of these efforts were often grounded in large initiatives but have not been widely
accepted. The European standardization effort PCTE, e.g., supporting data integration by
providing tools with a common repository and services to store, retrieve, and manipulate
data was not widely adopted in industry, not least because of its heavyweight architecture
and high usage costs. Another example, CDIF, a standard for model exchange has been in
the meanwhile replaced by MOF and XMI (cf. Section 1.2.2). Regarding, e.g., tool suites,
they are often incomplete with respect to the various development activities requiring tool
support, and most often do not allow to select between “best of class” tools (apart from
promising exceptions like Eclipse12) [52].

Despite of all these important efforts, tool integration is still a challenging task, leading most
often to hand-crafted bilateral integration solutions [52]. These “solutions” suffer from high
maintenance overheads not least in case of evolutions of the underlying data or tools
themselves, are often strongly technology-dependent and, most importantly, do not scale.
With the advent of model-driven development (MDD) and in particular the introduction of
MDA, new possibilities have been opened up to cope with these challenges.

3.2 State of the Art Relevant for Model-Based Tool Integration

Model-driven development. The key idea of MDA is to focus on models instead of code as
the major artefact in software development. This allows modeling tools to be integrated on
basis of the metamodels of modeling languages supported by the tools (i.e., the tool
metamodels), thus paving the way for another generation of (meta)model-based tool
integration approaches and providing a basis to overcome the above mentioned limitations
of existing integration approaches. For this, MDA includes a set of interrelated standards13,
comprising a language for metamodel definition (Meta Object Facility – MOF), and the MOF-
compliant languages for constraint specification (Object Constraint Language – OCL), model
transformation (QVT), and metadata interchange (XML Metadata Interchange – XMI).

Model transformation as key technology

Model transformation languages. Model transformation is one of the major building blocks
in the context of model-based tool integration and a very active research area. Existing
approaches in this area having been either submitted to OMG’s QVT request for proposals
or being already part of existing MDA tools range from algorithmic and imperative
approaches, via graph-transformation-based approaches to template rule-driven, and hybrid
approaches [14]. Tratt et al. [57], e.g., provide an extensible, imperative model
transformation language with some rule-based elements for pattern matching purposes,
whereas Becker et al. [4] use purely rule-based mechanisms based on graph-
transformations and generates wrapper for tool integration following a kind of programming-
by-example approach. Highly relevant for our approach seems to be transformation
languages such as BOTL14, which allows the definition of modular, rule-based
transformations, with independent rules for sets of metamodel elements – a property
important for realizing the versioning interaction pattern as introduced in Section 1.1.

10 http://www.omg.org/corba
11 http://www.omg.org/docs/mic/04-08-01.pdf
12 http://www.eclipse.org
13 http://www.omg.org/technology/documents/modeling_spec_catalog.htm
14 http://www4.in.tum.de/~marschal/botl/

 8

Infrastructures based on transformation languages. Based on these several kinds of
QVT-like transformation language proposals, infrastructures and frameworks have been built
for tool integration (cf. the special issue of SoSym on model-based tool integration [52]). For
example, WOTIF (Web-based open tool integration framework)15 uses a graph-
transformation mechanism and realises different tool integration patterns (e.g., direct tool
integration and integration via a common metamodel), but requires that every tool to be
integrated supports certain APIs for installing plugins which is in contrast to our approach.
GeneralStore [50] being in fact a MOF-based repository, allows bi-directional
transformations between models, but uses XSLT or ad-hoc approaches for model
transformation, only. Finally, MDDi, (Model-driven Development Integration Project of
Eclipse)16, although providing some interesting ideas for model integration in terms of a bus
architecture similar to AMMA (cf. below) is still in its draft proposal phase.
Deficiencies of pure model transformations. Although, QVT-like model transformation
languages are a cornerstone also for our project, existing proposals are too generic and lack
appropriate abstraction mechanisms for different kinds of model integration patterns, which
are highly needed in practice and well-known from other research areas such as federated
and multi database systems [53], megaprogramming [61] and web service composition [35].
Such integration patterns (cf. Section 1.4) would require a series of basic model
transformations which will simply not scale up when manually specified for complex models.

Beyond pure model transformation – integration patterns and bridging operators

There are only few closely related approaches providing abstraction mechanisms in terms
of, e.g., high-level bridging operators or modularisation techniques in the areas of model
management and model integration as well as in the area of aspect-oriented modeling which
are described in the following in more detail.
Rondo. Having a similar intent in mind, the generic model management initiative from
Bernstein et al. [39] provides a prototypical implementation called Rondo, which aims at
keeping the matching of large XML schemata scalable. An approach to matching is
introduced that operates on fragments of a large schema to lower the complexity of matching
tasks. Besides this modularisation, model management operators on relational and XML
schemata are provided, comprising, e.g., the automatic derivation of semantic
correspondences or differences, the merging of models, and the derivation of a mapping
from other mappings.

Although set in the context of relational and XML schema matching, this idea seems to be
transferable to tool metamodels. Nevertheless our approach is not only aimed at finding
semantic correspondences between metadata, but also to support certain model integration
patterns, keeping a later code-generation step in mind in terms of deriving appropriate model
transformation programs thereof. Another difference is that our focus goes beyond
integrating XML and database schemata, by allowing the integration of arbitrary MOF-
models in the sense of MDA.
AMMA / AMW. The ATLAS Model Weaver (AMW) which is part of the AMMA model
engineering platform (soon to be released under the Eclipse GMT project17) proposed by
Bézivin et al. [6], allows to perform a weaving operation in terms of establishing semantic
correspondences between two metamodels, which are stored in a weaving model. Model
weaving seems to be – different to Rondo – a manual operation, requiring an explicit
specification of appropriate semantics for correspondences.

Our approach, in contrast, aims at both, inferring semantics of correspondences from
ontological knowledge and providing a predefined set of higher-level bridging operators. In
addition, ModelCVS extends the notion of weaving from an activity that solely establishes
correspondences between metamodels, to a mechanism that interprets operators specified
between metamodel elements and carries out transformation programs accordingly.

15 http://escher.isis.vanderbilt.edu/tools/get_tool?WOTIF
16 http://www.eclipse.org/proposals/eclipse-mddi/
17 http://www.eclipse.org/gmt/

 9

Aspect-orientation. The research efforts associated with aspect-orientation also deal with
modularization in terms of factoring out cross cutting concerns into modules called aspects .
This idea manifests in aspect-oriented programming languages [33], but also in aspect-
oriented modeling, which allows to modularize cross-cutting-concerns in an implementation
independent manner (cf. the approaches below).

Our approach focuses on tool integration, meaning that metamodels are, e.g., decomposed
according to certain concerns they cover. Weaving as in aspect-orientation can be compared
in our approach to the re-assemblage of models after modularization. In a tool integration
setting, one can assume modularization to take place by detecting join points, e.g., in the
form of meta-associations and point-cuts, e.g., in the form of links between model elements,
to offer automatic support for a future re-assemblage. Most of the following approaches
more or less use ideas from aspect-orientation for model integration purposes.
Model Composition Semantics. Clarke [12] introduces a composition mechanism for UML
class diagrams, representing different separated concerns. Overlapping concepts are
identified in these models and thus merged as specified by a composition relationship,
following so-called merge and override strategies. Based on this basic integration behavior,
composition patterns [11] are introduced as an extension to UML templates.

This approach focuses on UML models, only, and does not allow, e.g., the deletion of
obsolete model elements after an integration is performed, as required for our approach. In
addition, we focus on the derivation of model transformation programs during the integration
stage, which are capable of automatically performing, e.g., the merging of models.
Model Composition Directives. Based on [12], Straw et al. [54] propose so called
composition directives for composing UML class diagrams. These basically include name
rewriting, adding, and deleting of model elements, change of references, and control of
execution order. Inspired by aspect-oriented programming, so-called primary models are
composed with aspect models, which represent a crosscutting concern to be interwoven.

Although composition directives are comparable to our envisioned model bridging
operators, their primary focus seems to be on model weaving but not on meta-model
weaving. We believe that our metamodel bridging operators could in turn be transformed into
composition directives at the model level. Since we avoid an ad-hoc integration of models,
with our approach, licit integrated models can be generated, only.
GME. The Generic Modeling Environment (GME) proposed by Karsai et al. [31] is a
modeling and metamodeling toolkit based on UML notation and a GME specific meta
metamodel. GME allows for the composition of metamodels similar to our approach. The
composition mechanisms comprise an equivalence operator creating a union of two model
elements, similar to the merge semantics in [12] and two different inheritance operators,
realizing implementation inheritance and interface inheritance.

Differerent to our approach is that GME is not based on the MOF standard. Furthermore,
our approach goes beyond the functionalities for metamodel composition in GME by
supporting different model integration patterns, not just composition of metamodels.
C-SAW. C-SAW, developed as a plug-in for GME by Gray et al. [23] is a so called cross-
cutting-concern weaver. Aspects are specified using the Embedded Constraint Language
(ECL), a OCL superset, additionally providing imperative constructs for model manipulation.

The transformation capabilities of ECL are, however, limited to models of the same
metamodel, it lacks support for abstract integration mechanisms and is, instead of MOF,
based on a meta-metamodel specific to GME, making the approach not applicable for us.
Domain Composition Approach. Estublier et al. [18] propose a UML profile allowing the
composition of separately designed domain models, as required when facing the federation
of immutable components off the shelf. UML associations and association classes are
specialized by stereotypes to express feature correspondence and concept overlapping.

In principle, this approach is similar to our envisioned alignment interaction pattern, but
does not support other interaction patterns as targeted in our project. In addition, only UML
models are supported instead of arbitrary MOF-models.

 10

Summary. Summarizing, although there are already few approaches targeting model-based
tool integration from a meta-modeling point of view and providing some basic abstraction
mechanisms in terms of modularization techniques and bridging operators, each of them
suffers from certain deficiencies with respect to the focus of our project as outlined above.
Nevertheless, several ideas and concepts of these approaches could be of high value for
ModelCVS, which has to be investigated in-depth in the course of the project. It has to be
noted however, to the best of our knowledge, none of these approaches uses ontologies to
facilitate the semantic aspect of model-based tool integration, as done in our approach.

3.3 State of the Art Relevant for Ontology-Based Metamodel Integration

History of semantic integration. The research field mainly relevant for ontology-based
metamodel integration is the broad area of semantic integration. The history of semantic
integration goes back to the early 1980s, where Brodie et al. [7] addressed semantic
relativism in data modeling, leading to a comprehensive taxonomy of semantic
heterogeneities introduced by Shet et al. [53] in the early 1990s and an in-depth survey of
automatic schema matching approaches in 2001, published by Rahm et al. [49]. Although
the problem of semantic integration is tackled in various ways by different communities, as
could be seen at the remarkable Dagstuhl workshop on semantic interoperability and
integration in 200418, in recent years, ontologies became very popular to facilitate various
semantic integration tasks. This is not least since, in comparison to other techniques,
integration based on ontologies can rely heavily on the high expressive power of ontology
languages and on appropriate reasoning techniques.

As already stated in Section 1.1, our approach will utilize ontologies as a base mechanism
to semantically enrich tool metamodels, thus facilitating tool metamodel integration. In this
respect related work in the area of lifting metadata to ontologies, issues of integrating
ontologies, and the usage of integration patterns for ontologies is highly relevant for our
approach, as discussed in the following.

Lifting Metamodels to Ontologies

A basic question to be investigated is the derivation of ontologies from the tool metamodels,
often referred to as lifting. Few existing work, although approaching the lifting problem from
somewhat different angles, could be used as starting point to resolve this research question.
OntoLIFT . Lifting is, e.g., dealt with in the WonderWeb project in terms of the OntoLIFT
prototype [59], which helps to semi-automatically create ontologies from database schemata
by using syntactical patterns as employed for mapping database schemata to ER models.
Although these ontologies have to be further refined to infer specific semantics, OntoLIFT
provides a useful entry point for the establishment of ontologies.
Ferdinand et al. Another approach from Ferdinand at al. [19] proposes an automatic
mechanism to lift XML Schema to the Web Ontology Language (OWL)19 via RDF and
provide according mapping rules.

Although both approaches deal with the derivation of ontologies from structured sources,
methods applied in these two approaches cannot be immediately reused, since ModelCVS
requires the derivation of ontologies from metamodels. Further research has to be put into
the question of how to facilitate the creation of ontologies from MOF-based metamodels.
ODM. A way to bridge between model engineering and ontology engineering could be the
Ontology Definition Metamodel (ODM)20, an upcoming OMG standard for the definition of
ontologies in terms of MOF models.
Guizzardi et al. [24] provide an evaluation framework to estimate the appropriateness and
the comprehensibility of a modeling language for describing concepts in terms of domain
knowledge captured in an ontology. Such considerations are relevant in the context of

18 http://www.dagstuhl.de/04391/
19 http://www.w3.org/TR/owl-features/
20 http://www.omg.org/cgi-bin/doc?ad/2003-03-40

 11

ModelCVS to define ontologies for modeling languages or to estimate to what extent existing
ontologies can be reused.

Basics of Integrating Ontologies

As ModelCVS is able to perform tool metamodel integration on basis of semantics covered
by tool ontologies, these individual tool ontologies have to be integrated. The central burden
making ontology integration a rather comprehensive challenge are heterogeneity issues that
have to be coped with [34], which are similar to heterogeneities in database research [53].
Thus, our approach has to deal with different forms of heterogeneity, establish a certain
ontology integration architecture, and provide appropriate mechanisms for mapping
discovery, representation and reasoning [44]. Although having different goals in mind since
we use ontologies as a basic vehicle for the integration of tool metamodels, we can benefit
from a large body of literature which may provide useful input for our approach. For a
comprehensive overview about this active research area compare, e.g., [1], [30], and [44].
Ontology integration architecture. Concerning the architecture for ontology integration,
one can basically distinguish three alternatives (cf. e.g., [44]): (1) a direct mapping between
ontologies, (2) an indirect mapping via a common, shared ontology further on called upper
ontology (sometimes also referred to as toplevel, or reference ontology), e.g., the Standard
Upper Merged Ontology (SUMO) [42] and DOLCE [21] and (3) a mapping based on a library
of already mapped ontologies [58]. This is again similar to database integration research,
where peer-to-peer database systems are similar to the direct mapping approach, and
federated database systems relying on a global schema are similar to the indirect mapping
approach with the difference that an upper ontology is usually more general since it needs to
encompass the top level for ontologies yet to be developed [44].

We intend to use a hybrid approach, involving all three architectures in order to ensure a
balance between reuse capabilities, provided by upper ontologies as well as ontology
libraries, and overhead induced, which can be reduced by using direct mappings for special,
non-recurring mappings. For this, existing approaches as mentioned above can provide a
valuable input, although they have to be adapted in order to deal with our special focus of
deriving appropriate metamodel bridges.

Mapping discovery. Based on a certain ontology integration architecture, mappings
between ontologies have to be established, i.e., similar concepts have to be related to each
other. Mapping discovery techniques deal with finding such correspondences (also called
matches) between ontologies. This can be done either in a fully manual way or by utilizing
heuristic-based or machine learning techniques that use various characteristics of
ontologies, such as their schemata (schema-based matching), their instances (instance-
based matching) as well as lexical reference systems [49], [15], [44].

It has to be emphasized, that it is not the intent of this project to develop yet another
mapping discovery technique. Rather, it is foreseen to either use a single existing technique
or a combination thereof which can be easily adapted to best fit our requirements. A
selection of some of these approaches which may be (partly) useful for our purposes are
sketched out in the following.
Chimaera. Chimaera [38] provides support for ontology merging by interactively relating
concepts that are identical or related by subsumption or instance relationships. Further, it
supports to manipulate the ontologies as to improve alignment by suggesting modifications.
PROMPT . PROMPT [43] supports interactive, guided ontology merging, starting from
linguistic and structural similarity matches. Merge operations can be performed, and based
on the results and potential conflicts arising from the merge (e.g., name conflicts, dangling
references, or redundancies in class hierarchies), further operations are proposed.
KRAFT. KRAFT [47] supports the finding of mappings by special mediator agents which can
be customized with respect to support particular ontologies as well as ontology languages.
Although the approach provides great flexibility in supporting various mappings, the user is
able to specify arbitrary mappings since the semantic of concepts is not regarded, thus
risking wrong and even conflicting mappings. Within our approach it is of major importance

 12

to guide the user and prevent useless mappings exploiting the provided semantics.
PUZZLE. The goal of PUZZLE [29] is to construct a consensus ontology, i.e., a common,
shared ontology, from independently designed ontologies. Both, linguistic as well as
contextual features of ontology concepts are considered, there is no need for a previous
agreement on the semantics of the used terminology and WordNet is used to support, e.g.,
synonyms and homonyms. Reasoning rules are based on the relationships subclass,
superclass, equivalentclass, and sibling, and on property lists of ontology concepts to find
new relationships among concepts.

Representation of mappings. Having found appropriate mappings, they have to be
properly represented in order to facilitate reasoning on mappings. Concerning the
representation of mappings several approaches can be found in literature [44]. Note that
also combinations thereof are possible. First, similar to traditional data integration, views can
be used to describe mappings, e.g., between upper ontology and local ontologies, either
using the global-as-view (GAV) or the local-as-view (LAV) approach, well known from
database integration research [25] and used, e.g., within the OIS framework [9]. Second,
mappings can be represented in terms of bridging axioms in first-order logic to express
transformation rules, relating classes and properties of two ontologies, as it is done in the
OntoMerge system [16]. Finally, mappings can be represented as instances in an ontology
of mappings. The mapping ontology usually provides different ways of linking concepts from
the source ontology to the target ontology, transformation rules to specify how values should
be changed, and conditions and effects of such rules. Examples are the Semantic Bridge
Ontology of the MAFRA framework [37] or the mapping ontology [13].

Within our project we will have to investigate the proposed alternatives to find an
appropriate one, whereby specific mapping ontologies seem to provide a great potential for
mapping representation as well as reasoning.
Reasoning with mappings. In general, reasoning aims at drawing a conclusion, e.g. to
perform semantic integration tasks. In ModelCVS reasoning over ontology mappings is
required to facilitate metamodel integration. Reasoning hardly depends on the underlying
representation form [44]. In the OIS framework [9] mappings are expressed on basis of a
GAV/LAV approach, using description logics and therefore a special description logics
reasoner. PROMPT [43] takes a mapping ontology and automatically merges the
corresponding ontologies based on the specified mapping. In case that we utilize a mapping
ontology, corresponding existing approaches will be taken as base and adapted for our
special purposes.

Model Integration Patterns and Ontologies

As our approach provides different model integration patterns such as alignment and
modularization to allow metamodel integration in a scalable way, also the tool ontologies
have to support these model integration patterns.

Klein, e.g., [34], suggests several kinds of integration, applied to ontologies as a whole,
which are comparable to our integration patterns. In the Onion system [41], an algebra for
ontology composition is proposed, supporting several operators, e.g., filter, extract, union,
intersection, and difference. There already exist approaches in the field of ontology
modularization, e.g., [55], [56] and [22], aiming at modularizing ontologies for the purposes
of efficient reasoning, distribution, and maintainability.

In our approach, however, not an ontology is the target of integration patterns, but the tool
metamodel it is associated with and as a consequence to that, finding ways for dealing with
ontologies in the same semantics preserving way. Therefore, the approaches described
above are not immediately reusable in our context, but could provide a useful starting point.

To support ontology versioning, Kauppinen et al. [32] define a so-called change bridge
ontology that enables reasoning about an evolved ontology. The goal is not interoperability,
as with ontology mapping in general, but rather to align the revisions of a single ontology in
time. Important in our context are also maintenance and evolution techniques for mappings,
as proposed, e.g., by Maedche et al. [36], providing a reusable ontology of semantic bridges.

 13

Our interest is, in addition to relating versions of metamodels and corresponding
ontologies, also in performing model migration, a capability that is not readily supported by
ontology mappings. In the area of databases, schema evolution has been addressed in
terms of schema change operations that also define corresponding updates to instances.
Banerjee et al. [3] defines a comprehensive taxonomy of schema change operations. Using
such operations, however, presupposes that a trace of change operations is available, which
is typically not the case when a new version of a tool metamodel becomes available.
Summary. As outlined in this section, there is already a huge amount of work in the area of
semantic integration dealing with ontologies, providing a proper basis for ModelCVS. There
is, however, to the best of our knowledge, no literature available, dealing with the usage of
ontologies for metamodel integration, thus leaving open research questions in several
directions. We are sure that a combination of existing techniques in the area of model
management and integration with semantic technologies in terms of ontologies will allow to
fully exploit the potential of model-based tool integration in a semantic-preserving way, thus
representing an example for future commercial products in this area.

4 Proposed Technical Solution

The solution description provided in this section is split into two subsections. The first
subsection focuses on conceptual solutions and deals with the resolution of the research
goals for ModelCVS established in Section 1.1. The second subsection puts a focus on the
realization of ModelCVS from a technological point of view, describing a component-oriented
system architecture.

4.1 Approaches taken for the Resolution of Research Goals

(1) New Language for Scalable Model-Based Tool Integration

The basis for our solution to this goal is a set of integration patterns that define requirements
and working context for the bridging language to be developed. We propose four initial
integration patterns that address openness, scalability, and evolvability covering various
situations relevant for model-based tool integration. These patterns are elaborated in the
following paragraphs.
Metamodel translation. The basic case of tool integration occurs when two different tools’
modeling languages conceptually overlap to a large extent. This means, that both modeling
languages cover the same or very similar domains, in a way that semantically equivalent
concepts can be identified in either metamodel and models can be translated
correspondingly.

As an example, we refer to two modelers jointly modeling a workflow: One of the modelers
employs a dedicated BPEL modeling tool, whereas the other colleague makes use of UML
activity diagrams. Both modelers are able to transparently check-out versions of the latest
model, edit it, and check it in again without having to deal with modeling languages other
than their own, as the language heterogeneity between modeling languages is implicitly
taken care of through translation by ModelCVS.

Variations of this pattern address directionality and completeness of translation. A
translation may be bidirectional, allowing two-way transformations between metamodels. In
case a tool, for instance a code generator, is purely consuming and not producing models,
unidirectional translations suffice. In case modeling languages do not entirely overlap,
meaning that some concepts expressible in one modeling language cannot be expressed in
another, a translation may be lossy. A solution to solve this problem is to explicitly store
information that would get lost in the course of a transformation and to reincorporate it when
performing the roundtrip [10].

A further variation, which is advisable in case multiple tools with similar domain have to be
integrated, is to construct a so-called pivot metamodel, which can be seen as representing a
universal language covering a certain domain. In practice, however, such a universal

 14

language encompassing all possible concepts that can occur in a certain domain is hard to
find. Nevertheless, finding a pivot metamodel for a specific enough modeling domain can be
feasible, yielding the advantage of reducing the amount of mappings required when
translating between n-many tools from n*(n-1) to n.

Figure 1-2 shows the translation approach involving the process metamodel of Gen
(MMGen), UML’s activity diagram metamodel (MMUML-AD), and BPEL’s metamodel (MMBPEL).
The domain common to all three could be described in a generic, tool independent workflow
metamodel (MMWF), which serves as a pivot facilitating tool integration in a scalable way. As
starting point, lets assume that a Gen2UML-AD translation already existed and that for
integration of further metamodels like MMBPEL, the establishment of a pivot metamodel was
chosen. Then a specific requirement on bridging operators resulting from this scenario is re-
usability of the existing bridge Gen2UML-AD for construction of the pivot metamodel and the
translations Gen2WF and UML-AD2WF. Now the pivot metamodel MMWF can be used in
order to generate a translation to MMBPEL, namely BPEL2WF.

Figure 1-2: Translation using a pivot metamodel MMWF

Metamodel alignment. The alignment pattern deals with interrelating rather than translating
models. This requirement occurs when a system to be modeled cross-cuts several domains,
and several modeling languages or better to say modeling tools, tailored to specific domains,
participate in modeling that system. Although these domains are typically very different, they
will overlap to some extent, making it necessary to integrate these domains to cohesively
represent the entire system’s domain. As modeling languages in this case do not cover
same or similar domains, the focus is shifted from a complete translation of concepts onto an
alignment of concepts, manifesting in the creation of relationships that enforce certain
constraints or alignment rules imposed on the integrated domains.

The example scenario depicted in Figure 1-3 shows the alignment of two different tool
metamodels (MMGUI and MMUML-CD), provided by a tool for modeling GUIs and a UML tool,
which are used jointly to model a single system. It is important to note, that these two
metamodels do not cover same or similar domains. It would therefore not make sense to find
a mapping which would translate a UML class diagram of a system into a GUI, as the GUI
design would rather be undertaken independently. Depending on the underlying system,
however, a specific overlap is necessary to integrate the two domains. As an example
similar to the model-view-control paradigm, the tool metamodels are aligned (GUI2UML-CD)
to establish a behavior that transparently sets the labels of GUI components to the value of a
certain attribute of a model element in a UML class diagram. To furthermore avoid
inconsistencies, model elements representing GUI components should be transparently
deleted if a corresponding model element in the UML model is deleted, which also has to be
defined as an alignment rule.

 15

Figure 1-3: Alignment of two metamodels MMGUI and MMUML-CD

Metamodel modularization. The modularization pattern addresses the scalability issue of
two related integration scenarios. On the one hand, to fulfill the scalability requirement, the
effectiveness of a tool integration process may not be affected by the size of the metamodels
involved. Hence, a model-based tool integration approach must allow to deal with large,
monolithic tool metamodels in a manageable way. As an example, the integration of two
large tool metamodels, like those of UML and Gen, has to be supported in a way that keeps
the integration task comprehensible. On the other hand, scalability is required when it comes
to the integration of tools with a varying scope, regarding the domain specificity of the
underlying modeling languages. As an example, it should be possible to integrate a UML tool
with a BPEL tool. Thereby, the domain specific BPEL tool will conceptually overlap with the
domain covered by the UML tool to a certain extent, only. Nevertheless, the integration of
the BPEL metamodel with the overlapping part of the UML metamodel should not become
unwieldy.

To keep the integration of large metamodels with varying scopes manageable,
modularization enables the decomposition of these metamodels according to certain
concerns, resulting in smaller metamodels, so-called metamodel fragments, each expressing
a certain aspect of the entire metamodel. Analogous to the decomposition of a metamodel,
models conforming to such a metamodel are modularized accordingly to allow model
exchange in a scalable way.

The example depicted in Figure 1-4 shows the integration of tools with differing scopes
using modularization. The top section of the figure shows the Gen metamodel (MMGen)
modularized into several smaller metamodel fragments representing more specific domains
(MMGenGUI, MMGenWF, MMGenClasses, and MMGenStates). As shown, the metamodel fragments may
overlap each other, which can result in interdependencies that shall be taken care of in a
transparent way as described in the alignment example. The bottom left part of the figure
shows the integration of domain specific GUI and BPEL modeling tools, which are directly
mapped to metamodel fragments of the Gen tool. Similar to the modularization of MMGen, the
bottom right part of the figure illustrates a UML tool’s metamodel (MMUML) being modularized
(MMUML-AD, MMUML-CD, and MMUML-SM). The integration of large tools is made possible in a
scalable way, as the metamodel fragments of either tool covering semantically equal
domains are mapped onto each other instead of mapping the original huge metamodels.

Figure 1-4: Modularization of Gen and UML metamodels facilitating scalable integration

At check-out time, models conforming to metamodel fragments have to be reassembled.
This implies that links between model elements that have been cut off during the
modularization phase have to be re-established. The rules specifying how the various
models should be reassembled have to be derived from the applied bridging operators. To
enable reassembly, in certain cases information about linked model elements must be
explicitly stored during the modularization phase.

 16

Metamodel versioning. Tool metamodels may need to change if a new version of a tool
becomes available. To ensure the evolvability requirement by not rendering existing assets
unusable, it is necessary to migrate existing models towards the new metamodel.
Furthermore, in case different tool versions remain in use at the same time, it has to be
possible to access models using different versions of that metamodel.

As an example, a UML 1.4 compliant modeling tool may be replaced with a UML 2.0
modeling tool. Therefore, models compliant to UML 1.4 have to be migrated to the current
UML 2.0 metamodel. However, a code generator taking UML 1.4 models as input should still
remain in use. Hence, addressing the requirement for evolvability can be associated with the
need for so-called metamodel versioning.

Metamodel versioning includes keeping track of different versions of tool metamodels and
migrating models towards newer versions of tool metamodels. Through defining translations
between versions of a tool metamodel, various versions of tools can remain in use. Different
to the general translation case, the typically rather small difference between metamodel
versions can be exploited. Furthermore, also existing metamodel bridges must be taken care
of by providing migration support for bridges, too.

Figure 1-5 illustrates the required migrations facilitating metamodel versioning when a new
tool version UML2 and a corresponding tool metamodel version for UML2 activity diagrams
MMUML2-AD is introduced into an existing tool chain. What needs to be done is (1) to define a
model migration bridge from the old version of the metamodel (MMUML-AD) to the new version
(MMUML2-AD), and migrate the existing models accordingly, and (2) to define a new version of
the translation to the pivot metamodel (UML2-AD2WF), assuming that the existing pivot
metamodel MMWF is not affected by the changes.
Since the purpose of these patterns is to identify bridging tasks as specific as possible to
enable definition of well-suited bridging operators, we aim to enrich these patterns and
include additional ones in the course of the project.
Bridging operators. The bridging language containing bridging operators to be developed,
has to specifically support the identified integration patterns at a suitable abstraction level
and with appropriate range of functionality according to specific bridging tasks. Taking into
account the peculiarities of specific tasks will enable us to develop a descriptive high-level
language that can be more efficiently used than, e.g., generic model transformation
languages. For elicitation of more specific requirements and identification of typical bridging
problems, the integration patterns and exemplary tool metamodels from our case study will
be investigated. The language must support evolvability in terms of bridge migration as
required in the metamodel versioning pattern. Still, the language needs to be executable in
that model transformation code can be generated out of it. With respect to modularization,
for instance, transformation programs for the modularization of models, the alignment of
overlaps in fragment models, as well as the automatic assembly of fragment models at
check-out time will be derived. Definition and implementation of a mapping from the bridging
language to an executable model transformation language will be the final task in resolving
this research goal, serving as a proof of concept for the bridging language and as a
component of the overall system architecture.

Figure 1-5: Versioning of UML metamodel and involved migrations

 17

Achieving these goals can build on initial work already carried out by the project partners
(cf., e.g., [51], [62] and Section 2) as well as on several branches of existing research in the
areas of model transformation languages, model management and integration, aspect-
oriented modeling, as well as ontology modularization and versioning (cf. Section 1.2).

(2) Innovative Technologies for Ontology-Based Metamodel Integration

Our approach to ontology-based metamodel integration basically comprises a technology for
transitioning from the mostly syntactic metamodel level to the semantic level in terms of
ontologies, i.e., metamodel lifting, and adaptations of existing research results in the area of
ontology integration for the purposes of metamodel integration facilitated by the generation
of bridges between metamodels as described above.
Metamodel lifting. The creation of an ontology from some kind of metadata like an XML
schema [19] or a DB schema [59] is generally referred to as lifting. Metamodel lifting in
particular encompasses a mapping of elements in the metamodel to concepts in the
ontology, thereby performing a step of abstraction and semantical enrichment such that the
ontology defines the semantics of the modeling concepts whose syntax is defined by the
metamodel. A so-called lifting mapping keeps track of the relationship between syntax and
semantics of modeling concepts.

Automatic as well as semi-automatic approaches to lifting have already been presented in
literature (cf. Section 1.2). The challenge in all of these approaches is to define a kind of
reverse engineering procedure which extracts the “pure” knowledge from the metadata,
abstracting away application specific concerns and limitations of the implementation
language. In case of lifting a relational schema, e.g., lifting equals reverse engineering from
the relational schema to an ER model [59]. In that case, it can be performed semi-
automatically since typically the well known patterns for mapping ER models to relations are
used. Our case of metamodel lifting is more complex since, first, there are no patterns
established for mapping certain language concepts to a metamodel, and second, we want to
support any kind of MOF-based metamodel, thus there is a need for a generic solution.

To improve quality of automated mapping and semantic versioning, specific semantics
expressed in terms of concepts defined in a so-called tool integration knowledge base
should be reused. The relationship between lifted metamodel concepts and concepts in the
tool integration knowledge base could be established through subsumption relationships, for
instance. Since an ontology has to appropriately capture the semantics of the domain
covered by the modeling language [24] which, however, is not appropriately captured by a
tool metamodel, additional semantics have to be manually incorporated into the ontology.

We nevertheless envision a lifting process that proceeds semi-automatically, based on a
number of options for automation support:
§ A lifting editor can provide interactive guidance in the lifting process. Examples of

interactive guidance for integration tasks can be found, e.g., in ontology integration tools
such as [43]. An interactive lifting editor can be designed learning from such systems. A
lifting guidance mechanism can exploit in particular several sources of knowledge, like
information from the metamodel, e.g., generalizations and associations between
metamodel concepts, or, can be based on already existing mappings from metamodel
concepts to concepts in the tool integration knowledge base, such that related concepts
and potential lifting mappings may be derived.

§ A mapping discovery mechanism can be employed to automatically propose
relationships between metamodel concepts and concepts from the tool integration
knowledge base. Such a mapping can be based on heuristics and specific assumptions
about the domain of the metamodel and corresponding domain specific ontologies can
be made. Furthermore, to enable instance-based matching, it is necessary to use the
tool to be integrated and model a reference example, which is specified as part of the
tool integration knowledge base. Based on the gathered model, an automatic mapping of
concepts from the tool metamodel to the knowledge base can be established.

§ Syntax patterns can be used to help defining the mapping between semantic concepts
and their syntactical representation in the metamodel, similar to the way patterns for

 18

mapping ER models to relations are employed in [59]. As an example, lets consider two
syntax patterns for representing a directed association (according to UML terminology) in
a metamodel. In UML, this involves a model element of metaclass Association, two
model elements of metaclass Property , and corresponding links between them. In
contrast, the representation of a reference in MOF, which is semantically equivalent to
the UML directed association, syntactically just consists of a link between two classes.
Syntax patterns can be used for predefining mapping operations for lifting, as well as for
interactive guidance and improved matching. Since currently no library of such patterns
exists, we aim at creating one by identifying syntactical structures recurring in the
metamodels of our case study.

Considering the manual effort involved in lifting a metamodel, the question arises whether
that effort pays off by the improved support in defining metamodel bridges and in semantic
versioning. We assume that moving to the more abstract semantic level becomes beneficial
especially if a metamodel is large and complex, as is the case, e.g., in our case study with
more than 800 classes of Gen. The ontology will express semantics of concepts and
consequently integration mappings much more concisely, thus helping to keep mappings
comprehensible and manageable. Furthermore, with the prospect of Internet scale reuse by
publishing metamodel liftings, economy of scale will be an additional motivating factor.
Nevertheless, the design of the semantic infrastructure will be such that lifting is optional or
that it is possible to lift just core concepts of a metamodel.
Ontology integration architecture and mapping discovery. When it comes to
establishing a bridge between two tool metamodels, ModelCVS offers support in the form of
semantic technologies by performing a mapping of the respective tool ontologies. The
resulting mapping between ontologies is used to derive a bridge between the underlying
metamodels, as a strictly manual bridging specification can become an error prone and time
consuming task.

ModelCVS supports a hybrid integration architecture. Basically mapping two tool ontologies
is facilitated indirectly by a common upper tool ontology (cf. research goal (3)), which
describes the domain covered by the two modeling languages, or directly by mapping them
in a point to point manner, or using already existing mappings to deduce new ones. Mapping
discovery can be supported by heuristics finding correspondences based on criteria such as
name matching and structural equivalence or simply done manually. Mapping mechanisms
can also operate directly on the metamodel level in case not all metamodel concepts have
been lifted to the ontology level.

Although semantic technologies can alleviate the burden when creating a mapping, a user
is still needed to check the appropriateness of a proposed mapping and to eventually give it
a finishing touch. Furthermore, it lies in the responsibility of the user to choose an
appropriate method to support the mapping process. To find a mapping between
metamodels representing for instance different versions of a modeling language, heuristics
based on structural and naming similarity may work well to establish a direct mapping,
whereas the mapping of metamodels exposing very different structure and naming
conventions may require the use of an upper ontology-based approach, combined with a
manual mapping, for instance. Especially the mapping on basis of upper tool ontologies and
heuristics, although providing several benefits, is a challenging task in the context of
ModelCVS, because of several reasons.
Upper tool ontology. The establishment of mappings between tool metamodels by means
of an upper tool ontology requires the tool metamodels to be semantically enriched, meaning
a lifting onto tool ontologies exists. From each of these tool ontologies mappings are made
onto an upper tool ontology. The explicit mapping to an upper tool ontology gives a user
concise control in terms of which ontology concepts are related to each other. Utilizing this
upper tool ontology, semantic correspondences between concepts in both tool ontologies
can be deduced, of which subsequently a bridge between metamodels can be derived.

Figure 1-6 illustrates this approach by showing the lifting of metamodels to the ontology
level which furthermore is associated with an upper ontology level. From the upper ontology,
mappings between the ontologies are deduced which are used to derive bridges between

 19

metamodels that in turn define a series of model transformation operations to ultimately
carry out the necessary transformation operations on models to realize, e.g., translation.

co
nf

or
m

s
to

de
riv

e

de
riv

e

Model

Metamodel

Tool Ontology

Upper Tool Ontology

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

<XML>
<tag1>
<tag2>
</tag2>
</tag1>
<tag2>
</tag2>
. . .

</XML>

<XML>
<tag1>
<tag2>
</tag2>

</tag1>
<tag2>
</tag2>
...

</XML>

<XML>
<tag1>
<tag2>
</tag2>

</tag1>
<tag2>

</tag2>
...

</XML>

mapping mapping

de
riv

e

de
riv

e

trans-
forming

trans-
forming

lif
tin

g

lif
tin

g

lif
tin

g
co

nf
or

m
s

to

co
nf

or
m

s
to

de
rive

derive

Class

Class Class Class

Class

Class Class

<XML -Schema>
<tag1>
<tag2>
</tag2>

</tag1>
<tag2>
</tag2>
...

</XML>

bridgingbridging

co
nf

or
m

s
to

de
riv

e

de
riv

e

Model

Metamodel

Tool Ontology

Upper Tool Ontology

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class

<XML>
<tag1>
<tag2>
</tag2>
</tag1>
<tag2>
</tag2>
. . .

</XML>

<XML>
<tag1>
<tag2>
</tag2>
</tag1>
<tag2>
</tag2>
. . .

</XML>

<XML>
<tag1>
<tag2>
</tag2>

</tag1>
<tag2>
</tag2>
...

</XML>

<XML>
<tag1>
<tag2>
</tag2>

</tag1>
<tag2>
</tag2>
...

</XML>

<XML>
<tag1>
<tag2>
</tag2>

</tag1>
<tag2>

</tag2>
...

</XML>

<XML>
<tag1>
<tag2>
</tag2>

</tag1>
<tag2>

</tag2>
...

</XML>

mapping mapping

de
riv

e

de
riv

e

trans-
forming

trans-
forming

lif
tin

g

lif
tin

g

lif
tin

g
co

nf
or

m
s

to

co
nf

or
m

s
to

de
rive

derive

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

<XML -Schema>
<tag1>
<tag2>
</tag2>

</tag1>
<tag2>
</tag2>
...

</XML>

<XML -Schema>
<tag1>
<tag2>
</tag2>

</tag1>
<tag2>
</tag2>
...

</XML>

bridgingbridging

Figure 1-6: Using ontologies and upper ontologies for model integration

Heuristic mapping. Heuristic mappings are based on finding structural and linguistic
similarities in ontologies. The estimation of naming similarity need not only be
orthographically based. The possible utilization of lexical reference systems (e.g., [21])
allows to identify and relate names in question as for instance being synonyms, homonyms,
antonyms and the like. Furthermore, the results of heuristic matching techniques can be
greatly enhanced when incorporating instance data into the ontology matching process [29]
(cf. instance-based matching), which could be accomplished by populating both tool
ontologies with data of a common reference example.

Once semantic correspondences between tool ontologies are established, a bridging
between the underlying metamodels can be derived. As an example, we assume that a
matching on the ontology level results in the finding of two semantically equivalent classes.
In a derived bridge between metamodels, depending on the integration pattern in use,
namely translation, alignment, modularization, or metamodel versioning, this semantic
correspondence can be expressed by certain metamodel bridging operators to be
investigated. In case of alignment, a bridging operator might denote the propagation of a
certain attribute value, whereas in the modularization case, a bridging operator could denote
that two metamodel elements should be merged into one at check-out.

(3) Open Knowledge Base for Tool Integration

Our approach to realizing a tool integration knowledge base comprises development of a
range of ontologies capturing the semantics of modeling languages from typical domains. To
foster efficient knowledge reuse among ontologies within the field of tool integration, a
hierarchical structure comprising tool ontologies, upper tool ontologies, and generic
modeling ontologies will be imposed. Furthermore, we will include instance data forming a
reference example developed in the course of our case study, and define language
semantics as relevant to enable semantic model merging. The resulting knowledge base will
be published on an Internet platform, enabling Internet-wide reuse.
Tool ontologies. Bottom-up development of the knowledge base starts with modeling
languages and corresponding metamodels from various domains. In particular, Gen, UML,
and BPEL will be considered. According to the lifting mechanism described above, tool
ontologies will be constructed for selected parts of these modeling languages. In the same
way as tool metamodels may either represent conceptual modeling languages (e.g., UML) or
domain-specific languages (e.g., BPEL), tool ontologies will also vary in their domain
specificity accordingly.

 20

Tool independent ontologies. Tool independent ontologies exist independent of certain
tool metamodels. In particular, an upper tool ontology facilitates the integration of several
tools pertaining to a common modeling domain. For example, the tool ontologies of a BPEL
tool, a UML activity diagram tool, and the Gen process modeling tool (cf. Translation in
Section 1.4.1) all belong to a common modeling domain, which could be described by a tool
independent Workflow ontology. An upper tool ontology can be constructed by generalizing
concepts from various tool ontologies covering the same or similar domains, as well as by
directly taking into account domain conceptualizations. Furthermore, generic modeling
ontologies provide a reuse base of generic concepts for other ontologies. Generic modeling
ontologies can be constructed by abstracting concepts common to different domains such as
generalization and by reuse of existing foundational ontologies, e.g., UFO-A [24].

The resulting knowledge base will comprise a range of foundational and generic, as well as
domain-specific ontologies, to facilitate reuse in specifying semantics for tool ontologies
during lifting. Additional knowledge useful for our purposes, e.g., a lexical reference such as
WordNet [21], will be kept external to the tool integration knowledge base. Figure 1-7
illustrates the relationships between tool metamodels, tool ontologies, and tool independent
ontologies administered by the tool integration knowledge base. Tool ontologies, as created
by lifting tool metamodels, reuse knowledge organized in specific modeling domains
according to the respective scope of the tool. For instance, the UML ontology can reuse
concepts from the Workflow domain. Furthermore, generic ontologies such as a Process
ontology can facilitate mapping between related domains such as Workflow and Sequence,
for instance to facilitate definition of an alignment between corresponding metamodel
fragments of Gen and UML.

Ontology design. Design principles for the establishment of an ontological knowledge
base for a certain field of domain can be founded upon existing work such as SUMO [42]. A
structuring principle specifically relevant to our case of ontologies over metamodels and
modeling languages is to separately consider both domain conceptualizations, and certain
representations of domain conceptualizations as defined by modeling languages and
metamodels [24]. Therefore, in addition to domain specificity, concept representation forms
an additional structuring dimension. For example, in the Process domain ontology,
representational variants may include network languages and algebraic (block-structured)
languages, a variation that is also found, e.g., within UML activity diagrams [28].
Quality of integration. Considering the fact that we use an ontology rather than a mapping
to some semantic domain [27] to denote the semantics of a modeling language, this is
reasonable since ontologies have been developed as a means for integration, whereas
semantic domains are more appropriate for reasoning about intrinsic properties of a model.
Furthermore, it is often difficult or even impossible to define a mapping from a modeling
language to a semantic domain, as is the case with UML [27]. The consequences of not
using a semantic domain are that a mapping between ontologies and therefore a derived
bridging between metamodels may not be precise enough as to ensure exact equivalence of
models – a property that would be important if executable code should be generated from
models. Ontologies can, however, be used to explicitly keep track of the quality of a
mapping, i.e., whether a mapping is precise or not, and which caveats have to be
considered. Therefore, the knowledge base and bridging operators should support this kind
of quality control. Furthermore, we aim at using concepts which already have a mapping to a
semantic domain for building the upper and generic ontologies, to ensure precise
understanding of these ontologies. Using semantic domains for integration purposes,
however, is out of scope of this project.

 21

ProcessStructure

Component Sequence

Workflow

Tool Independent
Ontologies

UML
Ontology

Gen
Ontology

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

Tool
Ontologies

Tool
Metamodels

re
us

e
se

m
an

tic
s

reu
se

 se
man

tics

re
us

e
se

m
an

tic
s

lif
tin

glif
tin

g

ProcessStructure

Component Sequence

Workflow

Tool Independent
Ontologies

UML
Ontology

Gen
Ontology

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class

Tool
Ontologies

Tool
Metamodels

re
us

e
se

m
an

tic
s

reu
se

 se
man

tics

re
us

e
se

m
an

tic
s

lif
tin

glif
tin

g

Figure 1-7: Reuse of tool independent ontologies

Reference example. The ontologies within the proposed tool integration knowledge base
will be populated with specific instance data, stemming from reference examples of our case
study. These reference examples contained in the knowledge base enable the semi-
automatic mapping with newly created tool ontologies that are populated with instance data
from a suitable reference model. Thus, the process of specifying semantics for tool
ontologies can be enhanced considerably. The reference models have to be made up such
that they produce satisfying results with respect to enhance ModelCVS’ matching and reuse
capabilities.
Semantic merging. To ensure consistency of concurrently developed models, automated
detection of merge conflicts is required. Conflict detection will be performed at both syntactic
and semantic levels. Syntactic conflict detection is based upon the graph structure of
models, and on metamodels defining constraints on that structure. Semantic conflict
detection is based upon the meaning of (syntactic) model elements. Essentially, semantic
conflict detection improves upon syntactic detection by also taking into account semantic
changes to a model element that are implied by changes to other model elements but do not
manifest in syntactical changes of that model element.

As an example of a semantic merge conflict which can arise in merging UML models,
consider Figure 1-8, which shows models Model2 and Model3 copied from common ancestor
Model1. In Model2, operation a in class A has been modified. Note, that class B is also
affected by this change as B inherits that operation from A. In Model3, class B has been
modified to include an operation a, which overrides operation a as inherited from class A.
When merging the concurrent changes from Model2 and Model3 into Model4 and considering
only structural changes, no conflict can be detected. However, when taking into account the
meaning of the generalization relationship, it becomes obvious that the two changes are in
conflict with each other.

 22

Class

Class Class Class

Class

Class Class

Model1

Class

Class Class Class

Class

Class Class

Model4

B

A
a(y) : A

B

A
a(x) : A

a(y) : B

merge

insert

modify

copycopy

Model2 Model3

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class

Model1

Class

Class Class Class

Class

Class Class

Class

Class Class Class

Class

Class Class Class

Class

Class Class

Class

Class Class

Model4

B

A
a(y) : A

B

A
a(x) : A

a(y) : B

merge

insert

modify

copycopy

Model2 Model3

Figure 1-8: Example of a merge conflict caused by inheritance semantics

To enable automatic identification of merge conflicts, the knowledge base will capture both
generic and domain-specific conflicts. Generic knowledge about conflicts will be based on
generic language constructs, e.g, dependency or inheritance, and conflict detection rules
based on them. Specific knowledge will take into account constructs of specific domains,
and furthermore conflict patterns dealing with conflicts that arise from typical usages of a set
of language constructs, e.g., workflow patterns. Patterns are an approach to declaratively
cover certain kinds of conflicts which would otherwise require specification of appropriate
algorithms such as a data flow analysis. The knowledge base will be built up using examples
from literature (cf. [40]) as well as investigating selected modeling languages.

Knowledge about such semantic merge conflicts will be captured in the knowledge base by
enhancing the definition of language concept semantics as relevant to conflict detection,
e.g., rules defining the semantics of generalization, i.e., inheritance of features with the
ability to redefine inherited features. The semantic conflict detection mechanism employs
these rules to deduce the semantic changes made to models and compute potential conflicts
based on that. Because of this, semantic merge conflict detection becomes available as
soon as a tool metamodel has been lifted to the semantic level.

Since the merge operation is performed during each check-in, runtime performance needs
to be considered. Assuming that a solution based on lifting metamodels to the ontology level
and performing online reasoning will not provide the required performance, we aim at
automatic generation of executable conflict detection programs. Therefore we will investigate
in automated translation of rules expressed at the ontology level to rules expressed at the
metamodel level, such that they can be performed more efficiently. For instance, one could
envision to realize the inheritance example as shown above by defining a derived attribute
for inherited features using OCL and by extending the syntactic conflict checks to that
derived attribute.
Open platform. An open, Internet-accessible platform containing the knowledge base will be
provided to the community (cf. Section 7.2). The platform will not only be used to
communicate the research results, but also enable community contributions to a growing
knowledge base of ontologies and furthermore also tool metamodels and corresponding
liftings, mappings, and bridgings, thus enabling reuse of integration solutions. Care has to be
taken, however, not to violate copyrights regarding tool metamodels. Therefore, it will not be
possible to publish the complete integration solution as developed within the case study.
Nevertheless, a lifting and bridging of UML and BPEL metamodels as developed within the
project can be safely published.

 23

4.2 Proposed System Architecture

The proposed system ModelCVS establishes a semantic infrastructure for model-based tool
integration incorporating the output of research goals (1-3) and putting them into a working
environment that serves as both a testbed for evaluation of research results and a prototype
for a succeeding industrial product. As can be seen in Figure 1-9, the proposed architecture
of ModelCVS is organized into three major components. First, a Technological Framework
provides the actual tool integration services and comprises among others, a repository
supporting semantic versioning and transparent model transformation. It is supported by
Tool Adapters, i.e., external components that mediate between proprietary tool interfaces
and ModelCVS. Second, the Metamodel Bridging Toolkit provides support for defining
bridges as to realize integration patterns, manually or automatically. Third, the Ontology
Toolkit supports ontology-based metamodel integration in terms of lifting, mapping, and
editing capabilities. In the following we will elaborate ModelCVS’ components in more detail.

Rational Software
Modeler

Tool Adapter

X
M

I

BPEL Process
Manager

Tool Adapter

X
M

I
QVT Engine

Model Merger

Technological Framework
Model Transformer

Model and
Metamodel Base

Metamodel
Bridging
Editor

Metamodel
Bridging

Generator

Metamodel
Bridging Toolkit

Metamodel Lifting Jack

Ontology
Mapper

Ontology Toolkit

Repository

ModelCVS

Goal (1) Goal (2)

Goal (3)

AllFusion Gen

Tool Adapter

X
M

I

Tool Integration
Knowledge Base

QVT
Generator

QVT
Generator

Ontology
Editor

Rational Software
Modeler

Tool AdapterTool Adapter

X
M

I

BPEL Process
Manager

Tool AdapterTool Adapter

X
M

I
QVT Engine

Model Merger

Technological Framework
Model Transformer

Model and
Metamodel Base

Metamodel
Bridging
Editor

Metamodel
Bridging

Generator

Metamodel
Bridging Toolkit

Metamodel Lifting Jack

Ontology
Mapper

Ontology Toolkit

Repository

ModelCVS

Goal (1)Goal (1) Goal (2)Goal (2)

Goal (3)Goal (3)

AllFusion Gen

Tool AdapterTool Adapter

X
M

I

Tool Integration
Knowledge Base

QVT
Generator

QVT
Generator

Ontology
Editor

Figure 1-9: ModelCVS’ system architecture and related research goals

Technological framework. The Technological Framework performs the actual tool
integration, based on the configurations defined using the Metamodel Bridging Toolkit and
the Ontology Toolkit. Its main component is the Repository which provides persistent storage
and versioning of complex artefacts. The Repository is divided into two sections. First, the
Model and Metamodel Base is dedicated to artefacts of the model and metamodel level,
comprising, e.g., models, metamodels, and bridging definitions. Second, the Tool Integration
Knowledge Base contains the ontology level artefacts as defined by research goals (2) and
(3), i.e., tool ontologies, upper and generic ontologies as well as associated mappings and
liftings. In building the Repository, existing technologies should be facilitated and integrated.
It is planned to use a versioning system , e.g., CVS21 or Subversion22, as repository back-
end, providing persistence and basic versioning capabilities. As front-ends, an existing MOF-
repository, e.g., MDR23, along with an existing ontology repository, e.g., Sesame24, should be
used as access layer. Thus, they provide access interfaces for their respective clients.

The Model Transformer plugs into the Repository to provide model transformation
capabilities as required for the various tasks defined by the integration patterns. A QVT
Engine implementing model transformation as requested by QVT [48] will be used. Several
implementations of QVT engines exist, e.g., ATL25 and MTF26. However, as already
mentioned, the standardization of a model transformation language is still work in progress.
Therefore, available transformation engines and their respective transformation languages
will be evaluated as to select one which provides suitable runtime performance and
language expressiveness. The metamodel bridges that are specified in a high-level

21 https://www.cvshome.org/
22 http://subversion.tigris.org/
23 http://mdr.netbeans.org/
24 http://www.openrdf.org/
25 http://www.eclipse.org/gmt/
26 http://www.alphaworks.ibm.com/tech/mtf

 24

language (cf. Section 1.4.1) using the Metamodel Bridging Toolkit have to be translated into
that transformation language. A QVT Generator needs to be developed performing this
compilation task. Note the bridges are specified independently of the actual transformation
language to be used, therefore we are free to choose different transformation languages and
engines for different kinds of integration patterns as to achieve optimal performance.

The Model Merger also plugs into the Repository to provide syntactic and semantic
merging [40] thus enhancing the textual merging capabilities already provided by the
repository back-end. While syntactic merging capabilities can be built based on existing
research results [40], for the semantic merging capabilities appropriate concepts and
reasoning tasks, as defined with respect to the tool integration knowledge base (cf. Section
1.4.3), have to be developed. Since conflict detection is a time-critical function that has to be
performed during each check-in, the Model Merger implementation will use precompiled
conflict detection programs, derived from metamodel-level rules, such as OCL constraints.

Tools interact with the Repository using some access protocol to perform operations such
as browse or model check-out. Preferably an already existing access protocol such as CVS
or WebDAV27 can be reused for this purpose. Requirements on the protocol include (a)
support for the required repository operations (see Repository), (b) support for handling XMI
data, (c) built-in support in existing modeling tools, and (d) platform independence. Existing
protocols will be evaluated and either an appropriate protocol will be selected or a new one
will be developed. Regarding the data format used for exchanging models, XMI is a natural
candidate as it is based on MOF, and supported by many tools, particularly UML tools. The
choice of XMI does not substantially restrict the kinds of modeling tools which can be
integrated, since XMI can represent any model that exhibits a graph-based structure.

Tool adaptors are a practical necessity, since it cannot be assumed that all tools to be
integrated in a tool chain support the access protocol and data format of ModelCVS. The
purpose of a tool adaptor, thus, is to mediate between the tool and ModelCVS. A typical
example is to convert between textual formats and XMI as is the case with Gen. Regarding
the latter task, a prototypical implementation already exists developed by one of the partners
[62]. A framework for tool adapter development will be created, along with concrete tool
adapters for Gen and BPEL required for testing and for performing the case study.
Metamodel Bridging Toolkit. This component provides all functionalities dealing with the
handling of metamodels and especially the creation of metamodel bridges according to the
integration patterns, i.e., translation, alignment, modularization, and versioning of
metamodels. In particular, the Bridging Editor supports creation of bridges using the bridging
language defined by research goal (1). Options that will be considered for implementing this
editor are, (a) reuse of a generic mapping tool like the Atlas Model Weaver [6] that can be
customized to accommodate the specific concepts of the bridging language, (b) definition of
a textual syntax for the bridging language and reuse of a text editor, or (c) definition of a
graphical syntax and editor, requiring that a suitable development environment for domain
specific languages will already be available at the time of development. Furthermore, the
Bridging Generator makes use of any mappings created at the ontology level to
automatically derive bridges between metamodels, taking into account the ontology-level
mappings, liftings, as well as any mappings between metamodel elements. Automatically
generated bridges will have to be reviewed and refined by the user, using the Metamodel
Bridging Editor.
Ontology Toolkit. Finally, the Ontology Toolkit provides the means for realizing research
goal (2), i.e., metamodel lifting as well as mapping and editing of ontologies. Its key
component is the Metamodel Lifting Jack, which provides means for the creation of an
ontology from a metamodel through lifting. The lifting mechanism can be built on
experiences gained from lifters working with database or XML schemata. To facilitate the
lifting implementation, we aim on defining a concise mapping from the MOF 2.0 meta-
metamodel onto an ontology language definition, such that any MOF compatible modeling
language can be lifted and expressed in an ontology language like OWL for instance,

27 http://www.webdav.org/

 25

simplifying the further process of semantic enrichment. To actually manipulate and make use
of the resulting ontologies further, tools like Protégé, the Eclipse plug-in Semantic Web
Development Environment (SWeDe)28, the JENA API29 as well as several specialized
inference engines like F-OWL30 can be used, contributing to the Ontology Mapper and the
Ontology Editor.

References

[1] V. Alexiev, M. Breu, J. de Ruujn, D. Fensel, R. Lara, H. Lausen (eds.): Information Integration with

Ontologies – Experiences from an Industrial Showcas e, Wiley, 2005.
[2] M. J. Anderson, B. D. Bird: An evaluation of PCTE as a portable tool platform, Proc. of the Software

Engineering Environments Conference, July 1993.
[3] J. Banerjee, W. Kim, H.-J. Kim, H. F. Korth: Semantics and implementation of schema evolution in object-

oriented databases. Proc. ACM SIGMOD 1987
[4] S. Becker et al.: Model-Based A-Posteriori Integration of Engineering Tools for Incremental Development

Processes, Journal on Software and Systems Modeling (SoSym), Springer-Verlag, 4(2), May 2005.
[5] J. A. Bergstra, P. Klint: The Discrete Time ToolBus - a software coordination architecture. Coordination

Models and Language, LNCS# 1061, 1996.
[6] J. Bézivin et al.: First Experiments with a ModelWeaver, OOPSLA & GPCE Workshop, Vancouver, Oct. 2004
[7] M. L. Brodie: On Modeling Behavioural Semantics of Databases, 7th International Conference on Very Large

Data Bases, Cannes, France, Sept. 1981.
[8] A. W. Brown, P. H. Feiler, K. C. Wallnau: Past and future models of CASE integration, Proc. of the 5th

International Workshop on Computer-Aided Software Engineering, IEEE, July 1992.
[9] C. Calvanese et al.: Ontology of integration and integration of ontologies, Description Logic Workshop, 2001.
[10] T.-P. Chang, R. Hull: Using Witness Generators to Support Bi-directional Update Between Object-Based

Databases, ACM Symposium on Principles of Database Systems (PODS), May 1995
[11] S. Clarke, R. J. Walker: Composition Patterns: An Approach to Designing Reusable Aspects, Proc. of

International Conference on Software Engineering (ICSE), Toronto, Canada, 2001.
[12] S. Clarke: Extending standard UML with model composition semantics, Science of Computer Programming,

Elsevier Science, 44(1), July 2002.
[13] M. Crubezy, M. A. Musen: Ontologies in support of problem solving, Handbook on Ontologies, S. Staab, R.

Studer (eds.), Springer, 2003.
[14] K. Czarnecki, S. Helsen: Classification of Model Transformation Approaches, OOPSLA ’03 Workshop on

Generative techniques in the context of MDA, Oct. 2003.
[15] A. Doan, et al.: Introduction to the Special Issue on Semantic Integration, SIGMOD Record, 33(4), Dec. 2004
[16] D. Dou, M. McDermmott, P. Qi: Ontology translation on the semantic web, International Conference on

Ontologies, Databases and Applications of Semantics, 2003.
[17] A. Earl: Principles of a Reference Model for Computer Aided Software Engineering Environments, Proc. of

the Int. Workshop on Software engineering environments, Springer-Verlag, New York, USA, 1989.
[18] J. Estublier, A. D. Ionita, G. Vega: A Domain Composition Approach, Proc. of the International Workshop on

Applications of UML/MDA to Software Systems (UMSS), Las Vegas, USA, June 2005.
[19] M. Ferdinand, Ch. Zirpins, D. Trastour: Lifting XML Schema to OWL, 4th International Conference on Web

Engineering (ICWE), Munich, Germany, July, 2004.
[20] R. G. Flatscher: Metamodeling in EIA/CDIF - meta-metamodel and metamodels, ACM Transactions on

Modeling and Computer Simulation (TOMACS), 12(4), Oct. 2002.
[21] A. Gangemi et al.: Sweetening wordnet with DOLCE, AI Magazine, 24(3), 2003.
[22] B. C. Grau, B. Parsia, E. Sirin, A. Kalyanpur: Modularizing OWL Ontologies, submitted to the 4th International

Semantic Web Conference (ISWC-2005), Ireland, 2005.
[23] J. Gray, T. Bapty, S. Neema, D. C. Schmidt, A. Gokhale, B. Natarajan: An Approach for Supporting Aspect-

Oriented Domain Modeling, Generative Programming and Component Engineering (GPCE), Springer-Verlag
LNCS 2830, Erfurt, Germany, Sept. 2003.

[24] G. Guizzardi, L. Ferreira Pires, M. van Sinderen: An Ontology-Based Approach for Evaluating the Domain
Appropriateness and Comprehensibility Appropriateness of Modeling Languages, ACM/IEEE 8th International
Conference on Model Driven Engineering Languages and Systems, Montego Bay, Jamaica, 2005.

[25] A. Y. Halevy: Data Integration: A Status Report, in: Datenbanksysteme für Business, Technologie und Web
(BTW), Leipzig, February 2003,

28 http://owl-eclipse.projects.semwebcentral.org/
29 http://jena.sourceforge.net/
30 http://fowl.sourceforge.net/

 26

[26] A. Y. Halevy, et al.: Enterprise Information Integration: Successes, Challenges and Controversies, Int. Conf.
on Management of Data (SIGMOD), Baltimore, June 2005.

[27] D. Harel, B. Rumpe: Meaningful Modeling: What’s the Semantics of "Semantics"? IEEE Computer, 64-72,
October 2004.

[28] M. Hitz, G. Kappel, E. Kapsammer, W. Retschitzegger, "UML@Work – Objektorientierte Modellierung mit
UML2", 3. Auflage, dpunkt, July 2005.

[29] J. Huang et al.: A Schema-Based Approach Combined with Inter-Ontology Reasoning to Cons truct
Consensus Ontologies, 1st Int. Workshop on Contexts and Ontologies: Theory, Practice and Applications,
July, 2005.

[30] Y. Kalfoglou, M. Schorlemmer: Ontology Mapping: The State of the Art, Proc. of Dagstuhl Seminar on
Semantic Interoperability and Integration 2005, Schloss Dagstuhl, Germany, 2005.

[31] G. Karsai, M. Maroti, A. Ledeczi, J. Gray, J. Sztipanovits: Composition and Cloning in Modeling and Meta-
Modeling Languages, IEEE Transactions on Control System Technology, special issue on Computer
Automated Multi-Paradigm Modeling, March 2004.

[32] T. Kauppinen, E. Hyvönen: Bridging the Semantic Gap between Ontology Versions. STeP 2004
[33] G. Kiczales et al.: Aspect-Oriented Programming, Proc. of the European Conference on Object-Oriented

Programming (ECOOP), Springer LNCS 1241, Finland, 1997.
[34] M. Klein: Combining and relating ontologies: an analysis of problems and solutions, Proc. of the Workshop

on Ontologies and Information Sharing (IJCAI'01), Seattle, USA, 2001.
[35] J. Koehler, B. Srivastava: Web service composition: Current solutions and open problems, Proc. of the

ICAPS, Workshop on Planning for Web Services, Trento, Italy, June 2003.
[36] A. Maedche, S. Staab: Semi-Automatic Engineering of Ontologies from Text, 12th International Converence

on Software Engineering and Knowledge Engineering (SEKE 2000), Chicago, July 2000.
[37] A. Maedche, B. Motik, N. Silva, R. Volz: MAFRA – a Mapping Framework for Distributed Ontologies, 13th

European Conference on Knowledge Engineering and Knowledge Management, EKAQ, Spain, 2002.
[38] D. L. McGuinness, R. Fikes, J. Rice, S. Wilder: An Environment for Merging and Testing Large Ontologies,

7th Int. Conference on Principles of Knowledge Representation and Reasoning (KR 2000), USA, 2000.
[39] S. Melnik, E. Rahm, P. A. Bernstein: Rondo: a programming platform for generic model management, ACM

SIGMOD international conference on Management of data, ACM Press, New York, USA, June 2003.
[40] T. Mens: A State-of-the-Art Survey on Software Merging. IEEE Transactions on Software Engineering, Vol.

28, No. 5, May 2002
[41] P. Mitra, G. Wiederhold, M. Kersten: A Graph-Oriented Model for Articulation of Ontology Interdependencies,

Proc. of the 7th Conference on Extending Database Technology (EDBT2000), Konstanz, Germany, 2000.
[42] I. Niles, A. Pease: Towards a standard upper ontology, 2nd International Conference on Formal Ontology in

Information Systems, (FOIS 2001), Maine, 2001.
[43] N. Noy, M. A. Musen: The PROMPT suite: Interactive tools for ontology merging and mapping, International

Journal of Human-Computer Studies, 59(6), 2003.
[44] N. Noy: Semantic Integration: A Survey Of Ontology-Based Approaches, SIGMOD Record, 33(4), Dec. 2004.
[45] P. A. Oberndorf: The Common Ada Programming Support Environment (APSE) Interface Set (CAIS),

Software Engineering, IEEE Transactions, 14(6), June 1988.
[46] R. Patnayakuni, A. Rai: Development Infrastructure Characteristics and Process Capability, Communications

of the ACM (CACM), 45(4), April 2002.
[47] A. D. Preece, et al.: KRAFT: an Agent Architecture for Knowledge Fusion, International Journal of

Cooperative Information Systems, World Scientific Publishing Company, 2000.
[48] QVT-Merge Group: Revised Submission for MOF 2.0; OMG Query/Views/Transformations RFP(ad/2002-04-

10), Version 2.0, ad/2005-03-02, March 2005.
[49] E. Rahm, P.A. Bernstein: A survey of approaches to automatic schema matching, VLDB Journal, 10(4), 2001
[50] C. Reichmann, M. Kiihl, P. Graf, K. D. Muller Glaser: GeneralStore - a CASE-tool integration platform

enabling model level coupling of heterogeneous designs for embedded electronic systems, Proc. of the 11th
IEEE Int. Conference on Engineering of Computer-Based Systems, May 2004.

[51] T. Reiter, E. Kapsammer, W. Retschitzegger, W. Schwinger: Model Integration Through Mega Operations,
Workshop on Model-driven Web Engineering (MDWE2005), Sydney, Australia, July 2005

[52] A. Schürr, H. Dörr: Introduction to the special SoSym section on model-based tool integration, Journal on
Software and Systems Modeling (SoSym), Springer-Verlag, 4(2), May, 2005.

[53] A. P. Shet, J. A. Larson: Federated Database Systems for Managing Distributed, Heterogeneous and
Autonomous Databases, ACM Computing Surveys, 22(3), Sep. 1990.

[54] G. Straw et al.: Model Composition Directives, Proc. of the 7th UML Conference, Lisbon, Portugal, Oct. 2004.
[55] H. Stuckenschmidt, M. Klein: Integrity and Change in Modular Ontologies, International Joint Conference on

Artificial Intelligence (IJCAI 03), Acapulco, Mexico, 2003.
[56] H. Stuckenschmidt: Modularization of Ontologies, WonderWeb: Ontology Infrastructure for the Semantic

Web, IST Project 2001-33052 WonderWeb, Deliverable, 26.6.2003.
[57] L. Tratt: Model transformations and tool integration, Journal on Software and Systems Modeling (SoSym),

Springer-Verlag, 4(2), May, 2005.

 27

[58] M. Uschold et al.: Ontologies and Semantics for Seamless Connectivity, SIGMOD Record, 33(4), Dec. 2004.
[59] R. Volz, D. Oberle, S. Staab, R. Studer: OntoLIFT Prototype, IST Project 2001-33052 WonderWeb,

Deliverable 11, http://wonderweb.semanticweb.org/deliverables/documents/D11.pdf, 2003.
[60] A. I. Wasserman: Tool integration in software engineering environments, Proc. of the international workshop

on environments on Software engineering environments, Springer-Verlag, New York, USA, 1989.
[61] G. Wiederhold, P. Wegner, S. Ceri: Toward Megaprogramming, Communications of the ACM, Nov. 1992.

[62] M. Wimmer, G. Kramler: Bridging Grammarware and Modelware, Technical Report, Business
Informatics Group, Vienna University of Technology, 2005

