
 1

Transformation of Web Service Specification Languages into

UML Activity Diagrams

Magisterarbeit zur Erlangung des akademischen Grades

Diplom-Ingenieur (Dipl.-Ing.)

In der Studienrichtung Informatik

Angefertigt am Institut für Bioinformatik,

&

School of Computer and Information Science,

 University of South Australia

Eingereicht von:

Thomas Josef Reiter

Betreuung:

Univ.-Prof. Mag. Dr. Werner Retschitzegger

Univ.-Prof. Dipl.-Ing. Dr. Markus Stumptner

Linz, März 2005

 2

Eidesstattliche Erklärung

Ich erkläre an Eides statt, daß ich die vorliegende Arbeit selbständig und ohne

fremde Hilfe verfaßt, andere als die angegebenen Quellen nicht benützt und die

den benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche

kenntlich gemacht habe.

Linz, 8.3.2005 Thomas Reiter

 3

Acknowledgements

First of all I want to thank my supervisor Prof. Werner Retschitzegger for

linking me to the University of South Australia, which turned out to be an

invaluable experience. I am very thankful for all the advice and support he

offered concerning this work.

Special thanks go to Prof. Markus Stumptner who supervised me during my

research visit at the UNISA, where a substantial part of this diploma thesis had

been conceived.

A huge “Thank you” goes to my girlfriend Rachel, who kept me motivated all

the way, and to my mother Maria, for her support throughout my studies.

Last but not least, I want to thank all the anonymous developers out there, who

in a self-less effort, contribute to the numerous open-source projects we all

benefit from!

Thanks to all of you,

Thomas

 4

Abstract

The Business Process Execution Language has found wide acceptance as a means to

describe executable business processes. However, BPEL is an XML-based language

and thus suffers from poor readability. Therefore, the need for abstraction in the form

of a more intuitive, higher-level notation arises. In turn, fragmentation into several

proprietary, mutually incompatible realizations ought to be avoided. This clearly

favours the use of a wide-spread standard, such as the Unified Modeling Language. A

final goal is to implement a mapping able to perform the round-trip from BPEL to

UML and vice versa.

This work deals with the automated transformation of BPEL documents into UML

Activity Diagrams. To carry out the mapping, a working prototype of a generic model

transformation engine named Marius has been developed. The mapping from BPEL

to UML is specified in transformation definitions written in Marius’ transformation

language. Apart from the mapping’s implementation, this diploma thesis explores the

practical issues of design, development and application of a framework for generic

model transformations in the context of the Model Driven Architecture.

Linz, 8.3.2005 Thomas Reiter

 5

Contents

Chapter 1 - Introduction .. 8

1.1. Scope of this Diploma thesis .. 9

1.2. Structure of this Document... 9

Chapter 2 - Background Technologies.. 11

2.1. Model Driven Architecture... 11

2.1.1. Model Tranformations in MDA ... 12

2.2. Unified Modeling Language... 13

2.2.1. UML Metamodel.. 13

2.2.2. UML Activity Diagrams... 14

2.2.3. UML 2.0 Diagram Interchange .. 15

2.3. Business Process Execution Language for Web Services 16

2.3.1. Scope of BPEL... 17

2.3.2. The “MyBPEL” Metamodel... 18

2.4. MOF – Meta Object Facility... 18

2.4.1. Metamodel Hierarchy... 19

2.4.2. MOF within a Metadata Repository....................................... 20

2.5. JMI – Java Metadata Interface.. 21

2.5.1. MOF Mapping to Java Interfaces ... 21

2.5.2. JMI Reflective Package.. 23

2.6. XMI – XML Metamodel Interchange... 24

Chapter 3 - Model Transformation Concepts .. 25

3.1. Different Approaches to Model Transformation 25

3.1.1. Direct Approach ... 27

3.1.2. XMI/XSLT Based Approach.. 27

3.1.3. Metadata Repository-based Approach 28

3.1.4. Generic Model Transformation Approach 28

3.1.5. Discussion .. 29

3.2. Metadata Repository... 29

3.2.1. The NetBeans Metadata Repository....................................... 30

3.2.2. The Eclipse Modeling Framework ... 31

3.3. Transformation Framework.. 32

3.3.1. Defining and Hosting Metamodels .. 33

3.3.2. Transformation Definitions .. 33

3.3.3. The Transformation Engine ... 35

Chapter 4 - Marius Implementation Details... 36

4.1. Marius Architecture.. 36

 6

4.1.1. Marius’ Metadata Repository: Netbeans MDR...................... 37

4.1.2. Marius Transformation Engine .. 38

4.1.3. Marius Transformation Framework 39

4.2. How to generate metamodels ... 39

4.2.1. Using a CASE tool for metamodelling 40

4.2.2. Converting UML to MOF .. 41

4.2.3. Instantiating a metamodel in the Netbeans MDR 42

4.2.4. Building JMI Interfaces.. 43

4.3. Reading and writing source and target documents 43

4.3.1. MyBPELReader ... 43

4.3.2. MyBPELWriter .. 45

4.3.3. Netbeans XMIReader ... 45

4.3.4. Netbeans XMIWriter.. 45

4.4. From transformation definitions to executable transformations......... 45

4.4.1. Marius Transformation Language Grammar.......................... 46

4.4.2. Marius Transformation Rules... 49

4.4.3. SableCC.. 57

4.4.4. JET Templates.. 58

4.4.5. Java Transformation Classes.. 59

Chapter 5 - Transformation Execution... 61

5.1. The MyBPEL2UML Mapping.. 62

5.2. The UML2UML+DI Mapping.. 66

5.3. Executing a Transformation ... 70

Chapter 6 - Related Work .. 73

6.1. QVT Responses .. 73

6.2. Model transformation tools & frameworks .. 73

6.3. From UML to BPEL... 75

6.3. BPELJ: BPEL for Java ... 75

6.4. BPEL Process Engines ... 75

Chapter 7 - Future Work.. 76

7.1. MDA’s impact on the software development process........................ 76

7.2. Improvements to the Marius Transformation Tool 77

7.3. Improvements to the MyBPEL2UML mapping 78

7.4. Upcoming standards UML 2.0 & MOF 2.0.. 78

7.5. Improvements to the Marius Transformation Language 79

7.6. Domain Specific Readers and Writers.. 80

Chapter 8 - Appendix.. 82

8.1. MyBPEL Metamodel.. 82

8.2. The MyBPEL2UML Transformation Definitions 83

 7

8.2.1. Assign2ActionState.. 83

8.2.2. Case2CompositeState... 84

8.2.3. Copy2CallAction.. 85

8.2.4. Flow2CompositeState .. 86

8.2.5. Invoke2ActionState.. 87

8.2.6. Link2Tansition ... 88

8.2.7. MyBpelPackage2UmlPackage ... 88

8.2.8. Otherwise2CompositeState .. 88

8.2.9. Process2Model ... 89

8.2.10. Receive2ActionState .. 90

8.2.11. Reply2ActionState ... 91

8.2.12. Sequence2CompositeState ... 92

8.2.13. Switch2CompositeState ... 93

8.3. The UML2UML+DI Transformation Definitions 94

8.3.1. ActionExpression2GraphNode... 94

8.3.2. ActionState2GraphNode .. 95

8.3.3. ActivityGraph2Diagram... 95

8.3.4. AIncomingTarget2GraphConnector....................................... 96

8.3.5. AOutgoingSource2GraphConnector 97

8.3.6. CallAction2GraphNode.. 97

8.3.7. CompositeState2GraphNode.. 98

8.3.8. Pseudostate2GraphNode .. 98

8.3.9. Transition2GraphEdge ... 99

8.3.10. Uml2UmlDI ... 99

8.4. SableCC Grammar for Marius’ Transformation Language.............. 100

8.5. “PurchaseOrder” Example Transformation...................................... 103

8.6. “Marketplace” Example Transformation.. 107

8.7. Parser XSL-Sheet for MyBPEL 1.1.. 108

Chapter 1 - Introduction 8

Chapter 1

Introduction

Several standards and technologies for describing and automating business processes

have evolved in the recent years. The Business Process Execution Language, BPEL

[BPEL03] for short, is one of them. BPEL is a language designed to describe

executable business processes based on web services. An engine may execute such

processes by orchestrating the control flow between the Web Services involved. In

that manner, organizational boundaries between companies or departments can be

overcome, and several web services can be composed into a loosely coupled business

flow. From a technical point of view, BPEL is an XML based language and is built

upon SOAP [SOAP03], WSDL [WSDL01] and XML Schema [XSCH04]. BPEL is

an XML-based language and therefore not practical for use in business modelling and

not suitable for users lacking a certain level of technical background on that matter.

Hence, the need to provide more user-friendly modelling capabilities than those XML

editors offer, is given.

Since UML is the „lingua franca“ in modelling and considering its extensibility and

support in tools on the market, the decision to map BPEL to UML (strictly speaking a

UML profile for business modeling) comes easy. Business processes can intuitively

be understood as workflows, and therefore mapping the dynamic part of a business

process to UML Activity Diagrams is at hand.

The goal of this diploma thesis is to map BPEL documents to UML Activity

Diagrams. Another, previously started diploma thesis [RINN03] works in the

opposite direction and produces BPEL documents from UML models. The idea

behind these two projects was to provide means to create UML from BPEL to

analyse and model in a UML environment and then finish the roundtrip to BPEL

again.

Chapter 1 - Introduction 9

Working with a focus on models in mind fits exactly into the paradigm of MDA -

Model Driven Architecture [MDA02]. This is why the implementation executing the

above-mentioned requirements works after this very principle. How the architecture

is exactly laid out and how the MDA paradigm is followed, will be elaborated on in

the following chapters in more detail.

1.1. Scope of this Diploma thesis

The mapping employed in this work is largely inspired by a proposal made by

[IBM03] in the way BPEL constructs are mapped to UML model elements. Providing

an implementation that facilitates a mapping of all possible BPEL constructs to UML

is out of scope of this work. Nevertheless, the implementation provides a modifiable

mechanism to create UML from BPEL. This flexibility allows users to extend and

alter the mapping in a way they see fit.

A decision was made to follow the MDA paradigm and develop a simple framework

for model transformation, which as a proof of concept, transforms BPEL to UML.

The implementation of a new transformation definition language and engine was

sparked by the fact that at the time of writing, no standardized tool for generic model

transformation has yet evolved. For an up-to-date overview of related projects

concerned with model transformation refer to the “Related Work” chapter.

The transformation language used in this work is limited in its expressiveness, but

was nonetheless developed with a focus on openness and extensibility. As already

stated, providing a full-blown generic model transformation tool is out of scope of

this work. The implementation should be understood as a prototype - to demonstrate

as well the usage and the development of a model transformation capable system.

This diploma thesis focuses on the practical issues of model transformation in the

context of transforming business processes defined in BPEL into UML Activity

Diagrams.

1.2. Structure of this Document

This document is split into eight chapters, each one dedicated to an aspect of the

concepts relevant to this diploma thesis.

Following this introduction, chapter two gives an overview of the technologies and

standards employed in this work.

Chapter 3 elaborates on the notion of model transformation in general, and discusses

various technologies and methods applied in this respect.

Chapter 1 - Introduction 10

Chapter 4 introduces the Marius Transformation Tool and gives a detailed description

in terms of architecture and implementation.

Chapter 5 explains how the BPEL constructs were mapped to equivalent UML model

elements. Furthermore, an example transformation is carried out that shows the

execution of the transformation process in a step-by-step manner.

Chapter 6 gives an overview of related work in the model transformation domain.

Chapter 7 tries to give an outlook into the future development of technologies and

standards relevant for this work. Additionally, ideas on how to improve and extend

the Marius tool are discussed.

Chapter 8, the appendix, is mostly comprised of the transformation definitions’

source code facilitating the BPEL to UML mapping. Also contained are the BPEL

metamodel used in the mapping, further example transformations, and a number of

other documents enhancing the understanding and completeness of this work.

Chapter 2 - Background Technologies 11

Chapter 2

Background
Technologies

The approach to model transformation taken in this work adheres to the paradigm of

MDA. To make full use of this paradigm various technologies and standards come

into play. This chapter provides a quick breakdown of each of these technologies and

elaborates on its role within MDA.

The model transformation tool implemented in this project makes use of all the

below mentioned technologies, including a prototype transformation engine to

complete the framework proposed by MDA.

2.1. Model Driven Architecture

In many other engineering disciplines, model building is a common part of the

development process. The shipbuilding or aerospace industry for instance, build

different models for various kinds of purposes prior to the production process. An

example would be a scaled replica (analysis model) of an airplane for wind tunnel

experiments. MDA tries to aid the software engineering development process by

integrating and standardizing means for model building, such as model interchange

and model transformation.

MDA tries to shift the software engineering focus from code-centric to model-centric

development. There are many software modelling standards and tools around, but

those mainly act as means for describing and analysing a data model, which then is

Chapter 2 - Background Technologies 12

implemented manually. The code generation wizards in CASE tools work on a

model-to-text base only, not on a real model-to-model base. Furthermore, most

CASE tools tend to have proprietary code generation systems with a fixed metamodel

and domain transformations already in place. (e.g.: code generation from UML to

Java) MDA aims to relieve these interoperability problems by keeping the modeling

and code generation systems accessible to the developers.

2.1.1. Model Transformations in MDA

As the OMG’s new flagship MDA is supposed to raise the efficiency of software

engineering through use of modelling, model transformation and code generation.

Therefore, one of MDA’s main goals is to add a new level of abstraction through

model layers. A distinction between platform-independent models (PIM) and

platform-specific models (PSM) can be made. The use of a model transformation

language enables programming at an abstract level and should keep technical and

domain specific issues separated. Thus, through separation of concerns and code

reuse, manageability and maintenance efficiency should be increased and

development time lowered.

There can as well be different model domains and levels of refinement between these

models, down to source code. The models used in MDA have to be formal models,

meaning they have to adhere to a certain metamodel or „model language“. Otherwise,

there would not be a way to process these models automatically. A typical example

would be the “refinement” of a PIM into one or more PSM. These “refinements” are

actually transformations of models from a source domain to a target domain. Code

generation can be interpreted as the lowest tier in model transformation. Therefore, a

transformation is an operation that is carried out on a source model producing a target

model. This transformation is described in a transformation definition, which again

has to be defined formally in a transformation definition language for automation

purposes.

Executable transformations are generated by an engine, which takes in transformation

definitions and produces executable code, which then is run on a source model to

produce a target model. The models used may be UML models or models of a

specific UML profile. But also any other kind of formal models may be used in

MDA, like the BPEL models that are mapped to UML models in this work.

Chapter 2 - Background Technologies 13

2.2. Unified Modeling Language

The Unified Modeling Language is the quasi-standard modelling and specification

language for software systems and provides different types of diagrams to enable a

developer to describe the static, dynamic and functional behaviours of a system.

UML offers extensibility through a profiling mechanism, which means the basic

UML constructs can be semantically enriched to allow customization for different

usage scenarios. (e.g.: UML profile for Business Modeling)

2.2.1. UML Metamodel

The UML metamodel is a description that defines the structure of UML models.

Instances of the UML metamodel are UML models.

The MDA paradigm requires formalized models to be able to automate the model

transformation and model interchange process. A metamodel (like the UML

metamodel) for a given model facilitates this kind of formalization. Practically, the

UML metamodel is a blueprint for its models, as it defines of which meta-objects and

meta-attributes the different diagram types consist of.

Figure 1 shows the top-level package structure of the UML metamodel. At the time

of writing the current version of UML was 1.5 [UML03] (which basically is UML

1.4 including Action Semantics), although version 2.0 should soon be adopted.

However, the implementation belonging to this work is based on UML version 1.4

plus the UML 2.0 Diagram Interchange as an extension to the standard specification.

Chapter 2 - Background Technologies 14

Figure 1 Class Diagram Showing UML Package Structure

2.2.2. UML Activity Diagrams

An Activity Diagram displays an Activity Graph as defined in the Activity Graphs

Package in the UML metamodel. An Activity Graph is a state transition system and

an extension of a State Machine. The primary focus is set on modelling the sequence

and conditions in which actions take place concerning a certain identifier. The states

in these graphs represent actions, which are connected by transitions, which are

triggered by events.

The very nature of Activity Graphs makes them especially suitable for describing

workflows. The UML profile for Automated Business Processes as proposed by IBM,

[IBM03] makes use of UML Activity Diagrams to describe the dynamic aspect of a

Business Process.

Chapter 2 - Background Technologies 15

Figure 2 [IBM03] “Purchase Order” Business Process as Activity Graph

Figure 2 depicts the “Purchase Order” business process according to IBM’s UML

Profile for Business Modeling [IBM03]. The process begins by receiving a purchase

order request from a customer. Subsequently activities from other business partners

are triggered, which produce a response that is finally returned to the customer.

Though for simplicity reasons some details on message flows are omitted, the

structure of the process and the sequence in which the activities are executed is

clearly visible. Note that the way any UML Diagram is displayed, is not defined in

UML 1.x. Hence, the look or “style” – but not the semantics - of Activity Diagrams

may vary.

2.2.3. UML 2.0 Diagram Interchange

“Diagram Interchange” [DIA03] is a package of UML 2.0 and is a separate

metamodel designed to standardize the exchange of diagram display information

between CASE tools. UML 1.4 however does not include this package. But through

merging the Diagram Interchange DI metamodel with the Standard UML 1.4 UML

metamodel a new, extended UML+DI metamodel is created. Such a merged

metamodel is provided by Gentleware and finds application in their Poseidon

[GENT] modelling tool. Using this extended metamodel not only model information

but also display information, meaning the way the model should be displayed in a

CASE tool, can be captured.

Chapter 2 - Background Technologies 16

Because previously modelling tools’ file formats have been largely proprietary, the

above outlined approach is a major step towards interoperability between tools. For

tools not supporting Diagram Interchange DI, but SVG [SVG03] (Scaled Vector

Graphics) as means of storing display information, an XSLT sheet [XSLT99] can be

applied to an XMI [XMI03] document containing a UML+DI model, and as a result

produce an SVG document.

Figure 3 XMI UML+DI Application Scenario

Figure 3 displays an example application scenario for XMI and the Diagram

Interchange extension for UML: First, an XMI document is generated by exporting a

UML model from a CASE tool. Now the XMI document (containing diagram display

information) could be imported in another modelling tool. However, the above

scenario feeds the XMI document into an XSLT processor and produces an SVG

document.

This example should illustrate that XMI need not only be used to interchange models,

but also prove valuable in other application scenarios, such as XML and XSL

processing, which can be considered as low-level model transformations, too.

2.3. Business Process Execution Language for Web Services

Web Services inaugurated a completely new way in which systems could interact

with each other on the Internet. They can play a major role in providing a flexible

way to offer services to business partners when conducting e-business. However, this

openness and flexibility also causes interoperability problems when integrating

distributed systems on the internet. These interoperability problems stem from

Chapter 2 - Background Technologies 17

differing protocols that can be agreed on to drive communication among web

services. To successfully integrate web services into a cohesive system, the use of

standards is at hand. To address this problem several technologies have been

developed – BPEL4WS is one of them. For an overview of related approaches refer

to [BKKR03].

BPEL4WS (or BPEL for short) is a fusion of IBM’s WSFL [WSFL01] and

Microsoft’s XLANG [XLAN01] designed to enable the automatic execution of

business processes based on web services. BPEL is based on XML (data model and

vocabulary), SOAP [SOAP03] (message exchange) and WSDL [WSDL01] (web

service definitions).

Figure 4 [COLL03] Informal Description of Business Process

Figure 4 shows an informal description of a business process, a loan procurement to

be exact. It is taken from Collaxa’s tutorial on BPEL [COLL03] and deals with the

automation of the example process on a BPEL platform.

2.3.1. Scope of BPEL

BPEL has two usage scenarios. The first one is be to describe abstract business

processes. An abstract business process is not executable and shows a process’

business protocol view only. The other, for us more interesting scenario, is using

BPEL to describe executable business processes. Executable business processes are

Chapter 2 - Background Technologies 18

workflows and can be run in a BPEL engine. Such an engine is essentially

orchestrating the web services involved in the business process as described in a

BPEL document. Orchestrating means providing statefulness, invoking other

business partners’ Web Services, and passing messages among these according to the

control flow laid out in the underlying BPEL document.

Figure 5 [MART02] BPEL Execution Example

The example depicted in Figure 5 deals with a customer wanting to obtain a loan for

a car purchase. It shows how web services belonging to different business partners,

such as customer, car dealer, bank and an independent calculation tool are invoked,

their responses processed and a result being replied to the customer.

2.3.2. The “MyBPEL” Metamodel

BPEL is specified as an XML Schema [BPEL03]. Until completion of this work no

standardized, XMI serialized, Meta Object Facility [MOF02] compatible metamodel

for BPEL existed. The BPEL metamodel used in this work is a subset of BPEL

version 1.1. The developed BPEL metamodel, from now on quoted as MyBPEL,

omits some language constructs like compensation, fault and event handlers for

reasons of simplicity.

The MyBPEL metamodel was created in the Poseidon UML tool and can be found in

the appendix. The serialized version of the model was converted from UML-XMI to

MOF-XMI and used as the source metamodel in the transformation framework. For

an exact description of how to generate a MOF-compatible metamodel, please refer

to 3.3.1, “Defining and Hosting Metamodels”.

2.4. MOF – Meta Object Facility

The Meta Object Facility [MOF02] is a three layered, conceptual framework for

describing metadata and enabling model driven systems. The main goal of the MOF

Chapter 2 - Background Technologies 19

is to capture the semantics of a system in a language and technology independent

manner.

At the top of this architecture stands the MOF model. The MOF model is an

“abstraction language” to describe other metamodels. Thus, it is a metamodel for

describing metamodels. This is why it is also referred to as a “meta-metamodel” or

simply M3, because it is one abstraction level above M2 metamodels, like UML for

example.

2.4.1. Metamodel Hierarchy

As described above, the MOF Model is placed in level three of the OMG’s

metamodelling hierarchy, as depicted in Figure 6. Theoretically there could also be a

fourth layer above, describing the MOF Model, and a fifth layer above, describing the

description of the MOF model and so forth. But due to the fact that the MOF model

is actually able to describe itself, the hierarchy ends at the third tier and introducing

any further levels would generally not prove useful. The MOF model can be seen as a

“Great Unifier” being able to describe all kinds of different metamodels, which are

instances of M3 and found one level lower in M2.

The second layer, M2, is the metamodel layer. Here we find metamodels such as

UML, Common Warehouse Metamodel [CWM03] and the like. These models are

metamodels defining the “language” of underlying models. Every UML model

consists of constructs that are defined in the UML metamodel.

The first layer is where we find models, instances of their specific metamodels. These

are UML models, CWM models and so on. The M1 layer is the abstraction level

usually worked on by users when creating models in CASE tools. Modelling in a

UML CASE tool, where the metamodel is set to UML produces UML models.

Modelling involving layers M2 and M3 are considered metamodelling activities

producing metamodels.

Chapter 2 - Background Technologies 20

Figure 6 The four-layered architecture of the MOF

The lowest layer in the hierarchy is M0. This layer is reserved for instances of

models, for objects. These objects are entities existing at runtime, like Java objects or

database entries, and comprise the implementation of a modelled system.

2.4.2. MOF within a Metadata Repository

As the name indicates, a metadata repository is a system designed to store meta-

information. This means such a repository can store metamodels (M2) and models

(M1), their instances. A metadata repository is built upon a core meta-metamodel,

such as the MOF metamodel. Therefore, a MOF-based repository can store any MOF

compliant metamodel, such as UML, CWM or a custom made metamodel like

MyBPEL used in this work, as well as instances of them.

Due to the self-descriptiveness property of the MOF metamodel, a MOF based

repository can even contain the MOF metamodel itself (!).

To implement such a system and provide a standardized programming interface for it,

a way to map MOF semantics to a programming language is required. With JMI, this

technology exists and will be discussed in the following section.

Chapter 2 - Background Technologies 21

2.5. JMI – Java Metadata Interface

The Java Metadata Interface is the Java rendition of the MOF. It provides a common

Java programming interface for accessing metadata. In this work, the JMI

programming interfaces are used to programmatically instantiate metamodels and

manipulate their instances within a metadata repository.

2.5.1. MOF Mapping to Java Interfaces

Any MOF compliant metamodel can be used to produce JMI interfaces. For every

metadata element, certain JMI interfaces are generated. Basically, there are four

different kinds of JMI interface types: RefPackage, RefClass, RefObject and

RefAssociation. The metamodel depicted in Figure 7 is taken from the JMI

specification [JMI02]. Below is an example showing each kind of JMI interface

generated from a specific model element within the “XMLModel” metamodel.

Figure 7 Simple XML Metamodel

• Package Objects correspond to MOF packages and are little more than a

compilation of operations that provide access to metaobjects stored in this very

package. Metaobject packages can contain class proxies, instance objects,

associations and nested packages. The code produced for the package XMLModel

that contains all other metaobjects is the following:

Chapter 2 - Background Technologies 22

public interface XMLModelPackage extends javax.jmi.reflect.RefPackage {
public NodeClass getNode();
public AttributeClass getAttribute();
public ElementClass getElement();
public RootNodeClass getRootNode();
public Contains getContains();
}

• Class Proxy Objects are basically factories that are used to create and hold

instance objects once existing. They also hold their state and provide

functionality to manipulate classifier-scoped attributes. The code generated for

the Class Proxy Attribute is the following:

public interface AttributeClass extends javax.jmi.reflect.RefClass {
public Attribute createAttribute();
public Attribute createAttribute(String name, String value);
}

• Instance Objects correspond to MOF classifiers and are tied to Class Proxy

Objects which produce and contain them. Instance objects provide functionality

to manipulate instance-scoped attributes as well as accessing and updating

referenced associations. The code generated for the instance Element is the

following:

public interface Element extends javax.jmi.reflect.RefObject {
public String getName();
public void setName(String newValue);
public Node getContainer();
public void setContainer(Node newValue);
}

• Association Objects correspond to associations defined in a metamodel. They

contain a collection of links, which are instances of Association Objects, and

refer to two Instance Objects. Association Objects provide functionality to

query, add, modify and remove links from the link set. The code generated for

the Association Object Contains is the following:

public interface Contains extends javax.jmi.reflect.RefAssociation {
public boolean exists(Element element, Node container);
public java.util.List getElements(Node container);
public Node getContainer(Element element);
public boolean add(Element element, Node container);
public boolean remove(Element element, Node container);
}

The following code piece shows how an Attribute Instance Object can be generated

and manipulated, assuming that service is a reference to the outermost package proxy:

 Attribute attr = service.getAttribute().createAttribute(<name>,
<value>);

Chapter 2 - Background Technologies 23

attr.setContainer(<parentNode>);

For the complete example and more detail on the MOF to JMI mapping please refer

to the JMI specification. [JMI02]

2.5.2. JMI Reflective Package

The JMI Reflective Package is a part of the metamodel API and allows a program to

use objects without prior knowledge of the objects interfaces. This functionality

enables a program to discover the semantics of any object and manipulate it just as it

could with the metamodel-specific, “tailored” interfaces. The Reflective Package

contains eight interfaces that all generated, metamodel-specific interfaces - like those

in the example above - extend. These interfaces contain common operations for the

type of metaobjects they represent. “RefClass” for instance provides operations for

instantiating metaobjects, whereas “RefAssociation” deals with managing the links

belonging to an association.

Figure 8 [JMI02] Generated Inheritance Patterns

Figure 8 above shows an example metamodel on the left, and the generated,

“tailored” interfaces on the lower right side, with the inheritance hierarchy of the six

most important reflective classes on top of it.

Chapter 2 - Background Technologies 24

The JMI Reflective Package is especially useful if a program, such as a generic

model transformation engine, has to deal with unknown metamodels. The

implementation of the Marius tool (see Chapter 4) complementing this work is solely

based on the reflective functionalities provided by JMI. The below code sample is

taken from a transformation implementation generated by this engine. It shows how

to use reflection to instantiate a new CallAction object located in the Common_Behavior

package, assuming targetPackage corresponds to an instance of a UML root package.

javax.jmi.reflect.RefObject CallAction_ =
(javax.jmi.reflect.RefObject)targetPackage.refPackage("Common_Behavior")
.refClass("CallAction").refCreateInstance(null);

The second code piece shows how a link between the objects source and CallAction_ is

added to an A_state_entry association within the State_Machines package.

targetPackage.refPackage("State_Machines").refAssociation("A_state_entry")
.refAddLink((RefObject)source , (RefObject)CallAction_);

2.6. XMI – XML Metamodel Interchange

XMI is an XML based language by the OMG for the exchange of metadata. It

provides a mapping from MOF to XML and thus standardizes the way any kind of

metadata, based on the MOF meta-metamodel, can be interchanged between different

modelling tools. For validating UML-XMI and MOF-XMI files, mappings are

available from the respective metamodels to DTDs, and with version 2.0 as well to

XML Schemata [XMI03].

The code below shows the XMI 1.2 serialization of a single UML class. It also

contains a header and versioning information, which is not directly part of the

exported model.

<XMI xmi.version = '1.2' xmlns:UML = 'org.omg.xmi.namespace.UML' timestamp =
'Tue Aug 10 20:48:13 CET 2004'>
 <XMI.header>
 <XMI.documentation>
 <XMI.exporter>Netbeans XMI Writer</XMI.exporter>
 <XMI.exporterVersion>1.0</XMI.exporterVersion>
 </XMI.documentation>
 </XMI.header>
 <XMI.content>

 <UML:Class xmi.id = 'sm$59a735:100d31e7a35:-7ff6' name = 'Class_1'
visibility = 'public' />

 </XMI.content>
</XMI>

Chapter 3 - Model Transformation Concepts 25

Chapter 3

Model Transformation
Concepts

In 2002 the OMG launched the Query/Views/Transformations-RFP [QVTR02] in an

effort to standardize a transformation language for MOF-based metadata. This

chapter explains the general concept behind model transformation and compares

different transformation approaches. These approaches all rely on different kinds of

software infrastructures, like metadata repositories, XSLT processors or most

commonly a programming language such as JAVA. The following sections discuss

these technologies and their relevance to the various transformation approaches

introduced.

The model transformation implementation complementing this work takes a generic,

transformation language driven approach, supported by the Marius transformation

engine. Henceforth special emphasis is put on this topic, describing the necessary

software infrastructure and the role played by the transformation engine.

3.1. Different Approaches to Model Transformation

Model transformation comes in many different colours and flavours. Since it is a

technology finding application in different domains, often the same terms are used

with different meanings in different approaches. Nevertheless all these approaches do

have several characteristics in common. Following [CZAR03], the following

Chapter 3 - Model Transformation Concepts 26

paragraphs describe these characteristics and categorize different approaches

thereafter.

• Source/Target: A transformation uses a source model and transforms it into a

resulting target model. Source and target are often quoted as “left-hand side”

and “right-hand side”.

• Selection Patterns: A pattern is a model fragment consisting of one or more

model elements. Patterns are typically used to “select” constructs from source

and target domains to carry out transformation steps on them. An XSLT rule

applying to a number of model elements is a fitting example.

• Transformation Logic: All means to express constraints or computations in a

transformation fall into this category. An example would be an OCL [OCL20]

constraint on a model element or a JAVA language construct instantiating a

new model element on the target.

Other not necessarily mandatory but widespread characteristics include Variables,

Scoping, Traceability and the ability to fine-tune transformations. Variables are

actually metavariables, used for storing intermediate results during a transformation’s

execution. Scopes applied to a model limit the range in which transformations apply

and parameterization can tune a transformation execution to special needs.

Traceability (keeping track of links between source and target models and their

transformations) can either support the transformation definition process itself or

support impact analysis, model-based debugging and synchronization of models.

Furthermore, a general distinction between model-to-code and model-to-model

transformations can be made, whereas the former can be considered as a model-to-

text transformation producing textual artefacts instead of a target model.

One way to drive a model-to-code transformation is a rather direct approach making

use of the Visitor Design Pattern. The internal representation of the source model is

traversed and specific code for each node is produced. Another way of code

generation is a template-based approach. A template consists of target-text with

interwoven bits of metacode, which access the left-hand side to retrieve modeldata

and control code selection and iterative expansion. [CLE01] The advantage of

template-based code generation is that the development of templates can be aided by

existing examples of the intended target. Translation – the actual model-to-text

transformation - of the templates is taken care of by a template engine, such as

Jakarta’s Velocity [VELO04] or EMF’s Java Emitter Templates [JET04]. The author

of this work advocates the opinion that the overall better readability and

maintainability favours a template-based approach. An example for such an approach

Chapter 3 - Model Transformation Concepts 27

is the translation of Marius transformation definitions into JAVA source code, driven

by JET templates, as discussed in section 4.4.4.

Model-to-model transformations play a vital role in the Model Driven Architecture.

To gain several layers of abstraction (“zoom-in”/“zoom-out”), transformations

between models have to be possible and the rules for these transformations should be

kept separate from the models. These transformations can drive a separate

mechanism that automatically generates a target model from a source model. Since

model-to-model transformation is a more complex and challenging field, the

following sections are dedicated to describe different approaches to it. The

approaches are categorized after the way the transformations are defined, ranging

from the immediate implementation in a programming language to a high-level,

generic definition language.

3.1.1. Direct Approach

The only infrastructure a so-called “direct approach” requires, are in-memory data

structures representing source and target models, and an API, such as JMI for JAVA,

to query and manipulate them. The transformations have to be implemented manually

and there is no support for any kind of automation or organization of transformations.

A direct approach is easy to set up, but does not prove feasible for more complex

challenges, nor does it prove helpful in terms of abstraction of layers and

maintainability of transformations.

3.1.2. XMI/XSLT Based Approach

With XMI being an XML based language, and XSLT being a standardized

technology for processing XML documents, the idea to implement model

transformations using XSLT technology seems promising. The problem however is

that developing and maintaining transformations in the form of XSLT style sheets is

quite cumbersome due to the verbose nature and poor readability of XML and/or

XSLT. However, there are approaches to generate XSLT from more high-level

transformation definition constructs to overcome these issues [PGB01]. Nevertheless,

this approach’s major drawback is its reliance on previously serialized XMI

documents. For large models these files become huge and are the source of

performance problems. A UML model consisting of a class diagram with ten classes

and ten associations, and an activity diagram with twelve states and eleven

transitions, sums up to a total of 5255 lines or a file size of 258 KB (XMI version 1.2,

Netbeans XMI Writer 1.0, Diagram Interchange Package included).

Chapter 3 - Model Transformation Concepts 28

3.1.3. Metadata Repository-based Approach

This approach requires a metadata repository capable of hosting source and target

metamodels and their instances, and a programming API, JMI for instance, to

manipulate the repository contents. The transformations between source and target

elements are meta-modeled in a CASE tool and exported to XMI. From here, the JMI

interfaces are generated and the transformation logic, meaning the methods defined in

the transformation model, are manually implemented. This approach has the

advantage of using meta-modeled transformations, of which the overall

transformation framework can be generated from. Still there are limitations to the

expressiveness in which transformations can be described in a CASE tool. The

relationships between source, target and transformation model element are mere

associations. Even though constraints on the model (OCL) can be enforced, the

transformation logic for complex mapping rules has to be hand-coded. The use of a

metadata repository providing an in-memory representation of the transformations

artefacts makes this approach less likely to fall victim to poor performance, as

compared to the XMI/XSLT based method above.

An example for this approach, mapping UML to BPEL4WS, is described in

[GAR03B] and [IYEN03]. Included in the ETTK 2.1 [ETTK04] is a demo

implementation (“UML 2 BPEL Demo”) built on this idea.

3.1.4. Generic Model Transformation Approach

This approach is similar to the above one, in the sense, that it uses a metadata

repository infrastructure for hosting source and target metamodels and their instances.

But instead of requiring to manually complete the transformation logic, this approach

automatically generates executable code from a transformation definition language.

Such a language is specifically designed to capture the semantics needed to describe

mappings between any kind of metamodels, which - when executed - transform their

respective instance models.

The Marius transformation engine is built on the notion of generic model

transformations. It translates transformation definition files into JAVA source files.

After compiling, these classes make up the executable transformations that carry out

the source/target mapping within the metadata repository, by utilizing the JMI

Reflective API.

Other very interesting projects utilizing this kind of approach are those at [INR04],

[ASTT03] and [DIC03]. They are all designed to answer OMG’s QVT-RFP

Chapter 3 - Model Transformation Concepts 29

[QVTR02]. Another quite promising submission to the QVT-RFP, which also

provides a small Eclipse plug-in demo is [QSUB03] from [QPAR04].

3.1.5. Discussion

Of the previously mentioned approaches, the one employing Generic Model

Transformation is of course the most desirable. Due to the expressiveness and

separation of concerns between transformation and modeling, this approach will

presumably yield the best results in terms of useability and acceptance in the

community. Still the model transformation field is in its early days, and much more

work in terms of exploring different methods and eliciting requirements has to be

done. Although existing MDA tools, for instance [ANDR04], [OPTI04] and

[ARC04], can perform very well in developing large scale applications, they are often

built to support a certain target domain (EJB, Web Services, etc.) and are not based

on a solid theoretical foundation. But in my opinion this shows even more the power

that lies within the MDA paradigm, and should be a motivation to further pursue the

standardization and development of generic model transformation - still the missing

link in MDA.

3.2. Metadata Repository

To implement the MDA doctrine it is vital to have infrastructural support for storing

and retrieving metadata. MDRs are designed to offer this kind of functionality. The

foundation for a repository is some M3-level meta-metamodel, such as the MOF. An

even more fundamental requirement is an existing mapping of such a meta-

metamodel to a programming language API. Otherwise, there would be no

standardized means to access the repository or even develop it in the first place.

Metadata repositories fulfilling this criteria, can host any custom made metamodels

and models, as long as all are instances of the top-level meta-metamodel the

repository is built on.

Functionalities a repository offers include the import and export of models and

metamodels, and programmatic access to manipulate its contents. However, further

features like GUI support and code generation mechanisms do a great job at

enhancing useability and making an MDR the backbone of any MDA-driven

approach.

Below, two metadata repository technologies are introduced and their features are

described briefly. Both are successfully applied in the community and provide similar

Chapter 3 - Model Transformation Concepts 30

functionalities. However, each of them has been developed with a different rationale

in mind, which certain distinct characteristics give away.

3.2.1. The NetBeans Metadata Repository

The Netbeans MDR [MDR03] is a metadata repository built on OMG’s MOF and

can be integrated into the Netbeans Tool Platform or used as a stand-alone

application. With JMI being a mapping from MOF, it constitutes the standard

programming API of the MDR. The generated JMI-compliant interfaces for any

metamodel do not have to be implemented manually. MDR provides a default

runtime implementation, which can be overridden with a custom implementation if

the need arises. One of its main aspects is its persistence mechanism, which actually

allows different implementations to store the metadata, and abstract the way this

happens to the client. For instance, a B-Tree [BTREE] is used to persist metadata on

a hard disk’s file system. An in-memory storage mechanism for transient metadata is

also available. Other methods like a JDBC-based approach are not contained by

default, but can easily be plugged into the existing MDR architecture.

Figure 9 depicts the layered architecture of the MDR. The top-tier represents client

programs using functionality in the form of the MDR-API and JMI, which abstract

the underlying repository management mechanisms. The lowest tier shows the actual

storage layer, which can be realized with different implementations, abstracted by a

persistence interface.

 Figure 9 [MDR03] NetBeans MDR Architecture

Chapter 3 - Model Transformation Concepts 31

As mentioned above, MDR offers functionality to integrate the repository into the

Netbeans IDE. The NetBeans MDR Explorer is a product of this integrative

capabilities. This GUI tool allows browsing and editing a repository’s metadata-

content represented as a tree structure within the IDE. The MDR project site also

hosts a UML-to-MOF command line tool, to generate MOF-compatible metamodels

from UML models designed in a standard CASE tool, as demonstrated in 4.4.2. Other

key features of the MDR include:

• Import of XMI 1.1/1.2 for MOF 1.3 and MOF 1.4. with NetBeans XMI

Reader.

• Export of XMI 1.2 with NetBeans XMI Writer.

• Generation of JAVA interfaces (JMI-compliant) for any hosted metamodel.

• Instantiation of any MOF-compliant metamodel.

• Automatic implementation of generated interfaces at runtime.

• Shell access for stand-alone usage case.

Whereas EMF as an example, is designed to integrate well with other tools and

support model-driven development in an IDE, the NetBeans MDR is especially well

suited for storage and archive purposes where possibly thousands of instances have to

be persisted. This makes it a worthwhile background infrastructure for several

professional software projects, the Poseidon UML CASE tool being one of them.

3.2.2. The Eclipse Modeling Framework

The EMF is, as the name gives away, an Eclipse Tools project targeted at enabling

MDA-style development. It is a modelling framework based on Java/XML for

building applications from data model. EMF can map such a model to JAVA

implementation classes, as well as generate adapter classes for viewing and editing

purposes. New models can be specified through either writing JAVA code annotated

with comments containing instructions for the EMF generator, loading XMI

serialized EMF models, importing a Rational Rose “.mdl” file, or generating the

model from an XML schema.

The EMF is founded on the “Ecore” meta-metamodel, which is related but different

from OMG’s Meta Object Facility. MOF 1.4 and Ecore have been developed in

parallel, and Ecore is essentially a subset of MOF 1.4 modelling concepts. It is

streamlined to support the integration of modelling and code generation tools,

whereas MOF’s focus lies on building repositories to persist and manage metadata.

The relationship between MOF and Ecore, is similar to the one between JMI and the

Chapter 3 - Model Transformation Concepts 32

EMF Java mappings. Those have been optimized towards in-memory tool

integration, while JMI is favourable for metadata repository usage scenarios.

The Eclipse Modeling Framework consists of three parts, at its heart being the EMF

Core. It provides the above mentioned Ecore metamodel, change notification for

metaobjects, a persistence mechanism based on XMI serialization and a reflective

API (similar in concept to the JMI Reflective API) to generically manipulate models.

Then there is the EMF.Edit and the EMF.Codegen framework that provide generic

classes and code generation facilities to build working editors for EMF models.

When changing the underlying model and regenerating the model code, the

previously customized code stays unaltered and will be merged with the new version.

The code generation EMF offers, is layered in three tiers:

• Model code: Interfaces and implementation classes corresponding to the model,

as well as a factory to produce instances of the implementation classes.

• Adapter code: Implementation classes that adapt the model classes for viewing

and editing purposes.

• Editor code: Constitutes a basic Eclipse-GUI style editor which serves as a

starting point for further customization.

The EMF is an excellent framework for developing model-based applications within

Eclipse, though stand-alone applications built on an EMF model can also be run. A

developer can get from designing an application’s business logic to running a

rudimentary version of it, without writing a single line of code. Especially with

Eclipse’s 3.x new support for Rich Client Platforms, EMF’s model-driven

capabilities become even more appealing when developing a GUI-based application.

Since the time this diploma thesis was started the EMF has evolved tremendously,

and a number of handy extensions and plug-ins have appeared on the map. In terms

of model transformations, among others mentioned in chapter 6 “Related Works”,

there is [TEFKAT], the MTL Transformation engine at [INR04], and most notably

IBM’s just recently released Model Transformation Framework [MTF04].

One can only welcome the fact that there is a lot of work going on in that respect, but

the fact that EMF is not compatible to MOF and JMI, does not favour interoperability

– an MDA key goal - in model-driven systems development. Even though EMF/XMI

and MOF/XMI are not interchangeable, there has been some research done by

[DGR03] and [AGKR] on how to cope with that problem. The main problem

obviously is, that a transformation from MOF to EMF is “lossy”, because EMF is a

subset of MOF and therefore less expressive.

Chapter 3 - Model Transformation Concepts 33

3.3. Transformation Framework

The following sections describe the various parts that make up a suitable framework

capable of a transformation language based approach to model transformation. Such a

framework utilizes a metadata repository for hosting metadata and a transformation

engine. Depending on the form of the transformation definition language, the

transformation definitions may have to be translated into a language able to

manipulate the repository. Typically, this is the case when the repository is accessible

with a programming language, such as JAVA for MDR. The framework provides

access to the metadata repository and controls the translation described above, as well

as the subsequent transformation execution.

3.3.1. Defining and Hosting Metamodels

Every metamodel to be stored in a metadata repository has to adhere to the very

meta-metamodel the repository is based on. Thus, metamodels (e.g.: UML, CWM)

used as source and target domains in model transformation have to be instances of a

common meta-metamodel, typically MOF or Ecore. Creating custom metamodels is

an activity aimed towards creating an instance of a meta-metamodel and loading it

into a metadata repository. The modelling part preferably happens in a graphical

editor, just like the definition of models in a CASE tool. Exporting the metamodel

and loading it into the repository makes use of XMI, the standard metadata

interchange format. Even though modelling tools are traditionally based on UML and

not MOF, that does not necessarily render a standard CASE tool unsuitable for

metamodelling. Netbeans provides the UML2MOF [U2MOF] command-line tool to

convert UML-XMI into MOF-XMI, which is then compatible with Netbeans MDR.

The EMF also offers to generate Ecore models from annotated JAVA and XML

Schema. A rather cumbersome and impractical approach at defining metamodels

would be to write an XMI file manually.

Once a metamodel has been created, its XMI file can be imported into a metadata

repository. From this point onwards, all the functionality offered by the particular

repository can be applied to the metamodel. Most importantly, this includes

generation of programming interfaces, namely JMI and the EMF Java mappings

respectively.

3.3.2. Transformation Definitions

The transformation definitions describe how a source metamodel relates to a target

metamodel. Thus, they specify how model elements or sets thereof correspond to

each other in either domain. A transformation definition language is a metalanguage

Chapter 3 - Model Transformation Concepts 34

defining the syntax in which these definitions are written. Generally, a transformation

language has to offer semantics to capture specific needs to describe relationships

between metamodels. Useability and expressiveness as well as preferences of the

intended user groups, nevertheless influence the actual way in which a transformation

language manifests.

To date several transformation languages exist and are subject to further research and

development, as no standard has emerged yet. These languages are mostly textual

notations based on declarative and/or imperative constructs, as it is the case with the

Transformation Rule Language [ASTT03], ATL and MTL from [INR04]. However,

there are also approaches relying on the theoretical work on graph transformations

like GreAT [AGRA04], [AGRA03] and VIATRA [VAPA02]. A graphical

transformation language specialized for business process models is proposed by

[MMGK04].

Whatever the specific syntax of a transformation language might be, this work

advocates the opinion that a transformation definition has to expose a few common

key characteristics:

• Source/Target language references: References as to what the source and

target metamodels are. Depending on the transformation framework, these

references could for instance point to metamodels hosted in a repository.

• Source and target: The source and target are metamodel elements or sets

thereof which are related through transformation definitions.

• Transformation parameters: To enable fine-tuning, parameters can be passed

that affect a transformation’s execution. An example thereof would be a

parameter to distinguish between “create” and “update” behaviour when

executing a transformation.

• Source and Target pre/post conditions: Conditions that have to be met prior to

the execution of a transformation.

• Mapping rules: A transformation definition is made up of mapping rules,

where each rule maps source model elements to target model elements.

Querying an attribute value of a source model element and updating an attribute

in a corresponding target model element poses an example for this.

The Marius transformation language encompasses the above mentioned

characteristics. As a textual, hybrid transformation language it allows a mix of

Chapter 3 - Model Transformation Concepts 35

declarative and imperative constructs. In model transformation mapping rules can be

expressed using declarative constructs carrying an implicit meaning, since the

mapping’s semantics are intuitively understandable. An example would be the

aforementioned “query-and-update” mapping. However, for more complex types of

mapping rules it may be more applicable to resort to imperative, “programming

language-like” constructs. Encapsulating too complicated semantics might waiver the

advantage of the rather concise, declarative constructs over the generally more

verbose imperative constructs, as much thought has to be put in understanding their

implicit meaning. Finding a good balance between the declarative and imperative

nature of a hybrid approach is deemed important for its usability, as further

elaborated on in chapter 4.

3.3.3. The Transformation Engine

At the heart of a transformation framework lays a transformation engine, which

executes transformation definitions and produces a target model from a source

model. This implies that the transformation definitions have to be in an executable

form and that an instance of the source metamodel (for an update operation or a

source/target conformance check a target model will also be required) is available.

During the translation step, it is recommendable for a transformation engine to

perform compiler-typical error checking on the transformation definitions, such as

syntax and type checks, variable declarations and so forth.

At execution time, the engine has to manage the transformation process’ control

flow. Depending on the type of transformation language used, the requirements for a

transformation engine may differ. For instance, an engine for a language not

enforcing explicit rule ordering, will have to determine a correct and conflict-free

execution order. Other tasks transformation engines will typically perform, involve

resolving conditions applying to transformations, calling sub-transformations and

taking care of traceability concerns.

In case of the Marius transformation engine, the transformation definitions are

translated into JAVA source files, which after compilation constitute the executable

transformations. Refer to the next chapter for a more detailed description of Marius’

features and its architecture.

Chapter 4 - Marius Implementation Details 36

Chapter 4

Marius Implementation
Details

This chapter describes the Marius transformation tool and explains how the

components it consists of interact. Marius is a prototype implementation developed

for gaining hands-on experience in generic model transformation and is therefore not

meant to be a response to [QVTR02]. Refer to “Future Work” section 7.5 for a

breakdown of the features that still need to be implemented to satisfy the QVT-RFP.

The name “Marius” stems from Gaius Marius, a roman consul and general, best

known for initiating a series of reforms in 107 BC, completely restructuring the

organisation, equipment and tactics of the roman army. These “Marian Reforms”

significantly changed the face of the roman legions and transformed them into a

political factor sustaining the power of the late republic and the rise of the Caesars.

4.1. Marius Architecture

As to be seen in Figure 10, three major components make up the Marius

transformation tool. Those are the Netbeans MDR, the Marius transformation engine

and the Marius transformation framework.

Chapter 4 - Marius Implementation Details 37

 Figure 10 Components of the Marius Tool

Other components that do not directly belong into the immediate setup of Marius, are

readers and writers for source and target documents. An example thereof are the

readers and writers for BPEL documents described in 4.3.1. and 4.3.2.

4.1.1. Marius’ Metadata Repository: Netbeans MDR

The Netbeans MDR [MDR03] is incorporated in Marius as a stand-alone version,

independent of the Netbeans IDE [NBIDE]. Favouring MDR over the EMF as

Marius’ metadata storage was a decision mainly based on the fact that MDR is

compatible with MOF and JMI. Both carried by standardization groups enjoying

broad acceptance in the community, whereas the EMF relies on the Ecore meta-

metamodel and its own JAVA mappings. The EMF also offers code-generation

mechanisms for the development of model-based applications, overall streamlining it

for functionalities not necessarily being a priority for Marius.

Prior to the actual transformation execution, the transformation framework imports

source and target metamodels in the form of XMI and creates instances in the

repository. Then, the source model is either imported from metamodel specific XMI,

or a domain specific reader (see 4.3.1) creates the model from an M0-level model

instance. After this procedure (metamodel and model instantiation), the repository is

ready for transformation execution, which finally generates the target model.

Netbeans MDR provides XMI readers and writers for the purpose of model and

metamodel import and export. However, to produce domain specific M0-level

artefacts, a specialized writer for codegeneration (see 4.3.2) is needed.

Chapter 4 - Marius Implementation Details 38

4.1.2. Marius Transformation Engine

Doing the chores at Marius’ core is the transformation engine. During the translation

step, as can be seen in Figure 11 below, the transformation definitions are input to a

code-generation mechanism based on Java Emitter Templates [JET04]. Via such a

JET template, the JAVA classes representing the executable transformations are

generated. The engine reads its input - the Marius transformation definitions - with a

SableCC-generated [SABL] parser, which is automatically built according to the

Marius transformation language grammar. This includes a check for syntactical

correctness of the transformation definitions, a semantical analysis however is not

performed. The use of a non-declared identifier for instance will not result in a

translation error, but leads to an unsuccessful compilation of the JAVA

transformation files. For a more detailed description of the technologies and activities

involved in the translation step, see section 4.4 below.

Figure 11 The Marius Transformation Engine

As previously mentioned, the Marius transformation engine translates the

transformation definitions into a set of JAVA classes. Control flow managing

functionalities that a transformation engine exerts during runtime, as mentioned in

section 3.3.3, are also encapsulated in these executable transformations. This makes

the set of executable transformations independent of any entity controlling their

execution. Thus, they constitute a domain specific transformation engine themselves,

executable as a stand-alone component, as it happens within Marius’ transformation

framework.

Chapter 4 - Marius Implementation Details 39

4.1.3. Marius Transformation Framework

The Marius transformation framework holds the MDR, the transformation engine and

the domain specific readers and writers together. It is implemented in JAVA and

drives the model transformation process, as it offers means for MDR management,

transformation engine control and the use of domain specific readers and writers.

Below is a compilation of key functionalities, which are further elaborated on in

following sections in this and the following chapter.

• Instantiation of MOF-XMI compatible metamodels. (see 4.2.3.)

• Instantiation of a model from XML documents using XSLT. (see 4.3.1 and 4.3.2)

• Import and export of domain specific XMI-based models. (see 4.3.3 and 4.3.4)

• Generation of JAVA transformation classes. (see 4.4.4)

• Execution of transformation classes. (see chapter 5)

The fact that the repository access logic is contained within the JAVA transformation

classes hard-wires the Marius transformation engine specifically to the Netbeans

MDR. If the transformation engine were to be used with different repositories or

means of metadata storage, adapters within the framework were needed to abstract

repository access from the transformation engine.

4.2. How to generate metamodels

Model transformations are defined on a metamodel level, between a source and a

target metamodel. MDA relies heavily on the use of different kinds of metamodels to

support representation and abstraction levels of different systems. To define a custom

metamodel one can resort to UML’s extension mechanisms. These allow defining

and making use of new modelling constructs not native to UML, thus enabling to

create a new UML-based language. Such a UML “dialect”, officially called a UML

profile, is specified by the set of extensions that apply to it. UML offers three

different kinds of extensions for profiling:

• Stereotypes: A model element can become a stereotype essentially by adding a

text string enclosed between ‘«’ and ‘»’ to its traditional representation. The

information content of the model element stays the same, but the stereotype

indicates a specialized meaning or behaviour.

• Tagged Values: A tagged value is a pair of strings that can be applied to any

UML model element describing an additional property. One string holds the

Chapter 4 - Marius Implementation Details 40

property’s name, whereas the other contains its value. Tagged values prove

useful in enriching models with information required for subsequent processing

purposes, such as code generation, project management and of course MDA.

• Constraints: Restrictions and relationships beyond the notation of UML can be

expressed with constraints attached to model elements. A standardized textual

language used for this is the Object Constraint Language (OCL).

Profiling however, is not the only way to create custom metamodels. Just like UML,

metamodels can of course also be defined using MOF. This approach can be

considered as a heavy weight approach, yielding a metamodel definition based upon

the full semantic depth of MOF, but also requiring a MOF-compatible modelling

tool. A light-weight profiling approach on the other hand, although it suffers from

less expressive power, has an advantage in its applicability with a generic UML tool.

The following sections (from 4.2.1 to 4.2.4) describe the use of metamodelling with

MOF in more detail, and explain its application practically, as the MyBPEL

metamodel used in this work has been created accordingly.

4.2.1. Using a CASE tool for metamodelling

Most modelling tools will not allow to work with MOF, but with UML. Nevertheless,

a standard CASE tool can become a MOF-compatible metamodelling tool. The

notation of UML 1.x and MOF is very similar, and by obeying a few rules, a

metamodel can be edited in a UML environment and later on be translated into MOF.

These rules are based on UML 1.4 and make up the UML-Profile for MOF

[UPMF04], which enables a modeller to represent MOF model elements that do not

have a straight-forward mapping from UML. Although the specific rules and

guidelines on how to specify a MOF model in UML can be found in the profile, as a

rule of thumb it is obvious to avoid UML features not available in MOF. This

includes refraining from the use of “n-ary” associations, association classes, as well

as dependencies and qualifiers. Additional to these concerns, there are other

metamodelling virtues to be taken into account. Following [FRAN03], these mainly

deal with optimizing a metamodel for subsequent generation of a compilable model

(e.g.: JMI) in a programming language:

• Define important operations only: Accessors and mutators for properties, as

well as factory operations for instantiation will be generated automatically.

Concentrate on defining “interesting” operations that provide functionality for

the target application and are not implicit in the structure of the model.

Chapter 4 - Marius Implementation Details 41

• Proper use of association end navigability: Only make association ends

navigable when needed so. Otherwise unused accessors, mutators and

properties will clutter the target code.

• Avoid name clashes: A navigable association end becomes a property in the

opposite class. Therefore association ends opposite to the same class cannot

have the same name.

• Carefully specify multivalued properties: MOF and UML allow to impose

“ordering” and “uniqueness” on multivalued properties. In JMI the ordered tag

will result in a java.util.List, rather than a java.util.Collection. The isUnique tag

enforces set semantics and does not allow duplicates in a multivalued property.

Modelling tools usually provide default values for ordered and isUnique, so care

has to be taken not to overlook an undesired setting.

• Use of Abstraction: Abstract classes cannot be instantiated, hence no factory

operations will be generated which results in smaller, “cleaner” APIs.

• Syntactic and semantic completeness: MDA generators rely on fully defined

models, so ensure to specify all types of operations and attributes, names of

associations and multiplicities of association ends. Always reflect on whether

the models produced by this metamodel expose the intended behaviour.

An example for a metamodel defined in Poseidon is the MyBPEL metamodel, which

can be found in the appendix. To get started with metamodelling, the Netbeans MDR

project page offers templates for the modelling tools Poseidon and MagicDraw.

These templates serve as empty project files with the standard stereotypes and tags

according to the UML Profile for MOF already in place.

4.2.2. Converting UML to MOF

After a metamodel has been defined in a UML tool (e.g.: Poseidon), it still has to be

translated into MOF. To do this, the model has to be serialized into XMI first,

implying that the modelling tool supports this export mechanism. The resulting XMI

file describing a UML model, now has to be converted into an XMI file describing an

equivalent MOF model.

The Netbeans MDR project provides the previously mentioned UML2MOF

command line tool that facilitates the above described translation from UML-XMI to

MOF-XMI. It reads the UML-XMI input file using Netbeans XMI reader, uses JMI to

Chapter 4 - Marius Implementation Details 42

implement the mapping to MOF programmatically, and finally exports the resulting

MOF-XMI file with Netbeans XMI writer. The tool is founded on OMG’S UML-

Profile for MOF, but differs in minor ways [NBUM].

4.2.3. Instantiating a metamodel in the Netbeans MDR

Any MOF-compatible metamodel can be instantiated in the MDR. After setting up a

repository, a MOF model package needs to be instantiated, which will then hold the

metamodel. The example code below shows how to programmatically prepare a

repository, create an extent (MOF model package) and load a metamodel in XMI

form (“metamodel1_mof.xmi”) into it.

repository = org.netbeans.api.mdr.MDRManager.getDefault().getDefaultRepository();

ModelPackage metamodel1 =
(ModelPackage)repository.createExtent(”METAMODEL1”);

reader = org.netbeans.api.xmi.XMIReaderFactory.getDefault().createXMIReader();
File f = new File("metamodel1/resources/metamodel1_mof.xmi");
reader.read(f.toURI().toString(), metamodel1);

Now, that a metamodel exists in the repository, instances of this metamodel can be

generated. To do this, the metamodel’s root package has to be found. Assuming the

above loaded metamodel, now nested in the MOF model package

“METAMODEL1”, contains several packages with “MetaModel1” being the root

package, a reference “root” can be obtained like this:

MofPackage root = null;
for (Iterator it = metamodel1.getMofPackage().refAllOfClass().iterator(); it.hasNext();) {
 MofPackage pkg = (MofPackage) it.next();
 if (pkg.getContainer() == null && "MetaModel1".equals(pkg.getName())) {
 root = pkg;
 }
 }

The following piece of code finally creates a MOF model package holding an

instance of the located “MetaModel1” package belonging to the previously loaded

metamodel.

metamodel1_instance =
(MetaModel1Package)repository.createExtent(“METAMODEL1_INSTANCE”, root);

From thereon the model can be populated either programmatically using the JMI

interfaces or by de-serializing an XMI model.

Chapter 4 - Marius Implementation Details 43

4.2.4. Building JMI Interfaces

JMI is a specification enabling a mapping from MOF to JAVA. The produced

interfaces serve in accessing, querying and manipulating metadata. However, to work

with JMI, one is not required to generate domain specific interfaces. The JMI

reflective package allows to build fully generic applications. Marius for instance,

uses these reflective capabilities and is able to work with any MOF compatible

metamodel.

The generation of JMI interfaces for an extent in the MDR can happen either

programmatically or by using the MDR Explorer, a GUI application providing

repository management functions.

4.3. Reading and writing source and target documents

In MDA, transformations are typically defined between metamodels on level M2, and

are executed on instances in the M1 model layer, according to the common four-

layered metamodelling paradigm. The QVT initiative aims at that scenario, and is not

concerned about transformations on lower levels or in between levels.

Transformations involving the M0 data level are not possible due to the fact that the

“instanceOf”-relationship between level M0 and M1 is not specified in MOF, as this

is obviously an implementation specific issue. It can be argued that there are only

three metamodelling layers instead of four [JBRL97], because only M2 and M1

entities are “real” instances of layer M3 [IKKB04].

 To bridge the gap between model layer M1 and data level M0, domain specific

readers and writers have to be employed. Such a reader’s and writer’s behaviour

implicitly defines the “instanceOf”-relationship between M1-model and M0-instance.

Below are descriptions of the readers and writers used to transform MyBPEL to

UML. In the course of this transformation, the Marius Transformation Framework

uses the Netbeans XMIReader [MDR03] to instantiate metamodels in the MDR, the

MyBPELReader to parse BPEL source documents and the Netbeans XMIWriter

[MDR03] to serialize the generated UML model. Not involved in this scenario is the

MyBPELWriter, which would only be of use in a transformation running the opposite

direction.

4.3.1. MyBPELReader

Starting point of the BPEL2UML transformation process is a BPEL document.

MyBPELReader is a JAVA implementation using Xalan [XALA04] to parse this

Chapter 4 - Marius Implementation Details 44

document and create a model instance within the MDR. With BPEL being an XML

dialect, the parsing can greatly be enhanced by using XSLT. To do that, an XSLT

sheet matching the various BPEL constructs is needed. Within the specific templates,

calls to the MyBPEL JMI interfaces populate the MDR accordingly. In this usage

case, the XSLT engine does not produce textual output as it usually does when

transforming an XML file for instance. The output is a MyBPEL model instance

located in the MDR, representing the parsed BPEL document.

Below is an example of an XSLT template matching BPEL’s partners construct and

making a JAVA call to instantiate the according Partners class. Then, for each

contained partner element, a Partner instance is created and the setName method is

called with name as a parameter.

<xsl:template match="bpws:partners">

<xsl:variable name="partnersClass" select="java:getPartners($meta1)" />

<xsl:variable name="partners" select="java:createPartners($partnersClass)" />

<xsl:for-each select="bpws:partner">

<xsl:variable name="partnerClass" select="java:getPartner($meta1)" />

<xsl:variable name="partner" select="java:createPartner($partnerClass)" />

<xsl:if test="@name">

<xsl:if test="java:setName($partner, @name)" />

</xsl:if>

 </xsl:for-each>

</xsl:template>

The advantage of the XSLT based parsing approach lies within the way XSLT allows

a developer to describe operations carried out on XML data. An equivalent JAVA

implementation based on DOM or SAX for instance, might prove harder to read and

maintain. Furthermore, XSLT sheets are more flexible concerning changes, as no

further compilation is required. In case various versions of an input language exist,

which are similar enough to be represented by the same metamodel, different XSLT

style sheets can be utilized to easily “switch” between language versions. In the

course of this work, this proved practical when supporting BPEL versions 1.0 and

1.1. Mostly differing in names for elements and attributes, but not in their overall

structure, these two versions can be represented by the same MyBPEL metamodel.

The apparent disadvantage of an XSLT-based parser is its relative poor performance.

However, this circumstance can be accepted due to the fact, that neither the

Chapter 4 - Marius Implementation Details 45

implementation proposed in this work, nor the Netbeans MDR in general is a

performance critical application.

4.3.2. MyBPELWriter

Although not necessarily within the scope of this work, but nevertheless useful to

complete the roundtrip from documents parsed with MyBPELReader, is a domain

specific writer for BPEL. MyBPELWriter serializes an instance of the MyBPEL

metamodel stored in the MDR to a BPEL document. The writer is implemented as a

JAVA program iterating the model stored in the repository, and according to the

model element it encounters, prints the according XML constructs into a file.

This is a very simplistic, straightforward approach to build a domain specific writer.

Bridging the gap between M1 model and M0 instance layers is not trivial, and

mapping to the data level always involves knowledge about the specific domain

language in question. However, an attempt at describing a more structured method

for writer implementation, especially those based on XML dialects, is taken in

section 6.6, “Domain Specific Readers and Writers”.

4.3.3. Netbeans XMIReader

The XMIReader module is used to de-serialize data stored in an XMI file and load it

into the MDR. Netbeans offers two standard implementations, building on SAX and

DOM respectively. Both reader implementations are compatible with MOF 1.4 and

support XMI versions 1.1 as well as 1.2.

4.3.4. Netbeans XMIWriter

The XMIWriter serializes data contained in the MDR to XMI 1.2 documents. XMI

documents are produced according to the object containment hierarchy of the

repository instance to be exported. Therefore, outermost composites in the

metamodel map to XMI’s top level, as direct subelements of XMI.content. All other

non-outermost composites map to subelements of their respective containers. Link

ends belonging to non-composite associations map to references signified by

XMI.idref.

4.4. From transformation definitions to executable transformations

The Marius translation process involves various technologies and document types to

convert transformation definitions into executable transformations. Prior to the actual

Chapter 4 - Marius Implementation Details 46

translation, a parser for the Marius Transformation Language has to be in place,

which is automatically generated with SableCC from Marius’ Transformation

Language grammar. This parser reads the transformation definitions and yields a

parse tree that is passed on to a JET template engine. The JAVA source files,

representing executable transformations, are the result of the JET engine processing

a generic template for Marius’ executable transformations by applying the

information in the parsed syntax tree to it.

Figure 12 is an illustration describing the activities occurring in the translation

process beginning with the generation of a SableCC parser from the Marius language

grammar, which then reads the transformation definitions. In the next step, the parse

tree is passed on to the JET template engine, which produces the JAVA output

according to the Marius transformation template. This template is the central part of

the translation, as its structure implicitly defines the mapping between the

transformation definition language and the JAVA implementations of the executable

transformations.

Figure 12 Generation of Executable Transformations

4.4.1. Marius Transformation Language Grammar

The lexical definitions and the grammar specifying the syntax of Marius’

transformation language are written in EBNF and stored in a SableCC specification

file. This text file adheres to a simple structure basically separating token definitions

and grammar productions. The complete SableCC specification file defining the

grammar for the Marius transformation language can be found in the appendix.

A shortened version to show the overall structure of a Marius transformation

definition can be seen below. There are six sections, each one being introduced by a

keyword accordingly. Trafosource and Trafotarget signify the declaration space

for variables referring to the transformation’s source and target model elements.

Chapter 4 - Marius Implementation Details 47

Auxiliary variables that do not belong to either source or target model, but which are

used to store meta-information to handle the transformation execution are declared in

the meta section. Every transformation also has a return value, which is a complex

type containing source, target and the transformation’s meta-information stated in

meta. The structs section allows to declare data structures, mappings of MOF’s

StructType. Variables used to build up the target model or hold intermediary values

are declared in the variables section. Mapping, the last section, contains all the

transformation rules.

<title>

Trafosource

<variable declaration>

Trafotarget

<variable declaration>

meta

<metavariable declaration>*

structs

<structure declaration>*

variables

<variable declaration>*

mapping

<transformation rules>*

A Marius transformation definition adheres to the above depicted structure. The

concrete example below shows a simple Marius transformation definition and

explains the semantics and the usage of the language constructs in more detail:

Every transformation definition begins with a title naming the transformation, for

instance the names of source and target model elements separated by ‘2’.

ActionState2GraphNode

The source declaration consists of three identifiers specifying a variable named

ActionState referring to the ActionState model element in the Activity_Graphs

package.

Trafosource
ActionState ActionState Activity_Graphs

Similar to Trafosource, the target model element is declared. If a transformation

does not specifically refer to a target model element but rather initiates other sub-

Chapter 4 - Marius Implementation Details 48

transformations, a Trafotarget declaration can be omitted by using the ‘---’

keyword.

Trafotarget
GraphNode GraphNode Diagram_Interchange

Entry and Exit are both declared as meta-variables. They have a collection-like

behaviour and are able to store and group various model elements.

meta
Entry
Exit

Data structures are declared along a list of arguments.

structs
Point Point Diagram_Interchange (Double 0) (Double 0)

Model elements to build up part of the target model can be declared in the variables

section. Similar to the Trafotarget declaration, an instance of the specified model

element will be produced at transformation execution time. If only an auxiliary

variable is needed to reference an intermediary value, the package identifier can be

left out and the model element’s instantiation will be skipped.

variables
Uml1SemanticModelBridge Uml1SemanticModelBridge
Diagram_Interchange;

The final mapping section contains all transformation rules. Variables used have to

be declared earlier. To understand the rules in the mapping section, refer to the

section 4.4.2 for a concise description of the transformation rules employed by

Marius.

mapping

$true =: GraphNode.isVisible;
Point =: GraphNode.position;

$"" =: Uml1SemanticModelBridge.presentation;

Uml1SemanticModelBridge <> ActionState
A_uml1SemanticModelBridge_element Diagram_Interchange;

Uml1SemanticModelBridge <> GraphNode
A_graphElement_semanticModel Diagram_Interchange;

ActivityGraph2Diagram:Diagram <> GraphNode
A_container_contained Diagram_Interchange;

ActionState.entry -> *.GraphNode <> GraphNode
A_container_contained Diagram_Interchange;

Chapter 4 - Marius Implementation Details 49

Every transformation rule can be preceded by a condition, determining whether the

rule will be executed or not. The objects resolved from left- and right-hand side are

compared by their equals method. Only if the comparison is successful, the

subsequent transformation rule will be executed.

#Transition.name == Source.linkName# Transition <>
ActionState A_outgoing_source State_Machines;

Applying conditions to rules is often necessary to implement complex

transformations that do not simply relate single source and target model elements, but

build up a distinct structure in the target extent. Conditions preceding rules invoking

sub-transformations act as their pre-conditions.

4.4.2. Marius Transformation Rules

Generally, all transformation rules assign values from the left-hand side to the right-

hand side. Basic Expressions of the type name.{sub-name}, for instance

Process.name, are used to qualify model elements and contained or associated

model elements in respect to their owner. However, there are also other kinds of

expressions available described later in this section, which are nevertheless similar in

their concept of resolving model elements. Left-hand side and right-hand side are

evaluated at runtime and in case an expression cannot be resolved, because a referred

model element does not exist, an exception is thrown. The state diagram in Figure 13

shows how an expression is evaluated, and to which kind of model element the name

sub-name can refer to, depending on the original type of name or the intermediary

expression result respectively. Except Collections and primitive types (String, Boolean,

Integer, Double), every model element referred to in an expression is extended from an

interface belonging to JMI’s MOF reflective package, thus the diagram is categorized

according to these generic types. Meta-variables, declared in meta, are of Collection

type. Additionally, every transformation returns a HashMap to its calling parent,

which includes all meta-data, source and target model elements.

The states correspond to the type of the currently resolved expression - which initially

is name, whereas the transitions originating from a state represent possible types sub-

name can resolve to. A specialty is RefAssociation, which can resolve to Collection

calling the AllLinks method (corresponding to JMI method refAllLinks()) returning all

RefAssociationLinks governed by the RefAssociation in question. Similar to that, a call

to the methods FirstEnd and SecondEnd (corresponding to JMI methods refFirstEnd()

and refSecondEnd()) on a RefAssociationLink yields the RefObject connected by this

link-end.

Chapter 4 - Marius Implementation Details 50

Figure 13 Rules to Resolve Marius Expressions

The example below shows how an expression could be resolved following the rules

portrayed in the above state diagram. A Collection containing RefObjects, all

instances of the “ActivityGraph” class, are the final result.

UmlPackageSource � RefPackage

UmlPackageSource

.Activity_Graphs � RefPackage

UmlPackageSource

.Activity_Graphs

.ActivityGraph � Collection of RefObjects

Marius transformation language expressions referring to model elements in the

source repository build upon the above-described resolving mechanism. Other kinds

of expressions are used to assign constants or to access collections. Below is a

description of all valid left-hand side expressions referring to source model elements.

Each description states the name and a shortened EBNF definition of the full

production within Marius’ transformation language grammar file. Following that is

an example taken from a transformation definition and a list of possible instances the

expressions can refer.

Name Source Expression

SableCC Name: name_sourceexpr

Chapter 4 - Marius Implementation Details 51

EBNF: name {‘.’ sub_name} [‘(’ method ‘)’]

Example: Invoke.name

Resolves To: RefObject, RefPackage, RefAssociation, RefAssociationLink,

HashMap, Collection, Primitive Types

A Name Source Expression uses name to specify a model element and

sub_name to refer to its attributes or associations subsequently, as described in

the resolving mechanism above. Just like the Collection Source Expression

described below, a Name Source Expression may be concluded by the optional

method, which specifies a method’s name to be called on the resolved object.

Parent Source Expression

SableCC Name: parent_sourceexpr

EBNF: parent ‘:’ name

Example: Process2Model:Model

Resolves To: RefObject, RefPackage, RefAssociation, RefAssociationLink,

HashMap, Collection

A Parent Source Expression resolves a model element or a meta-variable

scoped in a parent transformation, with parent referring to the

transformations’ name and name to the variable to be resolved.

Primitive Source Expression

SableCC Name: string_sourceexpr

EBNF: ‘$’ ((‘”’ string ‘”’) | bool | int | double)

Example: $“ActionState”, $”true”, $”123”, $”1.23”

Resolves To: Primitive Types

A Primitive Type Source Expression allows to define constants inline. The

resolved instances are JAVA wrappers for primitive types.

Concatenated String Source Expression

SableCC Name: concat_sourceexpr

Chapter 4 - Marius Implementation Details 52

EBNF: ‘(String)’ ‘(’ stringlet { ‘+’ stringlet } ‘)’

Example: (String)(To.variable + "/" + To.part + " := " +

From.variable + "/" + From.part)

Resolves To: String

A Concatenated String Source Expression allows to build strings by

concatenating stringlets, which are either string literals, or Name Source

Expressions. In the latter case the expression will be resolved and mapped to a

JAVA String by the referred object’s toString() method.

Collection Source Expression

SableCC Name: collection_sourceexpr

EBNF: collection ‘!’ [offset] {‘.’ sub_name}

[‘(’ method ‘)’]

Example: subStatesVector!0.Exit

Resolves To: RefObject, RefPackage, RefAssociation, HashMap, Collection,

Primitive Types

A Collection Source Expression is used to refer to elements inside a collection.

It is similar to a Name Source Expression, but instead of name to refer to a root

model element, it uses collection to specify the collection containing the root

elements. The current root element is specified by the state of the iterator

belonging to the referred collection. The optional offset can be used to refer an

element relative to the iterator’s current position. If offset is omitted, the last

element in the collection is referred.

To finally assign resolved sources, Marius supports a number of right-hand side

expressions referring to target model elements. The type of a target expression is

determined by the transformation rule in place. Therefore, the various transformation

rules supported by Marius’ transformation engine and their respective target

expressions are discussed below.

Chapter 4 - Marius Implementation Details 53

Assign Transformation Rule

SableCC Name: string2equ, name2equ, parent2equ, concat2equ,

colletion2equ

Operator: ‘=:’

Source EBNF: string_sourceexpr | name_sourceexpr |

parent_sourceexpr | concat_sourceexpr |

colletion_sourceexpr

Target EBNF: name {‘.’ sub_name}

Example: $1.0 =: Diagram.zoom;

Receive.name =: ActionState.name;

Copy2CallAction:ActionExpr =: CallAction.script;

(String)(Send.operation + "()") =: Activity.name;

 SubStateVector!0.Entry =: Entry;

The Assign Transformation Rule resolves a left-hand side source expression

and assigns the resulting value to the right-hand side model element specified

by the target expression. All possible source expressions are allowed to be

used. The target expression refers to a model element by specifying a name

referring to a variable, and optionally various sub_name, referring to owned

elements.

Link Transformation Rule

SableCC Name: name2normlink, parent2normlink, colletion2normlink

Operator: ‘<>’

Source EBNF: name_sourceexpr | parent_sourceexpr |

colletion_sourceexpr

Target EBNF: name association package

Example: ActionState <> CallAction A_state_entry

State_Machines;

The Link Transformation Rule links source and target model elements via an

association link. name specifies the model element to be linked with the source

expression’s resolved value. association is the name of the association

residing in the package package, of which a link will connect source and target.

Chapter 4 - Marius Implementation Details 54

Sibling Transformation Rule

SableCC Name: name2siblink, parent2siblink, colletion2siblink

Operator: ‘?>’

Source EBNF: name_sourceexpr | parent_sourceexpr |

colletion_sourceexpr

Target EBNF: name association package

Example: Link.(FirstEnd) ?> GraphConnector

A_graphEdge_anchor Diagram_Interchange;

The Sibling Transformation Rule behaves equally to the previously mentioned

Link Transformation Rule as it connects two model elements via an association

link. The difference is that not the resolved left-hand side expression is linked,

but its ‘sibling’. A transformation definition’s source model element declared

in Trafosource has the according target model element declared in

Trafotarget as a sibling. Therefore, the sibling look-up takes in a source

model element and yields a target model element. If a resolved expression has

no sibling, an exception is thrown. The above source expression

Link.(FirstEnd) refers a source model element, of which the according

sibling element will be linked with the GraphConnector model element.

Invoke Transformation Rule

SableCC Name: name2arr, parent2arr, colletion2arr

Operator: ‘->’

Source EBNF: name_sourceexpr | parent_sourceexpr |

collection_sourceexpr

Target EBNF: ‘*’ {‘.’ sub_name} { (assign_righthandside |

link_righthandside) }

Example: UmlPackage.Activity_Graphs.ActivityGraph -> *;

Links.link -> *.Transition =: Trans;

ActionState.entry -> *.GraphNode <> GraphNode

A_container_contained Diagram_Interchange;

Comment: The Invoke Transformation Rule is used to call sub-

transformations. This rule’s left-hand side expression is

Chapter 4 - Marius Implementation Details 55

resolved and for each instance of the referred model element

found, a transformation with the according model element as a

Trafosource will be invoked. A sub-transformation’s return

value (a HashMap containing variables declared in meta,

Trafosource and Trafotarget) is represented by ‘*’ and its

elements can be referenced by sub_name. Variables of sub-

transformations can be the left-hand side of either Assign or a

Link Transformation Rules declared in-line.

Foreach Transformation Rule

SableCC Name: foreach

Operator: ‘{ }’

Source EBNF: ‘foreach’ (‘array’ | ‘collection’)

source_expression collection

Target EBNF: ‘{’ variable_declarations transformation_rules ‘}’

Example: foreach array Subs subsColl{

 variables

 mapping

 subsColl!0.Entry =: Entry;

 subsColl!.Exit =: Exit;

};

foreach collection subsVec!0.Exit exitVec {

 variables

 mapping

 foreach collection subsVec!1.Entry entryVec{

 variables

 Transition Transition State_Machines;

 mapping

exitVec!0 <> Transition A_outgoing_source

State_Machines;

entryVec!0 <> Transition A_incoming_target

State_Machines;

 };

};

Comment: The Foreach Transformation Rule is different from the other

transformation rules as its purpose is not to directly manipulate

the target model but to enclose an arbitrary number of other

Chapter 4 - Marius Implementation Details 56

transformation rules for which it provides a context to execute.

This context constitutes a collection collection that is

populated with the resolved value of a source_expression,

which can be either of Name- Parent- or of Collection Source

type. In case the Foreach Rule is declared with the keyword

‘collection’, the enclosed rules transformation_rules

will be iterated over according to the collection’s size.

Otherwise, the keyword ‘array’ prevents looping and

implicitly renders all enclosed Collection Source Expression’s

offset to indices accessing collection in an array-like

manner, instead of shifting the referenced collection’s iterator

for the specified amount.

Depending on the types of the resolved source and target model elements, a

transformation rule may expose different behaviour at its execution. However, if a

source and target model element are not “compatible” within the context of a given

transformation rule, an exception will be thrown at execution time. Following, Figure

14 gives an overview of the transformation rules supported by the Marius

transformation engine. Where applicable, the various semantics resulting from

different combinations of source and target model elements are stated.

Rule LH-Side RH-Side Semantics

Assign Primitive Types Primitive Types

RefObject

RefObject

RefAssociationLink

RefAssociationLink

LH side value is assigned to RH

side

Collection

Collection LHS elements are added

individually to the RHS collection.

 any other

Collection The LH side object is added to the

RH side collection.

Link

RefObject

RefObject

Sibling

RefObject

RefObject

An instance of RefAssociationLink

is connecting LH side and RH side

objects. Only instances of

RefObject can be linked with each

other.

Chapter 4 - Marius Implementation Details 57

Invoke any other --- A transformation fitting the LH

side object’s type is initiated.

Collection --- Collections are iterated and their

elements dealt with individually.

Foreach any other --- The LH side object is put into the

specified collection.

Collection --- The LH side collection’s elements

are entered in the specified

collection individually.

Figure 14 Transformation Rule Semantics

4.4.3. SableCC

SableCC is a compiler generation framework for JAVA. Supplying an EBNF

grammar (although some restrictions on naming are imposed) that specifies the

intended source language, SableCC generates four different packages, each one

standing for a module of the compiler being built. The node package is a JAVA

representation of the abstract syntax tree, the lexer and parser packages provide the

actual parsing functionality to read source documents and build an in-memory parse

tree, and the analysis package contains programming interfaces and default

implementations of tree walkers. These walkers can be extended to allow a

customized parse tree traversal. During such a traversal, depending on the type of

node visited, specific action code is invoked that produces the actual compilation

output. This code has to be written manually and is located in the tree walker class, as

not to clutter the node package with output generation code.

In case of Marius’ translation process, the parse tree would represent a

transformation definition and the tree walker’s action code producing the compilation

output would generate the JAVA code for the executable transformations.

The Marius transformation engine however, uses a different approach to generate the

executable transformations. Only the SableCC generated parser is put to use, leaving

the code generation framework’s tree walkers aside. Due to the fact that Marius’

translation target is a JAVA source file adhering to a common structure, a template-

based approach is taken. In this case the template-based approach has certain

advantages in terms of readability and maintainability over the SableCC variant,

Chapter 4 - Marius Implementation Details 58

where the tree walker implementation becomes confusingly complex with intermixed

JAVA syntax literals.

4.4.4. JET Templates

JET is a generic template engine and a sub-project of EMF. It uses syntax similar to

Java Server Pages to define templates that can be used to generate any kind of code.

It is important to note that the template engine does not directly generate the target

code, but an intermediary JAVA implementation file, which - when executed -

produces the final output. Basically, a template contains a target document’s

“skeleton” and processing instructions. A template is then passed an object as input

argument, which is the basis for customization during the template translation phase.

The dynamic aspects in a template can be expressed with two different scripting

elements: expressions and scriptlets. A scriplet is a JAVA code fragment enclosed

between the symbols <% and %>, which (during template translation) is pasted from

the template right into the template implementation class. If the translated scriptlets

do not pose valid JAVA statements, the template implementation class cannot be

compiled. When finally the template implementation class is invoked, the scriptlet

code will be executed and thus affect the generation of the target document.

An expression has to be a complete, valid JAVA statement contained by <%= and %>

returning a value. During template translation time, the expression will get enclosed

in a piece of code in the template implementation class, which at time of invocation,

evaluates the expression and prints the resulting value into the target document. This

is assuming that the control flow passes over the code evaluating and printing the

expression.

Below is an example of a template file illustrating basic JET concepts. The first line

is a JET directive, specifying the name JETExampleTemplate for the generated

template implementation class and the example package containing it. The

expression in the second line resolves the value of argument object, which is a

reserved identifier referencing the template’s input argument. The following three

lines use scriptlets replicating the behaviour of line number two. stringBuffer is a

reserved identifier used by the template implementation class to store generated code

pieces that finally constitute the target document.

<%@ jet package="example" class="JETExampleTemplate" %>

Hello, <%=argument.toString()%> !!!

<% stringBuffer.append("Hello, "); %>
<% stringBuffer.append(argument.toString()); %>

Chapter 4 - Marius Implementation Details 59

<% stringBuffer.append(" !!!"); %>

Assuming the above JET template is passed a java.lang.String with the value “World” as

argument, the target document produced after invocation of the template

implementation class would look as follows:

Hello, World !!!

Hello, World !!!

Although JET is embedded in EMF and usually used within Eclipse, a little

workaround allows running it outside the IDE, like Marius does. To do this, the EMF

project page [EMF04] provides a tutorial featuring a JAVA utility plus ANT build

file to let JET run as a standalone application.

4.4.5. Java Transformation Classes

The output of the JET engine are the JAVA transformation classes. For every Marius

transformation definition, one transformation class is being generated. The structure

of these classes is similar, as determined by the template they were produced from. If

necessary, the generated JAVA source files can be manually fine-tuned. To help find

the code that implements a certain transformation rule, comments referring to just

that rule are placed accordingly in the transformation classes. Below is an example

showing the “Receive.name =: ActionState.name;“ transformation rule and a

code sample of its respective implementation. It is to be assumed, that the objects

target, targetBase and source have been previously resolved and refer to

ActionState.name, ActionState and Receive.name respectively. Note, that for

reasons of clarity the shown code sample omits exception handling.

/* AName2equTrafo START “Receive.name =: ActionState.name;” */
//……
if(target instanceof java.util.Collection) {
 ((java.util.Collection)target).add(source);
}
else {
 if(targetBase == null) {
 //…..
 //…..
 }
 else if(targetBase instanceof javax.jmi.reflect.RefObject) {
 ((RefObject)targetBase).refSetValue("name" , source);
 }
 else {
 //…..
 }
}
//…..
/* AName2equTrafo END */

Chapter 4 - Marius Implementation Details 60

As mentioned previously, besides the transformation logic itself, execution

management functionality is implemented in these classes as well, making them a

stand-alone, easily deployable, domain specific transformation engine. For instance,

this includes keeping traces between source and target model elements, instantiating

and invoking new transformations, resolving references to parent transformations and

steering the transformation execution control flow.

Chapter 5 - Transformation Execution 61

Chapter 5

Transformation
Execution

The transformation from a BPEL document to a UML Activity Diagram displayable

in a CASE tool is determined by two distinct mappings. The first mapping is defined

between the MyBPEL and the UML 1.4 metamodel. The purpose of the second

mapping is to add diagram display information to the UML model resulting from the

first transformation. Therefore, a mapping between UML and UML+DI (UML

extended by UML 2.0’s Diagram Interchange package) is defined. Although both

mappings could be combined into one, the separation of concerns yields an

intermediary UML model uncluttered by positioning information. The result of the

second mapping is a more platform specific UML model targeted at CASE tools

relying on the Diagram Interchange package to capture visualization properties.

Figure 15 illustrates the two-stage transformation process in more detail, as it shows

the executable transformations (<<Transformer>>) being produced by the

transformation engine according to the BPEL2UML and UML2UML+DI

transformation definitions (<<Trafo Definition>>). Then, the transformers for the two

mappings generate the target models (<<Model>>) from the source models entering

them.

Chapter 5 - Transformation Execution 62

Figure 15 The two-stage Mapping from BPEL to UML+DI

The following two sections will explain the BPEL2UML and the UML2UML+DI

mapping in more detail. Every mapping consists of a set of transformations relating

source and target model elements. Besides a textual description of each

transformation clarifying the semantic relationships between model elements,

diagrams utilizing a straightforward UML-like notation are depicting the mappings in

a visual way. The actual transformation definition files for both mappings can be

found in the appendix.

5.1. The MyBPEL2UML Mapping

Figure 16 shows an informal UML diagram describing the transformation definitions

employed in the MyBPEL2UML mapping. The classes on left-hand side represent the

MyBPEL metamodel, and the right-hand side classes are a subset of the UML

metamodel necessary to model an Activity Diagram. (Note, that this “transformation

diagram” does not show the source and target metamodels in full detail.)

In between the source and target domain lie the transformations, which relate the

various model elements. Associations targeted at the left-hand side link

transformations with the model elements declared as Trafosource in the respective

transformation definition. Analogous to that, the associations targeted at the right-

hand side link to Trafotarget. Furthermore, there are associations linking to model

elements declared in the variables section, which are instantiated through

transformation execution. Associations between transformations express a

parent/child relationship, with a parent being the caller of a child.

Chapter 5 - Transformation Execution 63

Figure 16 The MyBPEL2UML Mapping

Chapter 5 - Transformation Execution 64

MyBPEL2UmlPackage

The very top-most transformation is relating the source and target package, namely

the MyBPEL and the UmlPackage packages. The describing picture – Figure 17 -

below relates to the larger transformation diagram above such that the packages

contain all the respective left-hand side and right-hand side classes, and the

MyBPEL2UmlPackage is the root transformation initiating the mapping process.

Figure 17 The MyBPEL2UmlPackage Transformation

Process2Model

The root top-most element in a BPEL definition is the Process element, which relates

to the Model element within UML’s Model Management package. Furthermore, a

UseCase element will be generated within the Model’s namespace. In the context of

this UseCase, an ActivityGraph element having a CompositeState element will be

instantiated. Simply put, Process maps to a UML Model containing a UseCase

associated with an empty ActivityGraph.

Activity2State

As marked in the diagram, this transformation has solely interface character and does

not have an implementation. It is an abstract transformation linking the Activity and

the State model elements, thus representing all concrete transformations relating sub-

types of these model elements.

Sequence2CompositeState

The Sequence2CompositeState transformation maps all activities (sub-types of

Activity) contained in a Sequence to their respective counterparts in the UML domain

by initiating the appropriate sub-transformations. This results in a number of target

model elements sub-type to StateVertex. Transition elements are instantiated which

then consecutively connect these resulting UML model elements.

Flow2CompositeState

Similar to the Sequence2CompositeState transformation, Flow2CompositeState maps

all activities contained in Flow to their UML counterparts. Furthermore, Links

contained in Flow are mapped to Transition elements.

Chapter 5 - Transformation Execution 65

Reply2ActionState

A Reply activity relates to an ActionState having a Stereotype and containing a

CallAction with an ActionExpression. If the Reply activity is part of a Flow and contains a

Source or Target element, the Transition elements created by parent transformations are

queried and the resulting ActionState is linked with a matching Transition element

accordingly.

Receive2ActionState

The Receive2ActionState behaves analogous to the Reply2ActionState

transformation.

Invoke2ActionState

The Invoke2ActionState behaves analogous to the Reply2ActionState transformation.

Assign2ActionState

The Assign2ActionState transformation is similar to Reply-, Invoke-, and

Receive2ActionState, but it does not produce a CallAction and an ActionExpression, but

instead initiates a sub-transformation mapping a contained Copy element.

Switch2CompositeState

The Switch2CompositeState transformation maps to a skeleton of transitions and

pseudostates to model the “switch-case-otherwise” characteristics. The activities in

the contained Case and Otherwise elements are inserted into that structure. Thus, a

“Junction-kind” Pseudostate followed by a “Fork-kind” Pseudostate is instantiated, to

join all incoming transitions before fanning out to the various optional paths. All

contained Case elements and the Otherwise element are mapped by sub-

transformations. Finally, all optional paths are joined in a “Join-kind” Pseudostate,

which is followed by a “Junction-kind” Pseudostate that allows fanning out to

subsequent states.

Case2CompositeState

A Case2CompositeState transformation maps the contained activity (sub-type of

Activity) to its appropriate counterpart by calling the suitable sub-transformation.

Furthermore, a Transition annotated with a Guard containing a BooleanExpression

models the incoming link. Likewise, a Transition represents the outgoing link. The

resulting structure of transitions and states is inserted into the “skeleton” produced by

the Switch2CompositeState transformation.

Chapter 5 - Transformation Execution 66

Otherwise2CompositeState

The Otherwise2CompositeState transformation is equal to Case2CompositeState, but

instead of an expression queried from the source model, BooleanExpression is

assigned the string literal “otherwise”.

Link2Transition

A Link2Transition transformation maps a Link to a Transition model element.

Copy2CallAction

A Copy2CallAction maps a Copy model element to a CallAction model element

containing an instance of ActionExpression.

5.2. The UML2UML+DI Mapping

Analogous to the description in the previous section, the “transformation diagram” in

Figure 18 illustrates the UML2UML+DI mapping. Left-hand side and right-hand side

are both UML metamodels, although the right-hand side explicitly represents a subset

of the classes contained in the Diagram Interchange package.

The UML2UML+DI mapping refines a UML ActivityGraph and instantiates the

appropriate classes within the Diagram Interchange package for display purposes.

Therefore, a conventional UML source model will be extended by diagrammatic

information and result in a true UML+DI target model.

Chapter 5 - Transformation Execution 67

Figure 18 The UML2UML+DI Mapping

Chapter 5 - Transformation Execution 68

Uml2UmlDI

The UML2UML+DI mapping has a refining character, which means that it only

produces diagrammatic information which it adds to the target model, but it does not

clone the original source model. Hence, source and target model ought to be the same

to achieve a meaningful refinement. As depicted below in Figure 19, Trafosource

and Trafotarget are both referring to the same UmlPackage model element.

Figure 19 The Uml2UmlDI Transformation

As the root transformation initiating the mapping process, Uml2UmlDI launches the

sub-transformations for UML’s AIncomingTarget and the AOutgoingSource

associations, as well as for the ActivityGraph model element.

ActivityGraph2Diagram

The ActivityGraph2Diagram transformation maps an ActivityGraph to a Diagram model

element. Furthermore, a SimpleSemanticModelElement and a Uml1SemanticModelBridge

are instantiated to semantically tie the established ActivityGraph to the newly generated

Diagram. Point and Dimension structures are used to set properties of Diagram.

Activity2Diagram initiates sub-transformations for all contained Transition model

elements and for its top-most State.

Transition2GraphEdge

The Transition2GraphEdge transformation maps a Transition to a GraphEdge model

element and semantically ties them via a Uml1SemanticModelBridge instance. A Point

structure is used to set a property of GraphEdge.

PseudoState2GraphNode

The Pseudostate2GraphNode transformation maps a Pseudostate to a GraphNode

model element and semantically ties them via a Uml1SemanticModelBridge instance. A

Point structure is used to set a property of GraphNode.

CompositeState2GraphNode

A CompositeState2GraphNode transformation initiates sub-transformations for all

contained State model elements.

Chapter 5 - Transformation Execution 69

ActionState2GraphNode

The ActionState2GraphNode transformation maps an ActionState to a GraphNode

model element and semantically ties them via a Uml1SemanticModelBridge instance. A

Point structure is used to set a property of GraphNode. ActionState2GraphNode

initiates a sub-transformation to map a contained CallAction.

CallAction2GraphNode

Invoked by ActionState2GraphNode, the CallAction2GraphNode transformation

maps a CallAction belonging to an ActionState to a GraphNode model element and

semantically ties them via a Uml1SemanticModelBridge instance. A Point structure is

used to set a property of GraphNode. CallAction2GraphNode initiates a sub-

transformation to map a contained ActionExpression.

ActionExpression2GraphNode

Invoked by CallAction2GraphNode, the ActionExpression2GraphNode

transformation maps an ActionExpression to a GraphNode model element, which is

assigned its appropriate semantics by a SimpleSemanticModelElement instance. A Point

structure is used to set a property of GraphNode.

AIncomingTarget2GraphConnector

AIncomingTarget2Graphconnector maps all instances of the AIncomingTarget

association to GraphConnector model elements. Each GraphConnector is associated

with those GraphNode and GraphEdge model elements, who are “siblings” of the

association ends of an AIncomingTarget instance, referring to Transition and StateVertex

model elements respectively. Following, Figure 20 shows a simplified subset of the

UML and the Diagram Interchange metamodel to illustrate the described relationship.

Furthermore, a Point structure is used to set a property of GraphConnector.

Chapter 5 - Transformation Execution 70

Figure 20 Relationship between subsets of ‘State Machines’ and ‘Diagram Interchange’

AOutgoingSource2GraphConnector

The AOutgoingSource2GraphConnector transformation is equivalent to the above-

mentioned AIncomingTarget2GraphConnector transformation, save for the fact that

it maps AOutgoingSource associations to GraphConnector model elements.

5.3. Executing a Transformation

This section is a step-by-step guide illustrating the usage of Marius by transforming

the “MyEcho” BPEL file into an activity diagram. Two more complex transformation

examples can be found in the appendix.

However, first of all a parser for the Marius transformation language has to be built.

In this case SableCC 2.18.2 is used, which generates a class structure from the

Marius grammar file. Then, the JET template implementation class is built with the

help of a JAVA utility and an ANT file provided by [EMF04]. Finally, a simple

JAVA program for instance can parse all transformation definition files and feed the

resulting parse trees one by one into the template engine, which generates the

executable transformations in the form of JAVA source files. Figure 21 informally

describes this build process, which could be bundled up in an ANT file for instance.

Chapter 5 - Transformation Execution 71

Figure 21 Build process for Marius Executable Transformations

After compilation of these transformation classes, a simple application utilizing

functionality provided by Marius’ transformation framework initiates the

transformation execution. Assuming the below listed “myecho.bpel” file is subject to

the previously explained MyBPEL2UML and UML2UML+DI mapping, an XMI-

encoded UML model including diagram information will be the result.

<process name="echoString"
 targetNamespace="urn:echo:echoService"
 xmlns:tns="urn:echo:echoService"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/">

 <variables>
 <variable name="request" messageType="tns:StringMessageType"/>
 </variables>

 <partnerLinks>
 <partnerLink name="caller" partnerLinkType="tns:echoSLT"/>
 </partnerLinks>

 <sequence name="EchoSequence">
 <receive partnerLink="caller" portType="tns:echoPT"
 operation="echo" variable="request"
 createInstance="yes" name="EchoReceive"/>
 <reply partnerLink="caller" portType="tns:echoPT"
 operation="echo" variable="request" name="EchoReply"/>
 </sequence>

</process>

Chapter 5 - Transformation Execution 72

Loaded into the Poseidon modelling tool, the UML model’s Activity Diagram will be

rendered as follows:

Figure 22 The ‘MyEcho’ BPEL Transformed into an Activity Diagram

The Activity Diagram in Figure 22 shows two states, each one stereotyped as the kind

of activity it represents. First, an echo operation is called with a request parameter,

which is then simply returned. Note, that Poseidon 2.5.1 CE neither displays names

given to states nor is it able to handle “swimlanes”, which therefore do not appear in

the diagram.

Chapter 6 - Related Work 73

Chapter 6

Related Work

This chapter tries to take a glance at some other works related to this diploma thesis,

either in its applied methods or technologies. Most importantly, this includes the

subject of generic model transformation. Besides a short overview of interesting

topics in this respect, a focus is put on supporting software tools and frameworks.

Besides MDA influenced issues, recent developments and software systems

concerning BPEL are looked into.

6.1. QVT Responses

With Query / Views / Transformation, the OMG started to create a standard for a

generic model transformation language. The initial QVT-RFP received eight

submissions. [GGKH] provides a good overview summarizing and comparing these

proposals’ characteristics.

6.2. Model transformation tools & frameworks

Existing MDA tools, both commercial and open source ones, are aimed at building

applications on the notion of MDD, Model Driven Development. Their support for

model-transformation usually comes in the form of pre-defined mappings to a certain

target environment. For example, on the open-source sector there is AndroMDA

targeting the J2EE environment and OpenMDX [OPEN] also supporting DOTNET.

Chapter 6 - Related Work 74

In an effort to establish languages and tools for viable, generic model transformation

a number of tools have evolved. A short overview of some transformation engines

and supporting utilities is given below.

Model Transformation Framework (MTF) [MTF04] by IBM is a framework

integrating with Eclipse’s EMF and offers model transformation functionality for

EMF models.

ATL [ATL04] is a transformation engine developed by the INRIA Atlas team and is

based on the QVT-RFP. The ATL engine shall provide the core functionality within

Eclipse’s Generative Model Transformer (GMT) [GMT04] project. The goal of GMT

is to provide an environment for the generation, execution and debugging of model

transformations.

MTL [MTL04] developed by the INRIA Triskell team is another QVT-like

transformation language. The MTL model compiler can be integrated with EMF.

The Kent Modelling Framework (KMF) [KENT] is enabling the generation of model

transformation tools from language definitions. Included are JAVA libraries for the

dynamic evaluation of OCL constraints.

UMT [UMT04] is a UML transformation tool distributed with a number of generators

for target domains like WSDL, XML Schema, JAVA, and others. Custom

transformations can be plugged in.

The Bidirectional Object-oriented Transformation Language (BOTL) [BOTL]

integrates with ArgoUML and allows to specify transformations in a graphical

notation.

Uml2Svg [USVG] is an XSLT based project aimed at generating an SVG file from a

UML model annotated with Diagram Interchange information. An online version as

well as a downloadable one is available.

Working on a higher abstraction level than the above-mentioned “object-to-object”

techniques is the concept of Generic Model Management [BERN03]. The artefacts

involved are not mere model elements and transformation rules, but entire models

and mappings between models. Model Management offers high-level operators to

manipulate these. Rondo [MRB03] is a tool implementing the notion of Model

Management.

Chapter 6 - Related Work 75

6.3. From UML to BPEL

The inverse direction of the BPEL2UML mapping subject to this work is dealt with

in [GAR03A]. The proposed UML2BPEL mapping is founded on the UML Profile

for Automated Business Processes [IBM03], which is also the base for the mapping

applied in this work. A proof of concept demonstrator, the “UML 2 BPEL Mapping

Demo”, is installable in Eclipse and bundled in the Emerging Technologies Toolkit

[ETTK04].

6.3. BPELJ: BPEL for Java

A joint whitepaper [BPELJ] by BEA and IBM specifies BPELJ, which proposes

mixing traditional BPEL with JAVA snippets. One of the key motivations was to

enable interaction with other than XML-based interfaces. Even though any kind of

object can somehow be wrapped up in a web service, this poses a considerable

marshalling/unmarshalling overhead. Business functions, in this case especially in the

form of JAVA APIs, should effortlessly integrate in the business process logic

implemented in BPEL.

BPELJ has sparked a lot of controversy, mainly as it waivers language-neutrality and

allows the implementation of business logic at a higher-level layer, which is

supposed to define the business process only. BEA however backs BPELJ strongly

and implementations of the specification are to be expected.

6.4. BPEL Process Engines

A Business Process Engine is service-oriented runtime environment for the execution

of business processes. As BPEL has become a well-established standard for

describing business processes from a technical point of view, various commercial and

open tools have evolved supporting it. Commercial applications like IBM’s WBISF

and Oracle’s BPEL Process Manager, typically provide an execution environment,

an editor for designing and deploying business processes and means for debugging

and load testing. ActiveBPEL [ACTI05] is an open-source project developing a BPEL

engine, whose technology finds application in the products of Active Endpoints.

Chapter 7 - Future Work 76

Chapter 7

Future Work

Existing MDA tools and frameworks have proven the capabilities of a model-centric

approach in software development. However, turning models into working

applications is still not a trivial process and there is plenty of room for improvement.

More so, it is still to be seen how MDA can influence different software engineering

scenarios and lifecycle phases within the development process. How, for instance,

does MDA manifest in agile methods or how can model-driven testing be carried

out?

Key aspects needed to fully facilitate the MDA paradigm are standards for generic

model transformations. The approaches made, like the QVT responses, are still

subject to ongoing research and existing applications have to prove their

applicability.

This chapter discusses a few aspects of the above mentioned issues and tries to

estimate their potential impact on the evolution of the model centric paradigm.

Because MDA is not a single standard, but rather a family thereof, a brief outlook on

what can be expected of upcoming MOF and UML versions is given.

Concerning the practical aspects of this work, the transformation from BPEL to

UML, a number of possible extensions to the Marius tool are pointed out. The future

development of BPEL and UML and its influence on the BPEL2UML mapping are

also looked into.

Chapter 7 - Future Work 77

7.1. MDA’s impact on the software development process

The rise of MDA is significantly changing the way in which software is being

engineered. Building systems from models requires new tools and techniques to

support code generation, model transformation, model-based testing and the like.

However, apart from the technical aspects, the whole software development process

itself becomes affected.

Due to the fact that MDA code generators are capable of creating a considerable

amount of code from models, the traditional “coding-phase” becomes significantly

shortened or even obsolete. Be it a heavy-weight development process or a flexible,

agile one: On the background of model-driven development and architecture,

software process models shall adapt to these new realities.

Thoughts about how to combine two seemingly contradictory concepts like

modelling and agility into “Agile MDA” are expressed in [AGMO05] and

[MELL05].

7.2. Improvements to the Marius Transformation Tool

At present, the Marius Transformation Tools is an experimental work in progress and

is not meant to be a full-scale model transformer. Therefore, in terms of developing

the tools’ architecture and its model transformation capabilities, plenty of room for

improvement is left.

One immediate improvement to make full use of the MOF metamodel would be to

include support for all of JMI’s not yet attended Reflective Interfaces for Data Types

(e.g.: RefEnum). Other, more far-reaching enhancements could deal with a more

sophisticated mechanism to control transformation execution. Specifically

traceability between transformations and model elements, as well as exception

handling come to mind. Changes concerning the transformation definition language,

of which some are proposed in section 6.5, will have to be reflected in Marius’

transformation engine.

Another goal is to form a metamodel describing the transformations used in Marius

in a MOF compatible way. The notion “Transformations are Models” is properly

applied in that way and the implementation of a transformation engine is put on a

uniform base, as all artefacts involved are rooted in MOF. In the light of that, the

adoption of OCL as a query language would be a practical enhancement. Models

could thus be queried and checked for consistency in a standardized, MOF 2.0

Chapter 7 - Future Work 78

compatible manner. Generally, Marius ought to migrate towards that standard once it

is finalized. That is, assuming a standardized JAVA mapping (JMI) for MOF 2.0 is

available. Another interesting path the development of Marius could take is the

integration into the Eclipse EMF environment, whose metamodel “Ecore” is arguably

closer to MOF 2.0 than MOF 1.x is.

7.3. Improvements to the MyBPEL2UML mapping

The MyBPEL2UML mapping used throughout this work is not complete, as certain

BPEL aspects are neglected for reasons of simplicity. Therefore, assuming the

MyBPEL metamodel is extended in such a way, a concise mapping would require the

omitted constructs to be included in the mapping. Furthermore desirable is to enable

the transformation from UML back to BPEL. This would require an inverse mapping

(UML2MyBPEL) preserving semantic information throughout the whole round-trip.

The mapping from UML to UML+DI, produces a UML model containing model

elements relevant for diagram display. However, the mapping does not encompass

automatic diagram element routing or layouting. Hence, attributes specifying location

or appearance of diagram elements are set to default values, unless explicitly hard-

coded in the transformation definition. If a resulting model is imported in Poseidon

for instance, the diagram elements have to be arranged manually. To overcome this

problem a separate routing step would have to take place. Possibly a program

manipulating the model instance in the repository directly, or an XMI-based XSLT

transformation would suffice. However, the layout and auto-routing is a bit out of

model transformation’s scope and should rather concern visual tools importing

models.

A considerable drawback of using Poseidon for business modelling lies within the

inability to model swimlanes (partitions) in an Activity Diagram. Gentleware states

that the realization of swimlanes is planned. It is to be seen whether the migration to

UML 2.0 planned for Q2 2005 will see them implemented. However, either the use

of tagged values or stereotypes to “simulate” swimlanes can be an acceptable

workaround to compensate for this weakness. An exported model tagged this way

could undergo a simple transformation to generate the missing model elements.

Chapter 7 - Future Work 79

7.4. Upcoming standards UML 2.0 & MOF 2.0

UML 2.0 and MOF 2.0 have evolved along-side each other and share a common core.

The main advantage of these new specifications is that their metamodels have been

thoroughly reworked.

Drawbacks in UML 1.x were for instance overlapping concepts (state diagram and

activity diagram) and unclear semantics (composition vs. aggregation) having left

room for varying interpretations. Due to the overhaul in the new version, UML

models become more platform-independent and unambiguous. Activity Diagrams for

example have undergone a considerable evolutionary step, finally emancipating

themselves from State Diagrams. Furthermore, the new Activity Diagrams semantics’

is very similar to those of Petri Nets. This should make up for the somewhat limited

Business Process Modelling capabilities of the previous UML versions. Another

novelty in UML 2.0 is a metamodel for OCL, as is the Diagram Interchange package

already used as an extension to UML 1.4 in this work.

Overall, UML 2.0 greatly supports MDA, as it leads to an easier construction of

executable models and forms a solid foundation for model transformation by

seamlessly integrating with its sister specification MOF 2.0. The QVT process

currently underway to create a transformation language specification is also based on

MOF 2.0. Meaning, that once a final QVT version is adopted and a mapping from

MOF 2.0 to a programming language, such as JMI and EMF’s Java mapping exists,

standardized model transformation - MDA’s missing link - can be implemented.

As mentioned earlier, UML 2.0 offers many new concepts for behavioural modelling

assisting the notion of Business Process Modelling. This is especially true for

Activity Diagrams, which (among other innovations) now support Exception

Handling and special nodes to model iterative behaviour. In the context of the

MyBPEL2UML mapping this could manifest in more concise modelling approaches

to various BPEL concepts.

7.5. Improvements to the Marius Transformation Language

To make the Marius’ language more applicable for defining model transformations a

number of new ideas and grammar changes have to be introduced. Keeping the

second-system effect [BROO75] in mind, one can advocate to redesign and rethink

the language’s core concepts to address challenges in the current system. Simply

adding more features and language constructs will only bloat the grammar and not

necessarily improve the language. As mentioned above, utilizing OCL as a query

Chapter 7 - Future Work 80

language serves as a solid foundation for realizing conditional rules and retrieving

information from models. To improve the handling of strings and arithmetic

expressions and primitive types in general, it would be convenient to offer more

utility functions, as abstractions of underlying JAVA methods. Another possibility

would be to allow stating JAVA code directly in the transformation definition. This is

however not recommendable, as it would doubtlessly clutter the code and tempt to

use JAVA not just for primitive type handling, but also for expressing the

transformation logic itself. Overall, this would break the concept of an abstract model

transformation language in the first place.

Finding a visual syntax to describe transformation definitions is not an immediate

necessity. Although such a syntax is proposed in [QVTM04], it is to see what the

upcoming QVT standard will bring. However, with UML 2.0 looming on the

horizon, it could be interesting to either find a metamodel extension or a profile for

model transformations.

A final goal would be to trim Marius to adhere to the QVT standard. This would

mean to fulfil all of the QVT-RFPs mandatory requirements. Marius has a pure

transformational character and supports neither the creation of views nor the

relational checking of models for consistency. Therefore, a necessary improvement is

to bolster the expressiveness of Marius’ transformation definition language in this

respect. Furthermore, the abstract syntax for transformation definitions would have to

be represented as a MOF 2.0 metamodel.

7.6. Domain Specific Readers and Writers

Apart from the immediate development of model transformation engines, there is a

need for the realization of supporting utilities. In the case of Marius, a way to easily

generate domain specific readers and writers would be a great enhancement. The

BPEL reader used in this work is based on an XSLT style sheet entirely hand-coded.

However, in case of XML input data it should be possible to at least partly automate

the generation of that style sheet. A requirement therefore would be a specification of

the input data in question, typically in the form of an XML schema definition. Then,

a tool mapping XML schema to XMI automatically generates a metamodel

definition. A guide on how to implement such a utility creating a MOF compatible

metamodel from XML Schema can be found in [XMI03]. EMF for instance offers

this kind of functionality for its “Ecore” metamodel. Following the metamodel

generation, another tool produces an XSLT style sheet that is finally able to parse

input documents and instantiate models accordingly. The tools carrying out the

mappings could be XSLT transformations themselves. Alternatively, to an XSLT

Chapter 7 - Future Work 81

based parsing approach, the implementation could be realized with a higher-level

XML handling API [JAXB] as well.

An approach to create XML data from a model instance in a repository could start out

with a mapping between the metamodel in question – let’s assume BPEL - and an

XML metamodel. Then, a BPEL model instance can be transformed into an XML

model instance. Finally, a program could traverse the XML model and serialize it

into its textual form, yielding a BPEL document.

To serialize an arbitrary model contained in the repository into its M0-level

representation is however not trivial. As already mentioned, the MOF metamodelling

hierarchy does not define the “instanceOf”-relationship between layers M1 and M0.

Domain specific readers and writers as described above implicitly carry the semantics

of this relationship in their behaviour. This means a way to express the characteristics

of the “instanceOf”-relationship separating meta-levels has to be found. [IKKB04]

proposes a way to unify the metamodelling layers into a coherent modelling space

and thus enable transformation across these boundaries.

Chapter 8 - Appendix 82

Chapter 8

Appendix

8.1. MyBPEL Metamodel

The following class diagram in Figure 23 represents the MyBPEL metamodel, which

models only a subset of all of BPEL’s aspects. Classifier names that would be JAVA

keywords and therefore cause compilation problems were added ‘KEY’ to their

name. The model was created in Poseidon 2.5.1. CE.

Chapter 8 - Appendix 83

Figure 23 The MyBPEL Metamodel

8.2. The MyBPEL2UML Transformation Definitions

The following sections contain the transformation definitions that make up the

MyBPEL2UML mapping.

8.2.1. Assign2ActionState

Assign2ActionState

Trafosource
Assign Assign

Trafotarget
ActionState ActionState Activity_Graphs

meta
Entry

Chapter 8 - Appendix 84

Exit

enums

structs

variables
Stereotype Stereotype Core;

mapping

ActionState =: Entry;
ActionState =: Exit;

Assign.name =: ActionState.name;

Assign.copy -> *;

$"Assign" =: Stereotype.name;
$"ActionState" =: Stereotype.baseClass;

ActionState <> Stereotype A_stereotype_extendedElement Core;

Process2Model:Model <> Stereotype A_namespace_ownedElement Core;
Process2Model:CompositeState <> ActionState A_container_subvertex
State_Machines;

foreach collection Flow2CompositeState:Trans transvec {
 variables
 Transition RefObject;

 mapping
 transvec!0 =: Transition;

 foreach collection Assign.source sourcevec {
 variables
 Source RefObject;

 mapping
 sourcevec!0 =: Source;
 #Transition.name == Source.linkName# Transition <>

ActionState A_outgoing_source State_Machines;
 };
 foreach collection Assign.target targetvec {
 variables
 Target RefObject;

 mapping
 targetvec!0 =: Target;
 #Transition.name == Target.linkName# Transition <>

ActionState A_incoming_target State_Machines;
 };
};

 8.2.2. Case2CompositeState

Case2CompositeState

Trafosource
Case CaseKey

Trafotarget

meta
Entry

Chapter 8 - Appendix 85

Exit
Sub

enums

structs

variables

mapping

Case.activity -> * =: Sub;

foreach array Sub subVec {
 variables

 mapping
 subVec!0.Entry =: Entry;
 subVec!0.Exit =: Exit;
};

foreach collection Entry entryVec {
 variables
 Transition Transition State_Machines;
 Guard Guard State_Machines;
 BooleanExpression BooleanExpression Data_Types;

 mapping
 Process2Model:ActivityGraph <> Transition

A_stateMachine_transitions State_Machines;

 Case.condition =: BooleanExpression.body;
 BooleanExpression =: Guard.expression;
 Guard =: Transition.guard;

 entryVec!0 <> Transition A_incoming_target State_Machines;
 Switch2CompositeState:JoinDecision <> Transition

A_outgoing_source State_Machines;
};

foreach collection Exit exitVec {
 variables
 Transition Transition State_Machines;

 mapping
 Process2Model:ActivityGraph <> Transition

A_stateMachine_transitions State_Machines;

 exitVec!0 <> Transition A_outgoing_source State_Machines;
 Switch2CompositeState:ForkDecision <> Transition

A_incoming_target State_Machines;

};

8.2.3. Copy2CallAction

Copy2CallAction

Trafosource
Copy Copy

Trafotarget
CallAction CallAction Common_Behavior

meta

Chapter 8 - Appendix 86

enums

structs

variables
ActionExpression ActionExpression Data_Types;
To metamodel1.To;
From metamodel1.From;

mapping

Copy.to =: To;
Copy.from =: From;

(String)(To.variable + "/" + To.part + " := " + From.variable +
From.expression + "/" + From.part) =: ActionExpression.body;
ActionExpression =: CallAction.script;

Assign2ActionState:ActionState <> CallAction A_state_entry

State_Machines;

8.2.4. Flow2CompositeState

Flow2CompositeState

Trafosource
Flow Flow

Trafotarget

meta
Entry
Exit
Trans
Subs

enums

structs

variables
Links RefObject;

mapping

Flow.links =: Links;
Links.link -> *.Transition =: Trans;

Flow.activity -> * =: Subs;

foreach collection Subs subsvec {
 variables
 mapping
 subsvec!0.Entry =: Entry;
 subsvec!0.Exit =: Exit;

};

8.2.5. Invoke2ActionState

Chapter 8 - Appendix 87

Invoke2ActionState

Trafosource
Invoke Invoke

Trafotarget
ActionState ActionState Activity_Graphs

meta
Entry
Exit

enums

structs

variables
CallAction CallAction Common_Behavior;
ActionExpression ActionExpression Data_Types;
Stereotype Stereotype Core;

mapping

ActionState =: Entry;
ActionState =: Exit;
ActionState <> CallAction A_state_entry State_Machines ;

Invoke.name =: ActionState.name;
(String)(Invoke.outputVariable + " := " + Invoke.operation + "(" +
Invoke.inputVariable + ")") =: ActionExpression.body;
ActionExpression =: CallAction.script;

$"Invoke" =: Stereotype.name;
$"ActionState" =: Stereotype.baseClass;

ActionState <> Stereotype A_stereotype_extendedElement Core;
Process2Model:Model <> Stereotype A_namespace_ownedElement Core;

Process2Model:CompositeState <> ActionState A_container_subvertex
State_Machines;

foreach collection Flow2CompositeState:Trans transvec {
 variables
 Transition RefObject;

 mapping
 transvec!0 =: Transition;

 foreach collection Invoke.source sourcevec {
 variables
 Source RefObject;

 mapping
 sourcevec!0 =: Source;
 #Transition.name == Source.linkName# Transition <>

ActionState A_outgoing_source State_Machines;
 };
 foreach collection Invoke.target targetvec {
 variables
 Target RefObject;

 mapping
 targetvec!0 =: Target;
 #Transition.name == Target.linkName# Transition <>

ActionState A_incoming_target State_Machines;
 };
};

Chapter 8 - Appendix 88

8.2.6. Link2Tansition

Link2Transition

Trafosource
Link Link

Trafotarget
Transition Transition State_Machines

meta

enums

structs

variables

mapping

Link.name =: Transition.name;
Process2Model:ActivityGraph <> Transition A_stateMachine_transitions
State_Machines;

8.2.7. MyBpelPackage2UmlPackage

MyBpelPackage2UmlPackage

Trafosource
MyBpelPackage MyBpelPackage

Trafotarget
UmlPackage UmlPackage

meta

enums

structs

variables

mapping

MyBpelPackage.Process -> *;

8.2.8. Otherwise2CompositeState

Otherwise2CompositeState

Trafosource
Otherwise Otherwise

Trafotarget

meta
Entry
Exit
Sub

enums

Chapter 8 - Appendix 89

structs

variables

mapping

Otherwise.activity -> * =: Sub;

foreach array Sub subVec {
 variables
 mapping
 subVec!0.Entry =: Entry;
 subVec!0.Exit =: Exit;
};

foreach collection Entry entryVec {
 variables
 Transition Transition State_Machines;
 Guard Guard State_Machines;
 BooleanExpression BooleanExpression Data_Types;

 mapping
 Process2Model:ActivityGraph <> Transition

A_stateMachine_transitions State_Machines;

 $"otherwise" =: BooleanExpression.body;
 BooleanExpression =: Guard.expression;
 Guard =: Transition.guard;

 entryVec!0 <> Transition A_incoming_target State_Machines;
 Switch2CompositeState:JoinDecision <> Transition

A_outgoing_source State_Machines;
};

foreach collection Exit exitVec {
 variables
 Transition Transition State_Machines;

 mapping

 Process2Model:ActivityGraph <> Transition

A_stateMachine_transitions State_Machines;

 exitVec!0 <> Transition A_outgoing_source State_Machines;
 Switch2CompositeState:ForkDecision <> Transition

A_incoming_target State_Machines;

};

8.2.9. Process2Model

Process2Model

Trafosource
Process Process

Trafotarget
Model Model Model_Management

meta

enums

structs

Chapter 8 - Appendix 90

variables
UseCase UseCase Use_Cases;
ActivityGraph ActivityGraph Activity_Graphs;
CompositeState CompositeState State_Machines;

mapping

Process.name =: Model.name;
Model <> UseCase A_namespace_ownedElement Core;
Process.name =: UseCase.name;
UseCase <> ActivityGraph A_behavior_context State_Machines;

CompositeState <> ActivityGraph A_top_stateMachine State_Machines;

Process.activity -> *;

8.2.10. Receive2ActionState

Receive2ActionState

Trafosource
Receive Receive

Trafotarget
ActionState ActionState Activity_Graphs

meta
Entry
Exit

enums

structs

variables
CallAction CallAction Common_Behavior;
ActionExpression ActionExpression Data_Types;
Stereotype Stereotype Core;

mapping

ActionState =: Entry;
ActionState =: Exit;
ActionState <> CallAction A_state_entry State_Machines;

Receive.name =: ActionState.name;
(String)(Receive.operation + "(" + Receive.variable + ")") =:
ActionExpression.body;
ActionExpression =: CallAction.script;

$"Receive" =: Stereotype.name;
$"ActionState" =: Stereotype.baseClass;

ActionState <> Stereotype A_stereotype_extendedElement Core;
Process2Model:Model <> Stereotype A_namespace_ownedElement Core;

Process2Model:CompositeState <> ActionState A_container_subvertex
State_Machines;

foreach collection Flow2CompositeState:Trans transvec {
 variables
 Transition javax.jmi.reflect.RefObject;

 mapping

Chapter 8 - Appendix 91

 transvec!0 =: Transition;

 foreach collection Receive.source sourcevec {
 variables
 Source RefObject;

 mapping
 sourcevec!0 =: Source;
 #Transition.name == Source.linkName# Transition <>

ActionState A_outgoing_source State_Machines;
 };
 foreach collection Receive.target targetvec {
 variables
 Target RefObject;

 mapping
 targetvec!0 =: Target;
 #Transition.name == Target.linkName# Transition <>

ActionState A_incoming_target State_Machines;
 };

};

8.2.11. Reply2ActionState

Reply2ActionState

Trafosource
Reply Reply

Trafotarget
ActionState ActionState Activity_Graphs

meta
Entry
Exit

enums

structs

variables
CallAction CallAction Common_Behavior;
ActionExpression ActionExpression Data_Types;
Stereotype Stereotype Core;

mapping

ActionState =: Entry;
ActionState =: Exit;
ActionState <> CallAction A_state_entry State_Machines;

Reply.name =: ActionState.name;
(String)(Reply.operation + "()" + " := " + Reply.variable) =:
ActionExpression.body;
ActionExpression =: CallAction.script;

$"Reply" =: Stereotype.name;
$"ActionState" =: Stereotype.baseClass;

ActionState <> Stereotype A_stereotype_extendedElement Core;
Process2Model:Model <> Stereotype A_namespace_ownedElement Core;

Process2Model:CompositeState <> ActionState A_container_subvertex
State_Machines;

Chapter 8 - Appendix 92

foreach collection Flow2CompositeState:Trans transVec {
 variables
 Transition javax.jmi.reflect.RefObject;

 mapping
 transVec!0 =: Transition;

 foreach collection Reply.source sourceVec {
 variables
 Source RefObject;

 mapping
 sourceVec!0 =: Source;
 #Transition.name == Source.linkName# Transition <>

ActionState A_outgoing_source State_Machines;
 };
 foreach collection Reply.target targetVec {
 variables
 Target RefObject;

 mapping
 targetVec!0 =: Target;
 #Transition.name == Target.linkName# Transition <>

ActionState A_incoming_target State_Machines;
 };
};

8.2.12. Sequence2CompositeState

Sequence2CompositeState

Trafosource
Sequence Sequence

Trafotarget

meta
Entry
Exit
Subs

enums

structs

variables

mapping

Sequence.activity -> * =: Subs;

foreach array Subs subsVec{
 variables
 mapping

 subsVec!0.Entry =: Entry;
 subsVec!.Exit =: Exit;
};

foreach collection Subs subsVec {
 variables
 mapping
 foreach collection subsVec!0.Exit exitVec{
 variables

Chapter 8 - Appendix 93

 mapping
 foreach collection subsVec!1.Entry entryVec{
 variables
 Transition Transition State_Machines;

 mapping
 exitVec!0 <> Transition A_outgoing_source

State_Machines;
 entryVec!0 <> Transition A_incoming_target

State_Machines;

 Process2Model:ActivityGraph <> Transition

A_stateMachine_transitions State_Machines;
 };
 };

};

8.2.13. Switch2CompositeState

Switch2CompositeState

Trafosource
Switch SwitchKEY

Trafotarget

meta
Entry
Exit

enums
PKJoin PseudostateKind Data_Types pk_join
PKJunction PseudostateKind Data_Types pk_junction
PKFork PseudostateKind Data_Types pk_fork

structs

variables
Join Pseudostate State_Machines;
Fork Pseudostate State_Machines;
JoinDecision Pseudostate State_Machines;
ForkDecision Pseudostate State_Machines;
JJTrans Transition State_Machines;
FFTrans Transition State_Machines;

mapping

PKJoin =: Join.kind;
PKJunction =: JoinDecision.kind;
PKJunction =: ForkDecision.kind;
PKFork =: Fork.kind;

Process2Model:CompositeState <> Join A_container_subvertex
State_Machines;
Process2Model:CompositeState <> Fork A_container_subvertex
State_Machines;
Process2Model:CompositeState <> JoinDecision A_container_subvertex
State_Machines;
Process2Model:CompositeState <> ForkDecision A_container_subvertex
State_Machines;

Process2Model:ActivityGraph <> FFTrans A_stateMachine_transitions
State_Machines;

Chapter 8 - Appendix 94

Process2Model:ActivityGraph <> JJTrans A_stateMachine_transitions
State_Machines;

Join <> JJTrans A_outgoing_source State_Machines;
JoinDecision <> JJTrans A_incoming_target State_Machines;

Fork <> FFTrans A_incoming_target State_Machines;
ForkDecision <> FFTrans A_outgoing_source State_Machines;

Join =: Entry;
Fork =: Exit;

Switch.caseKEY -> *;

Switch.otherwise -> *;

8.3. The UML2UML+DI Transformation Definitions

The following sections contain the transformation definitions that make up the

UML2UML+DI mapping.

8.3.1. ActionExpression2GraphNode

ActionExpression2GraphNode

Trafosource
ActionExpression ActionExpression

Trafotarget
GraphNode GraphNode Diagram_Interchange

meta

enums

structs
Point org.omg.uml.diagraminterchange.Point Diagram_Interchange (
Double 0) (Double 0)

variables
SimpleSemanticModelElement SimpleSemanticModelElement
Diagram_Interchange;

mapping

$true =: GraphNode.isVisible;
Point =: GraphNode.position;

$"Expression" =: SimpleSemanticModelElement.typeInfo;
$"" =: SimpleSemanticModelElement.presentation;

GraphNode <> SimpleSemanticModelElement A_graphElement_semanticModel
Diagram_Interchange;

8.3.2. ActionState2GraphNode

ActionState2GraphNode

Trafosource

Chapter 8 - Appendix 95

ActionState ActionState

Trafotarget
GraphNode GraphNode Diagram_Interchange

meta

enums

structs
Point org.omg.uml.diagraminterchange.Point Diagram_Interchange (
Double 0) (Double 0)

variables
Uml1SemanticModelBridge Uml1SemanticModelBridge Diagram_Interchange;

mapping

$true =: GraphNode.isVisible;
Point =: GraphNode.position;
$"" =: Uml1SemanticModelBridge.presentation;

Uml1SemanticModelBridge <> ActionState
A_uml1SemanticModelBridge_element Diagram_Interchange;
Uml1SemanticModelBridge <> GraphNode A_graphElement_semanticModel
Diagram_Interchange;
ActivityGraph2Diagram:Diagram <> GraphNode A_container_contained
Diagram_Interchange;

ActionState.entry -> *.GraphNode <> GraphNode A_container_contained
Diagram_Interchange;

8.3.3. ActivityGraph2Diagram

ActivityGraph2Diagram

Trafosource
ActivityGraph ActivityGraph

Trafotarget
Diagram Diagram Diagram_Interchange

meta

enums

structs
Point org.omg.uml.diagraminterchange.Point Diagram_Interchange (
Double 0) (Double 0)
Dimension org.omg.uml.diagraminterchange.Dimension
Diagram_Interchange (Double 400) (Double 300)

variables
Uml1SemanticModelBridge Uml1SemanticModelBridge Diagram_Interchange;
SimpleSemanticModelElement SimpleSemanticModelElement
Diagram_Interchange;

mapping

$"ActivityDiagram" =: SimpleSemanticModelElement.typeInfo;
$1.0 =: Diagram.zoom;
$true =: Diagram.isVisible;
$"DemoDiagram" =: Diagram.name;

$"" =: Uml1SemanticModelBridge.presentation;
$"" =: SimpleSemanticModelElement.presentation;

Chapter 8 - Appendix 96

Diagram <> SimpleSemanticModelElement A_graphElement_semanticModel
Diagram_Interchange;
Diagram <> Uml1SemanticModelBridge A_diagram_owner
Diagram_Interchange;
ActivityGraph <> Uml1SemanticModelBridge
A_uml1SemanticModelBridge_element Diagram_Interchange;

Point =: Diagram.viewport;
Point =: Diagram.position;
Dimension =: Diagram.size;

ActivityGraph.top -> *;
ActivityGraph.transitions -> *;

8.3.4. AIncomingTarget2GraphConnector

AIncomingTarget2GraphConnector

Trafosource
AIncomingTarget AIncomingTarget

Trafotarget

meta

structs
Point Point Diagram_Interchange (Double 0) (Double 0)

variables

mapping

foreach collection AIncomingTarget.(AllLinks) links {
 variables
 GraphConnector GraphConnector Diagram_Interchange;
 Link Object;

 mapping
 Point =: GraphConnector.position;
 links!0 =: Link;

 Link.(FirstEnd) ?> GraphConnector A_graphEdge_anchor

Diagram_Interchange;
 Link.(SecondEnd) ?> GraphConnector A_graphElement_anchorage

Diagram_Interchange;
};

8.3.5. AOutgoingSource2GraphConnector

AOutgoingSource2GraphConnector

Trafosource
AOutgoingSource AOutgoingSource

Trafotarget

meta

enums

structs

Chapter 8 - Appendix 97

Point Point Diagram_Interchange (Double 0) (Double 0)

variables

mapping
foreach collection AOutgoingSource.(AllLinks) links {
 variables
 GraphConnector GraphConnector Diagram_Interchange;
 Link Object;

 mapping

 Point =: GraphConnector.position;
 links!0 =: Link;

 Link.(FirstEnd) ?> GraphConnector A_graphEdge_anchor

Diagram_Interchange;
 Link.(SecondEnd) ?> GraphConnector A_graphElement_anchorage

Diagram_Interchange;
};

8.3.6. CallAction2GraphNode

CallAction2GraphNode

Trafosource
CallAction CallAction

Trafotarget
GraphNode GraphNode Diagram_Interchange

meta

enums

structs
Point org.omg.uml.diagraminterchange.Point Diagram_Interchange (
Double 0) (Double 0)

variables
Uml1SemanticModelBridge Uml1SemanticModelBridge Diagram_Interchange;

mapping
$true =: GraphNode.isVisible;
Point =: GraphNode.position;
$"" =: Uml1SemanticModelBridge.presentation;

Uml1SemanticModelBridge <> CallAction
A_uml1SemanticModelBridge_element Diagram_Interchange;
Uml1SemanticModelBridge <> GraphNode A_graphElement_semanticModel
Diagram_Interchange;

CallAction.script -> *.GraphNode <> GraphNode A_container_contained
Diagram_Interchange;

8.3.7. CompositeState2GraphNode

CompositeState2GraphNode

Trafosource
CompositeState CompositeState

Trafotarget

Chapter 8 - Appendix 98

meta

enums

structs

variables

mapping

CompositeState.subvertex -> *;

8.3.8. Pseudostate2GraphNode

Pseudostate2GraphNode

Trafosource
Pseudostate Pseudostate

Trafotarget
GraphNode GraphNode Diagram_Interchange

meta

enums

structs
Point org.omg.uml.diagraminterchange.Point Diagram_Interchange (
Double 0) (Double 0)

variables
Uml1SemanticModelBridge Uml1SemanticModelBridge Diagram_Interchange;

mapping
$true =: GraphNode.isVisible;
Point =: GraphNode.position;
$"" =: Uml1SemanticModelBridge.presentation;

Uml1SemanticModelBridge <> Pseudostate
A_uml1SemanticModelBridge_element Diagram_Interchange;
Uml1SemanticModelBridge <> GraphNode A_graphElement_semanticModel
Diagram_Interchange;

ActivityGraph2Diagram:Diagram <> GraphNode A_container_contained
Diagram_Interchange;

8.3.9. Transition2GraphEdge

Transition2GraphEdge

Trafosource
Transition Transition

Trafotarget
GraphEdge GraphEdge Diagram_Interchange

meta

enums

structs
Point org.omg.uml.diagraminterchange.Point Diagram_Interchange (
Double 0) (Double 0)

Chapter 8 - Appendix 99

variables
Uml1SemanticModelBridge Uml1SemanticModelBridge Diagram_Interchange;

mapping
$true =: GraphEdge.isVisible;
Point =: GraphEdge.position;
$"" =: Uml1SemanticModelBridge.presentation;

Uml1SemanticModelBridge <> Transition
A_uml1SemanticModelBridge_element Diagram_Interchange;
Uml1SemanticModelBridge <> GraphEdge A_graphElement_semanticModel
Diagram_Interchange;

ActivityGraph2Diagram:Diagram <> GraphEdge A_container_contained
Diagram_Interchange;

8.3.10. Uml2UmlDI

Uml2UmlDI

Trafosource
UmlPackageSource UmlPackage

Trafotarget
UmlPackageTarget UmlPackage

meta

enums

structs

variables

mapping
UmlPackageSource.Activity_Graphs.ActivityGraph -> *;
UmlPackageSource.State_Machines.A_outgoing_source -> *;
UmlPackageSource.State_Machines.A_incoming_target -> *;

8.4. SableCC Grammar for Marius’ Transformation Language

Package marius;

Helpers
 letter = (['A' .. 'z'] | '_' | '*');
 digit = ['0' .. '9'];
 extlett = (['A' .. 'z'] | '_' | ':' | '=' | '+' | '-');

 symbols = ('+' | '-' | '*' | '/' | ',' | ':' | '=' | ';' |
 ' ' | '(' | ')' | '!' | '§' | '$' | '%' | '&' |
 '?' | '#' | '_' | '.' | '>' | '<');

Tokens
 meta_lit = 'meta';
 structs_lit = 'structs';
 enums_lit = 'enums';
 source_lit = 'Trafosource';
 target_lit = 'Trafotarget';
 mapping_lit = 'mapping';
 variables_lit = 'variables';
 foreach_lit = 'foreach';
 index_var = 'i';
 null = '---';

Chapter 8 - Appendix 100

 returnvalue = '*';

 operator = ('+' | '-' | '*' | '/' | ',');
 boolean = 'true' | 'false';

 identifier = letter (letter | digit)*;
 number = digit*;
 exclamation = '"';
 exclamationidentifier = '"' (letter | symbols)* '"';

 collection_lit = 'collection';
 array_lit = 'array';
 condtag = '#';
 siblink = '?>';
 normlink = '<>';
 colon = ':';
 special = '!';
 idxopen = '[';
 idxclose = ']';
 argopen = '(';
 argclose = ')';
 open = '{';
 close = '}';
 strstart = '$';
 begin = 'BEGIN';
 end = 'END';
 dot = '.';

 arrow = '->';
 equal = '=:';
 isequal = '==';

 semicolon = ';';
 blank = (' ' | 13 | 10 | 10 13 | '\n' | '\t' | 13 10)+;

Ignored Tokens
 blank;

Productions
 toplevel =
 title
 source
 target
 meta
 enums
 structs
 variables
 mapping;

 title = identifier;

 source = source_lit sourceelement;
 sourceelement = identifier name type?;

 target = target_lit targetelement;
 targetelement =
 {identifier} identifier name type? |
 {null} null;

 meta = meta_lit identifier*;

 enums = enums_lit enumselement*;
 enumselement = identifier type package name;

 structs = structs_lit structselement*;
 structselement = identifier type package arglist*;

Chapter 8 - Appendix 101

 arglist = argopen arg argclose;
 arg =
 {name} name |
 {number} name number |
 {identifier} name identifier;

 variables = variables_lit variableselement*;
 variableselement=
 identifier
 type
 package?
 semicolon;

 method = dot argopen name argclose;
 type = identifier subtype*;
 subtype = dot identifier;
 mapping = mapping_lit trafos;

 equalrightside = isequal name attribute? condtag;
 condition = condtag name attribute? equalrightside;

 name = identifier;
 vectorname = identifier;
 parent = identifier colon;
 association = identifier;
 package = identifier;

 dotnumber = dot number;
 string =
 {boolean} boolean |
 {number} number |
 {numberdot} number dotnumber |
 {name} exclamationidentifier;

 index = number;

 cast = argopen name argclose;
 connector = operator;
 concatelem =
 {name} name attribute* |
 {string} string;
 connectorconcatelem = connector concatelem;
 concat = argopen concatelem connectorconcatelem* argclose;

 foreachtype = identifier;
 foreachheadline =
 {parent} parent name vectorname open |
 {normal} name attribute* method? vectorname open |
 {special} name special index attribute* vectorname open;
 foreach =
 foreach_lit foreachtype foreachheadline
 variables
 mapping
 close;

 condtrafo = condition? trafo semicolon;
 trafos = condtrafo+;

 trafo =
 {foreach} foreach |
 {string2equ} string_sourceexpr equ_targetexpr |
 {name2arr} name_sourceexpr arr_targetexpr |
 {name2equ} name_sourceexpr equ_targetexpr |
 {name2normlink} name_sourceexpr normlink_targetexpr |
 {name2siblink} name_sourceexpr siblink_targetexpr |
 {parent2arr} parent_sourceexpr arr_targetexpr |
 {parent2equ} parent_sourceexpr equ_targetexpr |

Chapter 8 - Appendix 102

 {parent2normlink} parent_sourceexpr normlink_targetexpr |
 {parent2siblink} parent_sourceexpr siblink_targetexpr |
 {concat2equ} concat_sourceexpr equ_targetexpr |
 {collection2arr} collection_sourceexpr arr_targetexpr |
 {collection2equ} collection_sourceexpr equ_targetexpr |

 {collection2normlink} collection_sourceexpr
 normlink_targetexpr |

{collection2siblink} collection_sourceexpr
siblink_targetexpr ;

 string_sourceexpr = strstart string;
 name_sourceexpr = name attribute* method?;
 parent_sourceexpr = parent name;
 concat_sourceexpr = cast concat;
 collection_sourceexpr = vectorname special index? attribute*

 method?;

 arr_targetexpr = arrow returnvalue attribute*

 targetexprextension*;
 equ_targetexpr = equal name attribute*;
 normlink_targetexpr = normlink name association package;
 siblink_targetexpr = siblink name association package;

 targetexprextension =
 {normlink} normlink_targetexpr |
 {equ} equ_targetexpr;

 attribute = dot name;

8.5. “PurchaseOrder” Example Transformation

Below is a BPEL listing describing the “PurchaseOrder” business process. The file is

an adaptation from IBM’s original “purchase.bpel” distributed as a sample with

alphaWorks’ BPEL engine [BPWS]. It is fitted to be compatible with BPEL version

1.1.

<process name="purchaseOrderProcess"
 targetNamespace="http://acme.com/ws-bp/purchase"
 xmlns:lns="http://manufacturing.org/wsdl/purchase"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-
process/">

 <variables>
 <variable name="PO" messageType="lns:POMessage"/>
 <variable name="Invoice"
 messageType="lns:InvMessage"/>
 <variable name="POFault"
 messageType="lns:orderFaultType"/>
 <variable name="shippingRequest"
 messageType="lns:shippingRequestMessage"/>
 <variable name="shippingInfo"
 messageType="lns:shippingInfoMessage"/>
 <variable name="shippingSchedule"
 messageType="lns:scheduleMessage"/>
 </variables>

 <partnerLinks>
 <partnerLink name="customer"
 partnerLinkType="lns:purchaseLT"
 myRole="purchaseService"/>
 <partnerLink name="invoiceProvider"

Chapter 8 - Appendix 103

 partnerLinkType="lns:invoiceLT"
 partnerRole="invoiceService"/>
 <partnerLink name="shippingProvider"
 partnerLinkType="lns:shippingLT"
 partnerRole="shippingService"/>
 <partnerLink name="schedulingProvider"
 partnerLinkType="lns:schedulingLT"
 partnerRole="schedulingService"/>
 </partnerLinks>

 <sequence>
 <receive partnerLink="customer"
 name="receivePO"
 portType="lns:purchaseOrderPT"
 operation="sendPurchaseOrder" variable="PO">
 </receive>
 <flow>
 <links>
 <link name="ship-to-invoice"/>
 <link name="ship-to-scheduling"/>
 </links>
 <sequence>
 <assign name="initialiseShippingRequest">
 <copy>
 <from variable="PO" part="customerInfo"/>
 <to variable="shippingRequest"
 part="customerInfo"/>
 </copy>
 </assign>
 <invoke partnerLink="shippingProvider"
 name="requestShipping"
 portType="lns:shippingPT"
 operation="requestShipping"
 inputVariable="shippingRequest"
 outputVariable="shippingInfo">
 <source linkName="ship-to-invoice"/>
 </invoke>
 <receive partnerLink="shippingProvider"
 name="receiveSchedule"
 portType="lns:shippingCallbackPT"
 operation="sendSchedule"
 variable="shippingSchedule">
 <source linkName="ship-to-scheduling"/>
 </receive>
 </sequence>
 <sequence>
 <invoke partnerLink="invoiceProvider"
 name="initiatePriceCalculation"
 portType="lns:computePricePT"
 operation="initiatePriceCalculation"
 inputVariable="PO">
 </invoke>
 <invoke partnerLink="invoiceProvider"
 name="sendShippingPrice"
 portType="lns:computePricePT"
 operation="sendShippingPrice"
 inputVariable="shippingInfo">
 <target linkName="ship-to-invoice"/>
 </invoke>
 <receive partnerLink="invoiceProvider"
 name="receiveInvoice"
 portType="lns:invoiceCallbackPT"
 operation="sendInvoice"
 variable="Invoice"/>
 </sequence>
 <sequence>
 <invoke partnerLink="schedulingProvider"

Chapter 8 - Appendix 104

 name="requestScheduling"
 portType="lns:schedulingPT"
 operation="requestProductionScheduling"
 inputVariable="PO">
 </invoke>
 <invoke partnerLink="schedulingProvider"
 name="sendShippingSchedule"
 portType="lns:schedulingPT"
 operation="sendShippingSchedule"
 inputVariable="shippingSchedule">
 <target linkName="ship-to-scheduling"/>
 </invoke>
 </sequence>
 </flow>
 <reply partnerLink="customer" portType="lns:purchasePT"
 name="returnInvoice"
 operation="sendPurchaseOrder"
 variable="Invoice"/>
 </sequence>
</process>

The following Activity Diagram in Figure 24 is the result of the above BPEL code

being subject to the MyBPEL2UML and the UML2UML+DI mapping. However, due

to the fact that Poseidon is not supporting „swimlanes“, this missing feature is added

manually. The „PurchaseOrder“ example is also used in [IBM03]. However, there is

a small difference between the PurchaseOrder Avtivity Diagram proposed there and

the one used in this work. In comparison, the „ship-to-invoice“ transition in [IBM03]

points into the opposite direction. Yet, this work interprets the „ship-to-invoice“

transition only to be meaningful in the context of this business process if it is directed

as below.

Chapter 8 - Appendix 105

Figure 24 The ‘PurchaseOrder’ Activity Diagram

Chapter 8 - Appendix 106

8.6. “Marketplace” Example Transformation

Below is a BPEL listing describing the “Marketplace” business process. The file is an

adaptation from IBM’s original “marketplace.bpel” distributed as a sample with

alphaWorks’ BPEL engine [BPWS]. It is fitted to be compatible with BPEL version

1.1.

<process name="marketplace"
targetNamespace="urn:samples:marketplaceService"
xmlns:tns="urn:samples:marketplaceService"
xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/">
 <partnerLinks>
 <partnerLink name="seller"

 partnerLinkType="tns:salesSLT"
 myRole="sales" />

<partnerLink name="buyer"
 partnerLinkType="tns:buyingSLT"
 myRole="buying" />

 </partnerLinks>

 <variables>

<variable name="sellerInfo"
 messageType="tns:sellerInfoMessage" />

<variable name="buyerInfo"
 messageType="tns:buyerInfoMessage" />

<variable name="negotiationOutcome"
 messageType="tns:negotiationMessage" />

</variables>

 <sequence name="MarketplaceSequence">
 <flow name="MarketplaceFlow">
 <receive partnerLink="seller"

portType="tns:sellerPT"
operation="submit"
variable="sellerInfo"
createInstance="yes"
name="SellerReceive">

 </receive>
 <receive partnerLink="buyer"

portType="tns:buyerPT"
operation="submit"
variable="buyerInfo"
createInstance="yes"
name="BuyerReceive">

 </receive>
 </flow>

 <switch name="MarketplaceSwitch">
 <case condition="bpws:getContainerData('sellerInfo',

'askingPrice') <=
bpws:getContainerData('buyerInfo',
'offer')">

 <assign name="SuccessAssign">
 <copy>
 <from expression="'Deal Successful'" />
 <to variable="negotiationOutcome" part="outcome" />
 </copy>
 </assign>
 </case>
 <otherwise>
 <assign name="FailedAssign">
 <copy>

Chapter 8 - Appendix 107

 <from expression="'Deal Failed'" />

 <to variable="negotiationOutcome" part="outcome" />
 </copy>
 </assign>
 </otherwise>
 </switch>
 <flow>
 <reply partnerLink="seller"
 portType="tns:sellerPT"
 operation="submit"

 variable="negotiationOutcome"
 name="SellerReply" />

 <reply partnerLink="buyer"
 portType="tns:buyerPT"
 operation="submit"
 variable="negotiationOutcome"
 name="BuyerReply" />

 </flow>
 </sequence>
</process>

Analogous to the previous example in 8.5, the following Activity Diagram in Figure

25 is the transformation result of the above BPEL listing. The condition in the “case-

path” is not rendered as an XPath expression, but imported from the BPEL definition

unchanged.

Figure 25 The ‘Marketplace’ Activity Diagram

8.7. Parser XSL-Sheet for MyBPEL 1.1

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:java="http://xml.apache.org/xslt/java"

xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/
business-process/"

 version="1.0">
<xsl:output method="xml" indent="yes"/>
<xsl:param name="myBpel"/>

Chapter 8 - Appendix 108

<!-- == -->
<!-- parse <activity> -->
<xsl:template name="parse-standard-stuff">
 <xsl:param name="child"/>
 <xsl:param name="name"/>
 <xsl:param name="suppressJoinFailure"/>
 <xsl:param name="joinCondition"/>

 <xsl:if test="$name">
 <xsl:if test="java:setName($child, $name)"/>
 </xsl:if>
 <xsl:if test="$suppressJoinFailure">
 <xsl:choose>
 <xsl:when test="$suppressJoinFailure = 'yes'">
 <xsl:if test="java:setSuppressJoinFailure($child, true ())"/>
 </xsl:when>
 <xsl:when test="$suppressJoinFailure='no'">
 <xsl:if test="java:setSuppressJoinFailure($child, false ())"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:message terminate="yes">
 <xsl:text>Value for '</xsl:text>
 <xsl:value-of select="$suppressJoinFailure"/>
 <xsl:text>' not allowed for 'suppressJoinFailure'!
 </xsl:text>
 </xsl:message>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:if>
 <xsl:if test="$joinCondition">
 <xsl:if test="java:setJoinCondition ($child, $joinCondition)"/>
 </xsl:if>

 <xsl:for-each select="bpws:source">
 <xsl:variable name="sourceClass"
 select="java:getSource($myBpel)"/>
 <xsl:variable name="source"
 select="java:createSource($sourceClass)"/>
 <xsl:variable name="activityHassource"
 select="java:getActivityHasSource($myBpel)"/>
 <xsl:if test="java:add($activityHassource, $child, $source)"/>
 <xsl:if test="@linkName">
 <xsl:if test="java:setLinkName ($source, @linkName)"/>
 </xsl:if>

 <xsl:if test="@transitionCondition">
 <xsl:if test="java:setTransitionCondition ($source,
 @transitionCondition)"/>
 </xsl:if>
 </xsl:for-each>

 <xsl:for-each select="bpws:target">
 <xsl:variable name="targetClass"
 select="java:getTarget($myBpel)"/>
 <xsl:variable name="target"
 select="java:createTarget($targetClass)"/>
 <xsl:variable name="activityHastarget"
 select="java:getActivityHasTarget($myBpel)"/>
 <xsl:if test="java:add($activityHastarget, $child, $target)"/>
 <xsl:if test="@linkName">
 <xsl:if test="java:setLinkName($target, @linkName)"/>
 </xsl:if>
 </xsl:for-each>
</xsl:template>
<!-- == -->
<!-- parse <variables> -->
<xsl:template match="bpws:variables">
 <xsl:param name="parent"/>
 <xsl:variable name="variablesClass"
 select="java:getVariables($myBpel)"/>
 <xsl:variable name="variables"
 select="java:createVariables($variablesClass)"/>
 <xsl:variable name="variablesHasvariable"
 select="java:getVariablesHasVariable($myBpel)"/>

 <xsl:if test="java:setVariables($parent, $variables)"/>
 <xsl:for-each select="bpws:variable">
 <xsl:variable name="variableClass"
 select="java:getVariable($myBpel)"/>
 <xsl:variable name="variable"
 select="java:createVariable($variableClass)"/>

 <xsl:if test="@name">

Chapter 8 - Appendix 109

 <xsl:if test="java:setName($variable, @name)"/>
 </xsl:if>
 <xsl:if test="@messageType">
 <xsl:if test="java:setMessageType ($variable, @messageType)"/>
 </xsl:if>
 <xsl:if test="java:add($variablesHasvariable, $variables,

$variable)"/>
 </xsl:for-each>
</xsl:template>
<!-- === -->
<!-- parse <partnerLinks> -->
<xsl:template match="bpws:partnerLinks">
 <xsl:param name="parent"/>
 <xsl:variable name="partnerLinksClass"
 select="java:getPartnerLinks($myBpel)"/>
 <xsl:variable name="partnerLinks"
 select="java:createPartnerLinks($partnerLinksClass)"/>

 <xsl:if test="java:setPartnerLinks($parent, $partnerLinks)"/>
 <xsl:variable name="partnerLinksHaspartnerLink"
 select="java:getPartnerLinksHasPartnerLink($myBpel)"/>

 <xsl:for-each select="bpws:partnerLink">
 <xsl:variable name="partnerLinkClass"
 select="java:getPartnerLink($myBpel)"/>
 <xsl:variable name="partnerLink"
 select="java:createPartnerLink($partnerLinkClass)"/>

 <xsl:if test="@name">
 <xsl:if test="java:setName($partnerLink, @name)"/>
 </xsl:if>
 <xsl:if test="@partnerLinkType">
 <xsl:if test="java:setPartnerLinkType($partnerLink,@partnerLinkType)"/>
 </xsl:if>
 <xsl:if test="@myRole">
 <xsl:if test="java:setMyRole($partnerLink, @myRole)"/>
 </xsl:if>
 <xsl:if test="@partnerRole">
 <xsl:if test="java:setPartnerRole($partnerLink,@partnerRole)"/>
 </xsl:if>

 <xsl:if test="java:add($partnerLinksHaspartnerLink,
 $partnerLinks, $partnerLink)"/>
 </xsl:for-each>
</xsl:template>

<!-- == -->
<!-- parse <partners> -->
<xsl:template match="bpws:partners">
 <xsl:param name="parent"/>
 <xsl:variable name="partnersClass"
 select="java:getPartners($myBpel)"/>
 <xsl:variable name="partners"
 select="java:createPartners($partnersClass)"/>

 <xsl:if test="java:setPartners($parent, $partners)"/>

 <xsl:variable name="partnersHaspartner"
 select="java:getPartnersHasPartner($myBpel)"/>

 <xsl:for-each select="bpws:partner">
 <xsl:variable name="partnerClass"
 select="java:getPartner($myBpel)"/>
 <xsl:variable name="partner"
 select="java:createPartner($partnerClass)"/>
 <xsl:if test="@name">
 <xsl:if test="java:setName($partner, @name)"/>
 </xsl:if>
 <xsl:if test="java:add($partnersHaspartner, $partners, $partner)"/>
 </xsl:for-each>
</xsl:template>
<!-- === -->
<!-- parse <reveive> -->
<xsl:template match="bpws:receive">
 <xsl:param name="parent"/>
 <xsl:param name="parentHaschild"/>
 <xsl:variable name="receiveClass"
 select="java:getReceive($myBpel)"/>
 <xsl:variable name="receive"
 select="java:createReceive($receiveClass)"/>

 <xsl:call-template name="parse-standard-stuff">

Chapter 8 - Appendix 110

 <xsl:with-param name="child" select="$receive"/>
 <xsl:with-param name="name" select="@name"/>
 <xsl:with-param name="suppressJoinFailure"

 select="@suppressJoinFailure"/>
 <xsl:with-param name="joinCondition" select="@joinCondition"/>
 </xsl:call-template>

 <xsl:if test="@partner">
 <xsl:if test="java:setPartner($receive, @partner)"/>
 </xsl:if>
 <xsl:if test="@portType">
 <xsl:if test="java:setPortType($receive, @portType)"/>
 </xsl:if>
 <xsl:if test="@operation">
 <xsl:if test="java:setOperation($receive, @operation)"/>
 </xsl:if>
 <xsl:if test="@variable">
 <xsl:if test="java:setVariable($receive, @variable)"/>
 </xsl:if>

 <xsl:if test="@createInstance">
 <xsl:choose>
 <xsl:when test="@createInstance='yes'">
 <xsl:if test="java:setCreateInstance ($receive, true ())"/>
 </xsl:when>
 <xsl:when test="@createInstance='no'">
 <xsl:if test="java:setCreateInstance ($receive, false ())"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:message terminate="yes">
 <xsl:text>Value '</xsl:text>
 <xsl:value-of select="@createInstance"/>
 <xsl:text>' for 'createInstance' not allowed.
 </xsl:text>
 </xsl:message>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:if>

 <xsl:if test="java:add($parentHaschild, $parent, $receive)"/>
</xsl:template>
<!-- === -->
<!-- parse <reply> -->
<xsl:template match="bpws:reply">
 <xsl:param name="parent"/>
 <xsl:param name="parentHaschild"/>
 <xsl:variable name="replyClass"
 select="java:getReply($myBpel)"/>
 <xsl:variable name="reply"
 select="java:createReply($replyClass)"/>

 <xsl:call-template name="parse-standard-stuff">
 <xsl:with-param name="child" select="$reply"/>
 <xsl:with-param name="name" select="@name"/>
 <xsl:with-param name="suppressJoinFailure"
 select="@suppressJoinFailure"/>
 <xsl:with-param name="joinCondition" select="@joinCondition"/>
 </xsl:call-template>

 <xsl:if test="@partner">
 <xsl:if test="java:setPartner ($reply, @partner)"/>
 </xsl:if>
 <xsl:if test="@portType">
 <xsl:if test="java:setPortType ($reply, @portType)"/>
 </xsl:if>
 <xsl:if test="@operation">
 <xsl:if test="java:setOperation ($reply, @operation)"/>
 </xsl:if>
 <xsl:if test="@variable">
 <xsl:if test="java:setVariable ($reply, @variable)"/>
 </xsl:if>
 <xsl:if test="@faultName">
 <xsl:if test="java:setFaultName ($reply, @faultName)"/>
 </xsl:if>

 <xsl:if test="java:add($parentHaschild, $parent, $reply)"/>
</xsl:template>
<!-- === -->
<!-- parse <empty> -->
<xsl:template match="bpws:empty">
 <xsl:param name="parent" />
 <xsl:param name="parentHaschild"/>

Chapter 8 - Appendix 111

 <xsl:variable name="emptyClass"
 select="java:getEmpty($myBpel)"/>
 <xsl:variable name="empty"
 select="java:createEmpty($emptyClass)"/>

 <xsl:call-template name="parse-standard-stuff">
 <xsl:with-param name="child" select="$empty"/>
 <xsl:with-param name="name" select="@name"/>
 <xsl:with-param name="suppressJoinFailure"

 select="@suppressJoinFailure"/>
 <xsl:with-param name="joinCondition" select="@joinCondition"/>
 </xsl:call-template>

 <xsl:if test="java:add($parentHaschild, $parent, $empty)"/>
</xsl:template>
<!-- == -->
<!-- parse <while> -->
<xsl:template match="bpws:while">
 <xsl:param name="parent" />
 <xsl:param name="parentHaschild"/>
 <xsl:variable name="whileClass"
 select="java:getWhileKey($myBpel)"/>
 <xsl:variable name="while"
 select="java:createWhileKey($whileClass)"/>

 <xsl:call-template name="parse-standard-stuff">
 <xsl:with-param name="child" select="$while"/>
 <xsl:with-param name="name" select="@name"/>
 <xsl:with-param name="suppressJoinFailure" select="@suppressJoinFailure"/>
 <xsl:with-param name="joinCondition" select="@joinCondition"/>
 </xsl:call-template>
 <xsl:if test="@condition">
 <xsl:if test="java:setCondition($while, @condition)"/>
 </xsl:if>

 <xsl:if test="java:add($parentHaschild, $parent, $while)"/>
 <xsl:variable name="whileHasactivity"
 select="java:getWhileHasActivity($myBpel)"/>

 <xsl:apply-templates select="*">
 <xsl:with-param name="parent" select="$while"/>
 <xsl:with-param name="parentHaschild" select="$whileHasactivity"/>
 </xsl:apply-templates>
</xsl:template>
<!-- == -->
<!-- parse <case> -->
<xsl:template match="bpws:case">
 <xsl:param name="parent" />
 <xsl:param name="parentHaschild"/>
 <xsl:variable name="caseClass"
 select="java:getCaseKey($myBpel)"/>
 <xsl:variable name="case"
 select="java:createCaseKey($caseClass)"/>

 <xsl:if test="@condition">
 <xsl:if test="java:setCondition($case, @condition)"/>
 </xsl:if>

 <xsl:if test="java:add($parentHaschild, $parent, $case)"/>
 <xsl:variable name="caseHasactivity"
 select="java:getCaseHasActivity($myBpel)"/>

 <xsl:apply-templates select="*">
 <xsl:with-param name="parent" select="$case"/>
 <xsl:with-param name="parentHaschild"
 select="$caseHasactivity"/>
 </xsl:apply-templates>
</xsl:template>
<!-- === -->
<!-- parse <otherwise> -->
<xsl:template match="bpws:otherwise">
 <xsl:param name="parent" />
 <xsl:param name="parentHaschild"/>
 <xsl:variable name="otherwiseClass"
 select="java:getOtherwise($myBpel)"/>
 <xsl:variable name="otherwise"
 select="java:createOtherwise($otherwiseClass)"/>

 <xsl:if test="java:add($parentHaschild, $parent, $otherwise)"/>
 <xsl:variable name="otherwiseHasactivity"
 select="java:getOtherwiseHasActivity($myBpel)"/>

 <xsl:apply-templates select="*">

Chapter 8 - Appendix 112

 <xsl:with-param name="parent" select="$otherwise"/>
 <xsl:with-param name="parentHaschild"
 select="$otherwiseHasactivity"/>
 </xsl:apply-templates>
</xsl:template>
<!-- === -->
<!-- parse <switch> -->
<xsl:template match="bpws:switch">
 <xsl:param name="parent"/>
 <xsl:param name="parentHaschild"/>
 <xsl:variable name="switchClass"
 select="java:getSwitchKey($myBpel)"/>
 <xsl:variable name="switch"
 select="java:createSwitchKey($switchClass)"/>

 <xsl:call-template name="parse-standard-stuff">
 <xsl:with-param name="child" select="$switch" />
 <xsl:with-param name="name" select="@name"/>
 <xsl:with-param name="suppressJoinFailure"
 select="@suppressJoinFailure"/>
 <xsl:with-param name="joinCondition" select="@joinCondition"/>
 </xsl:call-template>

 <xsl:if test="java:add($parentHaschild, $parent, $switch)"/>
 <xsl:variable name="switchHascase"
 select="java:getSwitchHasCase($myBpel)"/>
 <xsl:variable name="switchHasotherwise"
 select="java:getSwitchHasOtherwise($myBpel)"/>

 <xsl:apply-templates select="bpws:case">
 <xsl:with-param name="parent" select="$switch" />
 <xsl:with-param name="parentHaschild" select="$switchHascase"/>
 </xsl:apply-templates>
 <xsl:apply-templates select="bpws:otherwise">
 <xsl:with-param name="parent" select="$switch" />
 <xsl:with-param name="parentHaschild"
 select="$switchHasotherwise"/>
 </xsl:apply-templates>
</xsl:template>
<!-- === -->
<!-- parse <invoke> -->
<xsl:template match="bpws:invoke">
 <xsl:param name="parent" />
 <xsl:param name="parentHaschild"/>
 <xsl:variable name="invokeClass"
 select="java:getInvoke($myBpel)"/>
 <xsl:variable name="invoke"
 select="java:createInvoke($invokeClass)"/>

 <xsl:call-template name="parse-standard-stuff">
 <xsl:with-param name="child" select="$invoke" />
 <xsl:with-param name="name" select="@name"/>
 <xsl:with-param name="suppressJoinFailure"
 select="@suppressJoinFailure"/>
 <xsl:with-param name="joinCondition" select="@joinCondition"/>
 </xsl:call-template>

 <xsl:if test="@partnerLink">
 <xsl:if test="java:setPartnerLink($invoke, @partnerLink)" />
 </xsl:if>
 <xsl:if test="@portType">
 <xsl:if test="java:setPortType($invoke, @portType)" />
 </xsl:if>
 <xsl:if test="@operation">
 <xsl:if test="java:setOperation($invoke, @operation)" />
 </xsl:if>
 <xsl:if test="@inputVariable">
 <xsl:if test="java:setInputVariable($invoke, @inputVariable)" />
 </xsl:if>
 <xsl:if test="@outputVariable">
 <xsl:if test="java:setOutputVariable($invoke, @outputVariable)" />
 </xsl:if>
 <xsl:if test="java:add($parentHaschild, $parent, $invoke)"/>
</xsl:template>
<!-- == -->
<!-- parse - <from> -->
<xsl:template name="parse-from">
 <xsl:param name="from-elem" />
 <xsl:param name="from" />
 <xsl:variable name="fe" select="$from-elem" />

 <xsl:choose>
 <xsl:when test="$fe/@variable">

Chapter 8 - Appendix 113

 <xsl:if test="java:setVariable ($from, $fe/@variable)" />
 <xsl:choose>
 <xsl:when test="$fe/@part">
 <xsl:if test="java:setPart ($from, $fe/@part)" />
 </xsl:when>
 <xsl:when test="$fe/@property">
 <xsl:if test="java:setProperty ($from, $fe/@property)" />
 </xsl:when>
 </xsl:choose>
 <xsl:if test="$fe/@query">
 <xsl:if test="java:setQuery ($from, $fe/@query)" />
 </xsl:if>
 </xsl:when>
 <xsl:when test="$fe/@partnerLink">
 <xsl:if test="java:setPartnerLink($from, $fe/@partnerLink)" />
 <xsl:if test="$fe/@endpointReference">
 <xsl:if test="java:setEndpointReference($from,
 $fe/@endpointReference)" />
 </xsl:if>
 </xsl:when>
 <xsl:when test="$fe/@expression">
 <xsl:if test="java:setExpression($from, $fe/@expression)" />
 </xsl:when>
 <xsl:otherwise>

 </xsl:otherwise>
 </xsl:choose>
</xsl:template>
<!-- == -->
<!-- parse <to> -->
<xsl:template name="parse-to">
 <xsl:param name="to-elem" />
 <xsl:param name="to" />
 <xsl:variable name="te" select="$to-elem" />
 <xsl:choose>
 <xsl:when test="$te/@variable">
 <xsl:if test="java:setVariable($to, $te/@variable)" />
 <xsl:choose>
 <xsl:when test="$te/@part">
 <xsl:if test="java:setPart($to, $te/@part)" />
 </xsl:when>
 <xsl:when test="$te/@property">
 <xsl:if test="java:setProperty($to, $te/@property)" />
 </xsl:when>
 </xsl:choose>
 <xsl:if test="$te/@query">
 <xsl:if test="java:setQuery($to, $te/@query)" />
 </xsl:if>
 </xsl:when>
 <xsl:when test="$te/@partnerLink">
 <xsl:if test="java:setPartnerLink($to, $te/@partnerLink)" />
 </xsl:when>
 </xsl:choose>
</xsl:template>
<!-- == -->
<!-- parse <copy> -->
<xsl:template name="parse-copy">
 <xsl:param name="assign" />
 <xsl:variable name="copyClass" select="java:getCopy($myBpel)" />
 <xsl:variable name="copy"
 select="java:createCopy($copyClass)" />
 <xsl:variable name="assignHascopy"
 select="java:getAssignHasCopy($myBpel)"/>
 <xsl:if test="java:add($assignHascopy, $assign, $copy)"/>

 <xsl:variable name="fromClass" select="java:getFrom($myBpel)" />
 <xsl:variable name="from"
 select="java:createFrom($fromClass)" />
 <xsl:if test="java:setFrom($copy, $from)" />

 <xsl:call-template name="parse-from">
 <xsl:with-param name="from-elem" select="bpws:from" />
 <xsl:with-param name="from" select="$from" />
 </xsl:call-template>

 <xsl:variable name="toClass" select="java:getTo($myBpel)" />
 <xsl:variable name="to" select="java:createTo($toClass)" />
 <xsl:if test="java:setTo($copy, $to)" />

 <xsl:call-template name="parse-to">
 <xsl:with-param name="to-elem" select="bpws:to" />
 <xsl:with-param name="to" select="$to" />
 </xsl:call-template>

Chapter 8 - Appendix 114

</xsl:template>
<!-- == -->
<!-- parse <assign> -->
<xsl:template match="bpws:assign">
 <xsl:param name="parent" />
 <xsl:param name="parentHaschild" />
 <xsl:variable name="assignClass"
 select="java:getAssign($myBpel)" />
 <xsl:variable name="assign"
 select="java:createAssign($assignClass)" />

 <!-- parse-standard-stuff -->
 <xsl:call-template name="parse-standard-stuff">
 <xsl:with-param name="child" select="$assign" />
 <xsl:with-param name="name" select="@name"/>
 <xsl:with-param name="suppressJoinFailure"
 select="@suppressJoinFailure"/>
 <xsl:with-param name="joinCondition" select="@joinCondition"/>
 </xsl:call-template>

 <xsl:for-each select="bpws:copy">
 <xsl:call-template name="parse-copy">
 <xsl:with-param name="assign" select="$assign" />
 </xsl:call-template>
 </xsl:for-each>

 <xsl:if test="java:add($parentHaschild, $parent, $assign)"/>
</xsl:template>
<!-- == -->
<!-- parse <links> -->
<xsl:template match="bpws:links" mode="__flow__">
 <xsl:param name="parent" />
 <xsl:param name="parentHaschild" />
 <xsl:variable name="linksClass"
 select="java:getLinks($myBpel)"/>
 <xsl:variable name="links"
 select="java:createLinks($linksClass)"/>
 <xsl:variable name="linksHaslink"
 select="java:getLinksHasLink($myBpel)"/>

 <xsl:if test="java:add($parentHaschild, $parent, $links)"/>
 <xsl:for-each select="bpws:link">
 <xsl:variable name="linkClass"
 select="java:getLink($myBpel)"/>
 <xsl:variable name="link"
 select="java:createLink($linkClass)"/>
 <xsl:if test="@name">
 <xsl:if test="java:setName ($link, @name)" />
 </xsl:if>
 <xsl:if test="java:add($linksHaslink, $links, $link)" />
 </xsl:for-each>
</xsl:template>
<!-- === -->
<!-- parse <flow> -->
<xsl:template match="bpws:flow">
 <xsl:param name="parent" />
 <xsl:param name="parentHaschild"/>
 <xsl:variable name="flowClass"
 select="java:getFlow($myBpel)"/>
 <xsl:variable name="flow"
 select="java:createFlow($flowClass)"/>
 <xsl:if test="java:add($parentHaschild, $parent, $flow)"/>

 <xsl:call-template name="parse-standard-stuff">
 <xsl:with-param name="child" select="$flow" />
 <xsl:with-param name="name" select="@name"/>
 <xsl:with-param name="suppressJoinFailure"
 select="@suppressJoinFailure"/>
 <xsl:with-param name="joinCondition" select="@joinCondition"/>
 </xsl:call-template>

 <xsl:variable name="flowHasactivity"
 select="java:getFlowHasActivity($myBpel)"/>
 <xsl:variable name="flowHaslinks"
 select="java:getFlowHasLinks($myBpel)"/>

 <xsl:apply-templates select="bpws:links" mode="__flow__">
 <xsl:with-param name="parent" select="$flow" />
 <xsl:with-param name="parentHaschild" select="$flowHaslinks"/>
 </xsl:apply-templates>
 <xsl:apply-templates select="*[name() != 'bpws:links']">
 <xsl:with-param name="parent" select="$flow" />
 <xsl:with-param name="parentHaschild"

Chapter 8 - Appendix 115

 select="$flowHasactivity"/>
 </xsl:apply-templates>
</xsl:template>
<!-- === -->
<!-- parse <sequence> -->
<xsl:template match="bpws:sequence">
 <xsl:param name="parent"/>
 <xsl:param name="parentHaschild"/>
 <xsl:variable name="sequenceClass"
 select="java:getSequence($myBpel)"/>
 <xsl:variable name="sequence"
 select="java:createSequence($sequenceClass)"/>

 <xsl:call-template name="parse-standard-stuff">
 <xsl:with-param name="child" select="$sequence"/>
 <xsl:with-param name="name" select="@name"/>
 <xsl:with-param name="suppressJoinFailure"
 select="@suppressJoinFailure"/>
 <xsl:with-param name="joinCondition" select="@joinCondition"/>
 </xsl:call-template>

 <xsl:if test="java:add($parentHaschild, $parent, $sequence)"/>
 <xsl:variable name="sequenceHasactivity"
 select="java:getSequenceHasActivity($myBpel)"/>

 <xsl:apply-templates select="*">
 <xsl:with-param name="parent" select="$sequence"/>
 <xsl:with-param name="parentHaschild"
 select="$sequenceHasactivity"/>
 </xsl:apply-templates>
</xsl:template>
<!-- === -->
<!-- parse <process> -->
<xsl:template match="bpws:process">
 <xsl:variable name="processClass"
 select="java:getProcess($myBpel)"/>
 <xsl:variable name="process"
 select="java:createProcess($processClass, @name,
 @targetNamespace)"/>

 <xsl:apply-templates select="bpws:variables |
 bpws:partners |
 bpws:partnerLinks">
 <xsl:with-param name="parent" select="$process"/>
 </xsl:apply-templates>

 <xsl:variable name="processHasactivity"
 select="java:getProcessHasActivity($myBpel)"/>

 <xsl:apply-templates select="bpws:receive |
 bpws:reply |
 bpws:invoke |
 bpws:throw |
 bpws:wait |
 bpws:empty |
 bpws:sequence |
 bpws:switch |
 bpws:while |
 bpws:pick |
 bpws:flow |
 bpws:scope |
 bpws:terminate |
 bpws:assign">
 <xsl:with-param name="parent" select="$process"/>
 <xsl:with-param name="parentHaschild" select="$processHasactivity"/>
 </xsl:apply-templates>
</xsl:template>
<!-- == -->
<xsl:template match="/">
 <xsl:apply-templates select="/bpws:process"/>
</xsl:template>

</xsl:stylesheet>

 116

List of Figures

Figure 1 Class Diagram Showing UML Package Structure 14

Figure 2 [IBM03] “Purchase Order” Business Process as Activity Graph 15

Figure 3 XMI UML+DI Application Scenario... 16

Figure 4 [COLL03] Informal Description of Business Process 17

Figure 5 [MART02] BPEL Execution Example .. 18

Figure 6 The four-layered architecture of the MOF... 20

Figure 7 Simple XML Metamodel ... 21

Figure 8 [JMI02] Generated Inheritance Patterns .. 23

Figure 9 [MDR03] NetBeans MDR Architecture .. 30

Figure 10 Components of the Marius Tool .. 37

Figure 11 The Marius Transformation Engine... 38

Figure 12 Generation of Executable Transformations ... 46

Figure 13 Rules to Resolve Marius Expressions.. 50

Figure 14 Transformation Rule Semantics... 57

Figure 15 The two-stage Mapping from BPEL to UML+DI...................................... 62

Figure 16 The MyBPEL2UML Mapping... 63

Figure 17 The MyBPEL2UmlPackage Transformation... 64

Figure 18 The UML2UML+DI Mapping... 67

Figure 19 The Uml2UmlDI Transformation .. 68

Figure 20 Relationship between subsets of ‘State Machines’ and ‘Diagram

Interchange’.. 70

Figure 21 Build process for Marius Executable Transformations 71

Figure 22 The ‘MyEcho’ BPEL Transformed into an Activity Diagram................... 72

Figure 23 The MyBPEL Metamodel .. 83

Figure 24 The ‘PurchaseOrder’ Activity Diagram... 106

Figure 25 The ‘Marketplace’ Activity Diagram... 108

 117

References

[ACTI05] ActiveBPEL, LLC, Active Endpoints, “ActiveBPEL”, Link, Version 1.0.6,

2005, http://www.activebpel.org/index.html

[AGKR] A. Gerber, K. Raymond, DSTC, University of Queensland “MOF to EMF:

There and Back Again”, Proc. Eclipse Technology Exchange Workshop,

OOPSLA 2003,

http://www.dstc.edu.au/Research/Projects/Pegamento/publications/MOF-

to-EMF-There-and-Back-Again.pdf

[AGM05] S. W. Ambler, “Agile Modeling”, Link, 2005,

http://www.agilemodeling.com/

[AGRA03] A. Agrawal, “Graph Rewriting and Transformation (GReAT): A Solution

for the Model Integrated Computing (MIC) Bottleneck”, 2003, 18th IEEE

International Conference on Automated Software Engineering, Montreal

[AGRA04] A. Agrawal, “GreAT: Graph Rewriting and Transformation”,

Presentation, 2004,

http://www.cis.uab.edu/softcom/seminar/spring04/linpresentation.ppt

[ANDR04] AndroMDA, “AndroMDA”, Link, Version 2.1.2, 2004,

http://www.andromda.org/

[ARC04] Interactive Objects, “ArcStyer”, Link, Version 4.0, 2004,

http://www.arcstyler.com/products/arcstyler_overview.jsp

[ATL04] INRIA Atlas, Université de Nantes, “The ATL Homepage”, Link, 2004,

http://www.sciences.univ-nantes.fr/lina/atl/

[ASTT03] Alcatel, Softeam, Thales, TNI-Valiosys, Codagen, “Response to the MOF

2. Query / View / Transformations RFP”, Version 1.0, 2003,

http://www.omg.org/docs/ad/03-08-05.pdf

[BERN03] P. Bernstein, Microsoft Research, “Applying Model Management to

Classical Meta Data Problems”, Proceeding, CIDR 2003, pp. 209-220,

http://research.microsoft.com/users/philbe/PBernsteinCIDR12ext.pdf

[BKKR03] M. Bernauer, G. Kappel, G. Kramler, W. Retschitzegger, “Specification of

Interorganizational Workflows - A Comparison of Approaches”,

Proceedings of the 7th World Multiconference on Systemics, Cybernetics

and Informatics (SCI 2003), July 2003, Orlando, USA, pp. 30-36, [ISBN

980-6560-01-9],

http://www.big.tuwien.ac.at/research/publications/2003/0603.pdf

[BOTL] Institut für Informatik, TU München, “The BOTL Tool”, Link, 2005,

http://www4.in.tum.de/~marschal/botl/index.htm

[BPWS] IBM alphaWorks, “BPWS4J”, Link, 2004,

http://alphaworks.ibm.com/tech/bpws4j

[BPEL03] BEA, IBM, Microsoft, SAP, Siebel, “Business Process Execution

Language for Web Services Specificaion”, Version 1.1, 2003, http://www-

106.ibm.com/developerworks/webservices/library/ws-bpel/

 118

[BROO75] F.Brooks, “The Mythical Man-Month”, 1975, Book

[BTREE] Wikipedia, “B-Tree”, Link, http://en.wikipedia.org/wiki/B-Tree

[CLE01] J.C. Cleaveland, “Program Generators with XML and Java”, 2001,

Prentice-Hall, http://www.craigc.com/pg/

[COLL03] Collaxa, “Collaxa’s Tutorial on BPEL4WS”, 2003,

http://www.jcollaxa.com/

[CWM03] OMG, “Common Warehouse Metamodel (CWM) Specification”, 2003,

Version 1.1, http://www.omg.org/docs/formal/03-03-02.pdf

[CZAR03] K. Czarnecki, S.Helsen, “Classification of Model transformation

Approaches”, 2003, OOPSLA’03 Workshop on Generative Techniques in

the Context of Model-Driven Architecture

[DIA03] Gentleware, DaimlerChrysler, Telelogic, Adaptive, Rational, Sun, “UML

2.0 Diagram Interchange”, Submission in Response to OMG Document

ad/2002-12-20, Version 1.0, 2003

[DIC03] DSTC, IBM, CBOP, “MOF Query / Views / Transformations”, Second

Revised Submission, 2004,

http://www.dstc.edu.au/Research/Projects/Pegamento/publications/ad-04-

01-06.pdf

[DGR03] K. Duddy, A. Gerber, K. Raymond, Pegamento Project, DSTC, “Eclipse

Modeling Framework (EMF) import/export from MOF / JMI”, Status

Report, 2003

[EMF04] Eclipse Project, “Eclipse Modeling Framework”, Link, Version 2.1.0,

2004, http://www.eclipse.org/emf/

[ETTK04] IBM Alphaworks, “Emerging Technologies Toolkit”, Software

Development Kit, Version 2.1, 2004,

http://www.alphaworks.ibm.com/tech/ettk

[FRAN03] D. Frankel, “Model Driven Architecture: Applying MDA to Enterprise

Computing”, 2003, published by John Wiley & Sons

[GAR03A] T. Gardner, IBM, “UML Modelling of Automated Business Processes

with a Mapping to BPEL4WS”, 2003

[GAR03B] T. Gardner, IBM, “Mapping from UML to the Business Process Execution

Language for Web Services (BPEL4WS)”, Presentation, 2003, OMG

MDA Implementer’s Workshop

[GENT] Gentleware, “Poseidon for UML”, Link, http://www.gentleware.com/

[GMT04] Eclipse GMT, “Generative Model Transformer”, Link, 2004,

http://www.eclipse.org/gmt/

[IBM03] J. Amsden, T. Gardner, C. Griffin, S. Iyengar, J. Knapman, IBM, “Draft

UML 1.4 Profile for Automated Business Processes with a Mapping to

BPEL 1.0“, 2003

[IKKB04] I. Kurtev, K. Van den Berg, “Unifying Approach of Model

Transformations in the MOF Metamodelling Architecture”, 2004,

http://wwwhome.cs.utwente.nl/~kurtev/files/MDAIA04.pdf

 119

[INR04] INRIA, Université de Nantes, “Model Transformation at INRIA

ModelWare”, Link, 2004, http://modelware.inria.fr/

[IYEN03] S. Iyengar, IBM, “Implementing Model Driven Web Services Architecture

using UML, XML, WSDL & BPEL4WS”, Presentation, 2003

[JAXB] Sun Microsystems, “Java Architecture for XML Binding (JAXB)”, Link,

http://java.sun.com/xml/jaxb/index.jsp

[JBRL97] J. Bézivin, R. Lemesle, “Ontology-Based Layered Semantics for Precise

OA&D Modeling“, Workshop Reader, ECOOP'97

[JET04] R. Popma, “JET Tutorial Part 1 (Introduction to JET)“, „JET Tutorial Part

2 (Write Code that Writes Code)“, Link, 2004,

http://www.eclipse.org/articles/Article-JET/jet_tutorial1.html,

http://www.eclipse.org/articles/Article-JET2/jet_tutorial2.html

[JMI02] JSR 040, Java Community Process, “Java Metadata Interface (JMI)

Specification”, Version 1.0, 2002, http://www.jcp.org/

[KENT] University of Kent, “KMF - Kent Modelling Framework”, Link,

http://www.cs.kent.ac.uk/projects/kmf/index.html

[MART02] A. Martens, “Business Process Execution Language – Begriffe

Zusammenhänge, Unklarheiten”, Presentation, 2002,

http://www.informatik.hu-

berlin.de/top/forschung/projekte/vgp_mit_ws/bpel/download/axel-02-12-

13_6.pdf

[MDR03] Netbeans, “Netbeans Metadata Repository - MDR”, Link, 2003,

http://mdr.netbeans.org

[MELL05] S. J. Mellor, “Agile MDA”, 2005, http://www.omg.org/agile

[MMGK04] M. Murzek, G. Kramler, “Defining Model Transformations for Business

Process Models Graphically”, Proceedings at the Workshop "Enterprise

Modelling and Ontology: Ingredients for interoperability" at PAKM2004,

2004, http://www.big.tuwien.ac.at/research/publications/2004/0904.pdf

[MOF02] OMG, “Meta Object Facility (MOF) Specification”, Version 1.4, 2002,

http://www.omg.org/docs/formal/02-04-03.pdf

[MRB03] S. Melnik, E. Rahm, P. Bernstein, "Rondo: A Programming Platform for

Generic Model Management," Proceeding, SIGMOD 2003, pp. 193-204,

http://research.microsoft.com/users/philbe/RondoSIGMOD03.pdf

[MTF04] IBM Alphaworks, “Model Transformation Framework”, Version 1.0,

2004, http://www.alphaworks.ibm.com/tech/mtf

[MTL04] INRIA Triskell, Université de Nantes, “MTL engine”, Link, 2004,

http://modelware.inria.fr/rubrique.php3?id_rubrique=8

[NBIDE] Netbeans IDE, “NetBeans”, Link, Version 4.0, 2004,

http://www.netbeans.org/

[NBUM] Netbeans, “UML Profile for MOF”, Link, 2003,

http://mdr.netbeans.org/uml2mof/profile.html

[OCL20] OMG, “UML 2.0 OCL Specification”, 2003, Final Adopted Specification,

http://www.omg.org/docs/ptc/03-10-14.pdf

 120

[OPEN] OpenMDX MDA platform, “openMDX”, Link, Version 1.6.2, 2005,

http://www.openmdx.org/

[OPTI04] Compuware Corporation, “OptimalJ”, Link, Version 3.2, 2004,

http://www.compuware.com/products/optimalj/

[PBG01] M. Peltier, J. Bezivin, G. Guillaume, “MTRANS: A general framework,

based on XSLT, for model transformations”, WTUML: Workshop on

Transformations in UML, 2001,

http://ase.arc.nasa.gov/wtuml01/submissions/peltier-bezivin-

guillaume.pdf

[QVTM04]QVT-Merge Group, “Revised Submission for MOF 2.0 Query / View /

Transformations RFP”, Version 1.8, 2004, OMG document ad/2004-10-04

[QVTR02] OMG, “MOF 2.0 Query / View / Transformations RFP”, RFP, 2002,

http://www.omg.org/docs/ad/02-04-10.pdf

[QSUB03] QVT-Partners, “Revised Submission for MOF 2.0 Query / View /

Transformations RFP”, Version 1.1, 2003,

http://www.qvtp.org/downloads/1.1/qvtpartners1.1.pdf

[QPAR04] QVT-Partners, “QVT-Partners”, Link, 2004, http://www.qvtp.org

[VELO04] The Apache Jakarta Project, “Velocity”, Link, 2004, Version 1.4,

http://jakarta.apache.org/velocity/

[RINN03] D. Rinner, “Transformation of UML to WSDL/BPEL4WS”, Diploma

Thesis, Information Systems Institute - Database and Artificial

Intelligence Group, Technical University of Vienna, 2003

[SABL] E. Gagnon et al., “SableCC Java Parser Generator”, Link, Version 2.18.2,

http://sablecc.org/

[SOAP03] M. Gudgin, M. Hadley, N. Mendelsohn, J.J. Moreau, H.F Nielsen, W3C,

“SOAP Version 1.2 Part 1: Messaging Framework”, W3C

Recommendation, Version 1.2, 2003, http://www.w3.org/TR/soap12-

part1/

[SVG03] W3C, “Scalable Vector Graphics (SVG)”, Specification, Version 1.1,

http://www.w3.org/TR/SVG/

[TEFKAT] DSTC, “The EMF Transformation Engine”, Link,

http://www.dstc.edu.au/Research/Projects/Pegamento/tefkat/index.html

[U2MOF] Netbeans, “UML2MOF Tool”, Link, http://mdr.netbeans.org/uml2mof/

[UML03] OMG, “Unified Modeling Language Specification” Version 1.5, 2003,

http://www.omg.org/uml/

[UMT04] UML Model Transformation Tool, “UMT-QVT Homepage”, Link,

Version 0.81, 2004, http://umt-qvt.sourceforge.net/

[UPMF04] OMG, “UML Profile for Metaobject Facility (MOF) Specification”,

Version 1.0, 2004, http://www.omg.org/docs/formal/04-02-06.pdf

[USVG] S. Dumitriu, M. Gîrdea, C. HriŃcu, “uml2svg”, Version 0.12, 2005,

http://uml2svg.sourceforge.net/

 121

[VAPA02] D. Varró, A. Pataricza et al., “VIATRA – Visual Automated

Transformations for Formal Verification and Validation of UML Models

(Tool demonstration)”, 2002,

http://www.inf.mit.bme.hu/~varro/publication/ase2002_varro.pdf

[WSDL01] W3C, Ariba, IBM, Microsoft, “Web Services Description Language”,

W3C Note, Version 1.1, 2001, http://www.w3.org/TR/wsdl

[WSFL01] F. Leymann, IBM, “Web Services Flow Language” Version 1.0, 2001,

http://www-306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

[XALA04] Apache XML Project, “Xalan-Java” Link, 2004,

http://xml.apache.org/xalan-j/

[XLAN01] S. Thatte, Microsoft, “XLANG” Version 1.0, 2001,

http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm

[XMI03] OMG, “XML Metadata Interchange (XMI) Specification” Version 2.0,

2003, http://www.omg.org/technology/documents/formal/xmi.htm

[XSCH04] W3C, “XML Schema” Version 1.0, 2004,

http://www.omg.org/technology/documents/formal/xmi.htm

[XSLT99] W3C, “XSL Transformations (XSLT)”, Recommendation, Version 1.0,

1999, http://www.w3.org/TR/xslt

 122

Name: Thomas Reiter

Geburtsdatum: 7.2.1978

Geburtsort: Ried im Innkreis

Schule: 1988 – 1992 Hauptschule Obernberg am Inn

 1992 - 1997 HTL Braunau, Zweig

Nachrichtentechnik, Matura im Juli 1997

Studium: 1998 – 2005 Studium der Informatik an der JKU

Linz

November 2004 Abschluß des Bakkalaureats Informatik an der JKU

Linz

März 2005 Voraussichtlicher Abschluß des Magisterstudiums

Informatik an der JKU Linz

Sommersemester 2002 Studentenaustausch mit der University of Adelaide

Juli – Dezember 2003 Studienaufenthalt im Zuge der Diplomarbeit an der

University of Adelaide

Weitere Tätigkeiten: 1997 - 1998 Zivildienst Alten- und Pflegeheim Ried

im Innkreis

 Juli - August 1996 Entwicklungshilfe in Nicaragua

durch die Schulpartnerschaft HTL Braunau –

Polytecnico La Salle, Leon

Besondere Kenntnisse:

Sprachen Englisch, Spanisch, Mandarin

Programmierkenntnisse Java, C#, C++, SQL, Chipkartenprogrammierung,
UML, etc.

Linz, 22.02.2005

