
Towards a Common Reference Architecture
for Aspect-Oriented Modeling

A. Schauerhuber* W. Schwinger E. Kapsammer
W. Retschitzegger

M. Wimmer

Women’s Postgraduate
College for Internet

Technologies
Vienna University of
Technology, Austria

andrea@wit.tuwien.ac.at

Department of
Telecooperation

University of Linz,
Austria

wieland@schwinger.at

Information Systems Group
University of Linz,

Austria
{ek,werner}@ifs.uni-linz.ac.at

Business Informatics
Group

Vienna University of
Technology, Austria

wimmer@big.tuwien.ac.at

ABSTRACT
Aspect-orientation provides a new way of modularization by
clearly separating crosscutting concerns from non-crosscutting
ones. Although originally emerged at the programming level,
aspect-orientation meanwhile stretches also over other
development phases. Not only due to the rise of model-driven
engineering, some approaches already exist for dealing with
aspect-orientation at the modeling level. Nevertheless, concepts
from the programming level are often simply reused without
proper adaptation. Consequently, such approaches fall short in
considering the full spectrum of modeling concepts. This paper
takes a first step towards a consolidated and more comprehensive
view on aspect-orientation by discussing a common reference
architecture for aspect-oriented modeling. This reference
architecture identifies the basic ingredients of aspect-orientation
which in turn are abstracted from specific aspect-oriented
programming languages and modeling approaches.

Categories and Subject Descriptors
D.2.2 Design Tools and Techniques

General Terms
Design, Standardization, Languages, Theory

Keywords
reference architecture, aspect-oriented modeling

1. INTRODUCTION
Aspect-oriented software development (AOSD), sometimes also
called Advanced Separation of Concerns (ASoC), is a fairly
young but rapidly advancing research field. AOSD aims at
providing new ways of modularization in order to separate
crosscutting concerns from traditional units of decomposition
during software development.

Today, besides Aspect-Oriented Programming (AOP) [28],
different approaches initially not proposed under the term aspect-
oriented, such as Adaptive Programming (AP) [29], Composition
Filters (CF) [1], Subject-Oriented Programming (SOP) [21], and
Multi-Dimensional Separation of Concerns (MDSoC) [33], are
now called aspect-oriented, because the term is "catchier, more
commonly used, and less subject to ambiguous interpretation"
[13].∗

From a software development point of view, aspect-orientation
originally emerged at the programming level with AspectJ [2] as
one of the most prominent protagonists. Due to the rise of model-
driven engineering (MDE) [8], however, the aspect-oriented
paradigm is no longer restricted to the programming level but is
also more and more stretching over other phases of the
development life cycle such as requirements engineering (cf.
aspect-oriented requirements engineering, e.g., [30], [24]) or
design (cf. aspect-oriented modeling, e.g., [8], [12], [16], [25],
[39]).

Particularly in the field of aspect-oriented modeling (AOM) there
already exist several approaches, each of them having different
origins and pursuing different goals for dealing with the unique
characteristics of aspect-orientation. This entails not only the
problem of different terminologies but also leads to a broad
variety of aspect-oriented concepts. In several cases, concepts of
aspect-oriented programming languages are simply incorporated
unaltered into a modeling language failing to consider the
different levels of abstraction. Applying aspect-orientation at the
modeling level is not just injecting code at a certain point within a
program but requires the consideration of the full spectrum of
modeling concepts not present in programming languages, e.g.,
different views on the application's structure and behavior as
provided by current modeling languages such as UML [31].

This paper contributes to a consolidation of aspect-oriented
modeling by taking an initial step towards a common reference
architecture that identifies the basic ingredients of aspect
orientation, abstracted from certain AOP languages or AOM
approaches. Such a reference architecture is beneficial in three
ways. First, it provides the basis for the construction of a

∗ This research has been partly funded by the Austrian Federal
Ministry for Education, Science, and Culture, and the European
Social Fund (ESF) under grant 31.963/46-VII/9/2002.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’XX, Month X–X, XXXX, City, State, Country.
Copyright XXXX ACM X-XXXXX-XXX-X/XX/XXXX…$0.00.

framework of evaluation criteria, allowing for a structured and
programming language independent evaluation of aspect-oriented
approaches and thereby identifying their strengths and
shortcomings as demonstrated in an extended version of this
paper [37]. Second, concepts of different aspect-oriented
approaches can be mapped onto each other via the common
reference architecture, thus acting as a kind of mediator model.
Third, it could act as a blueprint in terms of a metamodel for
designing a new, unified aspect-oriented modeling language.

The remainder of the paper is organized as follows: Section 2
discusses related work for identifying the common ingredients of
aspect-orientation. On basis of this, Section 3 proposes our
common reference architecture. Section 4 reflects on our proposal
and identifies open problems and issues requiring further
investigation. Finally, Section 5 points to future research
directions.

2. RELATED WORK
Although there already exist several approaches in the area of
AOM, to the best of our knowledge there are only a few attempts
up to now, that provide a common understanding of aspect-
oriented concepts at the programming level or at the modeling
level. Some of them provide a dedicated reference architecture,
whereas others provide a set of evaluation criteria for surveying
existing aspect-oriented approaches, only. The design of our
reference architecture draws from all those sources.

In van den Berg et al. [40], an attempt towards establishing a
common set of concepts for aspect-orientation has been made,
based on previous work by Filman et al. [14]. In particular, the
concepts of two AOP languages, namely AspectJ [2] and
ComposeStar [9] have been examined and expressed in terms of
separated UML Class Diagrams. Based on these results the initial
definitions of concepts have been revised.

In Chavez et al. [5], a conceptual framework for AOP has been
proposed in terms of Entity-Relationship Diagrams. Based on this
conceptual framework an evaluation of four programming level
approaches, namely AspectJ [2], Hyper/J [23], Composition
Filters [1], and Demeter/DJ [29] is presented.

In contrast to these proposals, our reference architecture does not
only focus on programming level constructs, but takes up a more
abstract view on aspect-orientation by explicitly considering the
modeling level. Thus, these attempts are only partly applicable for
our reference architecture. Furthermore, with respect to [40], we
provide a unified reference architecture in terms of a UML Class
Diagram instead of representing the concepts of each approach
separately.

In contrast to the above mentioned work, Hanenberg et al. [20]
present a set of criteria that was used to evaluate four AOP
languages. Mik Kersten [27] also provides a comparison of four
leading AOP languages, having only AspectJ in common with
Hanenberg et al. In addition Mik Kersten also investigates
development environments provided for these AOP languages.

An extensive survey done by Chitchyan et al. [7], including also
aspect-oriented analysis and design approaches, presents the
evaluation results of 22 AOM proposals. Based on this evaluation,
which categorizes the approaches into requirements, architecture
and design approaches, an initial proposal for an integrated

aspect-oriented analysis and design process is outlined. However,
while a set of criteria has been identified, a precise definition of
some of the criteria used to evaluate the approaches is missing.

Similar, but less extensive AOM surveys - with respect to both
the set of criteria and the amount of surveyed approaches - have
been provided by Reina et al. [35] and Blair et al. [4]. While
Reina et al. [35] compare different AOM approaches with respect
to four high-level criteria, Blair et al. [4] did not only focus on
AOM, but compare several approaches in different phases of
software development. In particular, an explicit set of criteria is
provided for the phases of aspect-oriented requirements
engineering, specification, and design.

The above mentioned surveys provide a valuable source, since
they identify common criteria for aspect-orientation.
Nevertheless, these criteria have not yet been composed into a
common reference architecture. We have adopted their criteria
where appropriate and refined them so that they can be applied for
our common reference architecture at the modeling level.

3. AOM REFERENCE ARCHITECTURE
Applying aspect-oriented concepts, which were originally coined
for the programming level (e.g. by AspectJ [2]), to the modeling
level turns out to be a challenging task. This is on the one hand
due to the very specific meaning of programming level aspect-
oriented concepts and on the other hand due to different concepts
introduced by related approaches. An example for the first issue
are AspectJ's join points which are defined as “points in the
execution of the program” including field accesses, method and
constructor calls [2]1. This definition is too restricted for the
modeling level since runtime is not the primary focus of
modeling. With respect to the latter issue, an example is the
concept of aspect in AOP, where similar though different
concepts have been introduced in other approaches, e.g.,
hyperslice in Hyper/J, filter in CF, and adaptive method in
Demeter/DJ [5]. Consequently, instead of sticking with AOP
concepts, it is rather advisable to find general definitions of
aspect-oriented concepts that apply to any level in the software
development lifecycle.

In order to support the process of establishing a common
terminology, we primarily adopt the definitions presented in [40]
but refine them to be suitable for the modeling level.
Additionally, based on the surveyed approaches we extend the
definitions to provide a broad base of conceptualization of aspect-
orientation.

In Figure 1 our reference architecture for aspect-oriented
modeling is shown as a UML Class Diagram, which comprises the
concepts of aspect-orientation at a higher level of abstraction.
Thus, it represents an initial proposal for a conceptual model for
aspect-orientation modeling in the sense it is asked for in [40].
Our particular goal is to enrich the reference architecture with
appropriate semantics, herewith constituting a proper basis for a
later code generation step in the sense of MDE.

1 Admittedly, AspectJ also allows the introduction of adaptations

with respect to the program's structure, but join points are
defined with respect to runtime, only.

In the following, the concepts of the reference architecture are
described along with its major building blocks.

3.1 Concern Decomposition
Concern decomposition deals with the general decomposition of
the system under development into concerns and their
interrelationship.

Concern. Along with [40] we define a concern as an interest
which pertains to the system's development, its operation or any
other matters that are critical or otherwise important to one or
more stakeholders. A concern in this respect represents an
inclusive term for aspect and base, which is depicted using
generalization in Figure 1. We refrain from referring to
crosscutting and non-crosscutting in our reference architecture
since they represent interests with respect to a system at the level
of requirements rather than the modeling level. Aspect and base,
however, form a representation of concerns in a more formalized
language (e.g. a modeling language or a programming language).
A distinction between aspect and base concerns means supporting
the asymmetric approach to decomposition [22]. Still, the
symmetric approach, in principle, is supported by our reference
architecture by disallowing base concerns in this specific case.

Base. A base is a unit of modularization formalizing a non-
crosscutting concern. This goes in line with most programming
and modeling paradigms, where the provided units of
modularization allow for decomposing a system according to one
dimension only, called dominant decomposition [33]. The object-
oriented paradigm for example provides hierarchically ordered
units of modularization (i.e. classes and methods) in terms of a
vertical decomposition. Thus, it does not support horizontal
decomposition, i.e., crosscutting concerns, which are typically
scattered across the dominant decomposition.

Aspect. An aspect is a unit of modularization formalizing a
crosscutting concern. Aspects are related to other aspects in three
ways. First, aspects themselves may be acting as base (cf.
weavingTarget) for other aspects, i.e. an aspect may adapt another
aspect. Second, an aspect might be specialized into several sub-
aspects, thus refining2 where and how other concerns might be
adapted. Third, two or more aspects might introduce adaptations
to a concern in a way that causes conflicts (cf. Conflict), i.e.
contradicting adaptations with respect to the same element in the
model. Thus, for such aspects a conflict resolution has to be
specified defining the precedence of one aspect over another.
Which kind of conflict resolution is applicable depends on the
particular domain. This fact is represented in the reference
architecture by the abstract class ConflictResolution, which − in
form of a Strategy pattern [17] − can embrace any concrete
conflict resolution, (e.g. relative or absolute ordering) that might
be applicable.

Weaving. In AOSD the composition of aspects with other
concerns, which in turn are either bases or aspects, is called
weaving. For our purposes, we distinguish between two ways of
weaving aspects into other concerns, namely static (i.e. at design
time) and dynamic (i.e. at runtime). Thereby, one aspect of a

2 A discussion on possible refinement policies (e.g., with respect

to adaptation rules, pointcuts, and adaptations) is subject to
future work.

system may be statically composed with other concerns, whereas
another aspect may be dynamically woven, which is taken into
account by an association class (cf. Weaving). The weaving
relationship is navigable only from the aspect's side, meaning that
the concern is oblivious [15] to possible adaptations by aspects.

AdaptationRule. An aspect's adaptation rules introduce
adaptations at certain points of other concerns. Consequently, an
adaptation rule consists of an adaptation describing how to adapt
the concern, and a pointcut and an optional relative position
describing where to adapt the concern. We modeled the consists-
of relationships using weak aggregations, since adaptation,
pointcut, and relative position might be reused in other adaptation
rules.

AdaptationSubject AdaptationKind

Language

ConcernDecomposition

*

*

weavingTarget

1..*

superaspect

subaspect

*
*

Base

Weaving
dynamicity

Weaving
dynamicity

AdaptationRule

«enumeration»
RelativePositionKind
before
around
after

Adaptation

Simple
Adaptation

Structural
Element

Behavioral
Element

Element 1..*

representedAs

0..1

1

*

1 1

ownedElement
1..*

*

consistsOf consistsOf

ownedJP

Conflict
*

*

implementedBy

Simple
Pointcut

Pointcut

*

formalizedBy *

relPos:RelativePositionKind
RelativePosition

relPos:RelativePositionKind
RelativePosition

representedElement

*

* selector

1..*

owner

owner

Composite
Pointcut

1..*
composedPc

Composite
Adaptation

Aspect

JoinPoint
dynamicity

JoinPoint
dynamicity

Behavioral
Adaptation

Structural
Adaptation

JoinPointModel

Language

1..*
composedAdapt

* *

1..*

implementedBy
**

ConflictResolution

Concern

*

operator
Composition
operator

Composition

selectionMethod
Selection

selectionMethod
Selection

**

0..1

refines

consistsOf

selectedJP

Figure 1. AOM Reference Architecture

3.2 Language
The following concepts describe the language underlying the
specification of base and aspect.

Language. Depending on the current focus in the software
development lifecycle the language might represent for example a
modeling language or a programming language.

Element. Concerns are formalized using elements of a certain
language. With respect to aspect-orientation, elements serve two
purposes. First, they may represent join points and thus in the role
of join points specify where to introduce adaptations. Second,
elements of a language are used for formulating an adaptation.
Such elements are either structural elements or behavioral
elements as depicted in Figure 1.

StructuralElement. Structural elements of a language are used to
specify a system's structure.

BehavioralElement. Behavioral elements of a language are used
to specify a system's behavior.

3.3 Adaptation Subject
The adaptation subject describes the concepts required for
identifying where to introduce an aspect's adaptations.

JoinPoint. A join point specifies where an aspect might insert
adaptations. Thus, a join point is a representation of an
identifiable structural or behavioral element of the underlying
language used to capture a concern. At the same time, join points
can be either static or dynamic (cf. dynamicity attribute). Static
join points are elements of a language that can be identified based
on information available at design time (e.g. method definition).
Dynamic join points are elements of a language that can be
identified at runtime, only (e.g. method call). In this respect, the
reference architecture supports four different kinds of join points
(cf. Section 4).

JoinPointModel. The join point model comprises all elements of
a certain language where aspects are allowed to introduce
adaptations.

Pointcut. A pointcut represents a subset of the join point model,
i.e. the join points used for specifying certain adaptations. The
selection of join points as pointcuts can be done for example by
means of a query on the join point model (cf. SimplePointcut and
SelectionMethod). For reuse purposes, pointcuts can be composed
of other pointcuts (cf. CompositePointcut), which refer to the
same join point model. We refrain from associating join points
directly to an adaptation rule but instead use pointcuts as a level
of indirection, and thus allow for reusing join points in other
adaptation rules and other pointcuts.

RelativePosition. A relative position may provide further
information as to where adaptations have to be introduced. This is
necessary since in some cases, selecting join points by pointcuts,
only, is not enough to specify where adaptations have to be
inserted, since an adaptation can be introduced for example before
or after a certain join point. Still, in some other cases, a relative
position specification is not necessary, e.g., when a new attribute
is introduced into a class the order of the attributes is insignificant
(cf. multiplicity 0..1). Instead of modeling the relative position
with the adaptation (cf. AspectJ), it is modeled for reuse purposes
separately from both the pointcut and the adaptation.

3.4 Adaptation Kind
The adaptation kind comprises the concepts necessary to describe
an aspect's adaptation.

Adaptation. An adaptation specifies in what way the concern's
structure or behavior is adapted, i.e., enhanced, replaced or
deleted. This concept is similar to the commonly found definition
of an advice which represents an artifact that augments or
constraints concerns (cf. [40]) and resembles a differentiation
proposed in [20] in terms of constructive (cf. enhancement), and
destructive (cf. replacement and deletion) adaptation effects.

StructuralAdaptation. A structural adaptation comprises a
language's structural elements for adapting concerns.

BehavioralAdaptation. Likewise, a behavioral adaptation
comprises a language's behavioral elements for adapting
concerns.

CompositeAdaptation. For reuse purposes, adaptations can be
composed of a coherent set of both, structural and behavioral
adaptations. In this respect, the adaptation concept extends the
general understanding of the advice concept described in [40].

4. DISCUSSION
In the following, we reflect on our reference architecture by
further discussing certain design decisions and by pointing out
open issues that require further investigation. The discussion
follows the reference architecture's four major building blocks.

Dynamic weaving beneficial also at the modeling level. In our
reference architecture, weaving of aspects into base concerns is
possible at different points in time, either at design time or at run-
time. This design decision has been motivated by weaving
concepts in AOP. At modeling level, it still can be argued that
being able to distinguish between static and dynamic weaving of
base and aspects is advantageous for two reasons. First, if the
runtime semantics of the language's meta-model has been
specified (which, considering, e.g., UML is the case only for parts
of the language like state machines), i.e., models are executable,
dynamic weaving may happen while executing the models,
similarly to the way it happens at code level. Second, this
distinction allows specifying - at the modeling level - what
aspects need to be statically or dynamically woven into the base
program during later stages of the development process.

Adaptation Rules should be represented separately. In AOP,
adaptation rules, i.e., the specification where to adapt and how to
adapt (such as the pointcut-advice combination in AspectJ) were
specified in an intermingled way. For reusability reasons, some
AOM approaches [10], [19] provide an adaptation rule
specification that is independent from both, base and aspect. In
[10], the authors distinguish between modeling the aspect's
adaptations and modeling adaptation rules by proposing a
connector metamodel for aspect-oriented composition.
Furthermore, in [19], independence of linking technology (e.g.
AspectJ) is achieved by introducing the connector concept to link
aspect and base concerns. Along with those approaches, we
clearly separate the adaptation rule from the adaptation for
reasons of enhanced variability, reusability, and expressiveness.

Appropriate language for AOM necessary. With respect to
providing appropriate abstraction mechanisms, the question arises
to what extent existing non aspect-oriented languages need to be
extended to sufficiently cover aspect-oriented concepts.
Considering for example UML, despite of its expressive power, as
commonly known, either a heavy-weight or a light-weight
extension can be employed to cover aspect-oriented concepts.
While for a heavy-weight extension, the UML metamodel itself is
extended and can even be redefined through sub-classing of any
UML meta-class, in the light-weight case, only extensions using
stereotypes are allowed which are grouped into profiles, thus
fostering tool interoperability. Currently, the use of light-weight
and heavy-weight extensions in existing AOM-approaches is
balanced.

Multiple languages should be considered. Currently, the
reference architecture is not limited to a single language, i.e.,
different languages may be applied, first, for specifying base
concerns, second, for specifying the adaptation, and third, for
specifying adaptation rules. In this respect, drawing from the
benefits of different domain specific languages (DSL) would by
possible. This raises, however, the question to which extent these
languages may be different and how much they must have in
common to still allow for aspect weaving. Considering again the
case of UML, it has to be investigated, if it is preferable to base
these languages on the same meta-metamodel, i.e. MOF [31], or if
it is beneficial to bridge the heterogeneity between the bases' and
aspects' languages by means of a weaving model (cf. [36]).

Join points required along two orthogonal dimensions. In
Hanenberg et al. [20], join points of aspect-oriented programming
languages are categorized according to the two dimensions3,
dynamicity and feature4. Similarly, we consider join points being
categorized according to these orthogonal dimensions at modeling
level. Consequently, join points are representations of structural
or behavioral elements of a language, while at the same time, they
are also modeling level representations of static or dynamic
elements in a software system. Exemplifying those four categories
by means of UML modeling elements, structural join points
would be classes (static) and objects (dynamic), whereas
behavioral join points would be activities (static) and method calls
(dynamic). Admittedly, unlike UML, not all languages may offer
elements which allow for dynamic join points.

Nature of relative position is language dependent. For dynamic
join points, the relative position resembles a temporal
specification, for example before an event occurs. A typical
example are AspectJ’s before advice, which are adaptations for
dynamic join points, a technique called wrapping in [14]. For
static join points the relative position is defined with respect to the
element's structure. For example, if a link is added, its relative
position in terms of the participating object is specified.
Consequently, the nature of a relative position depends on both,
the kind of element representing the join point and the kind of
adaptation. Our reference architecture currently does not
explicitly cope with these dependencies.

Adaptation effect should be explicit. There exists an inherent
relationship between pointcuts or rather their relative position and
adaptations with respect to the effect an aspect has on the base.
One and the same adaptation may have an enhancement effect, a
replacement effect, or a deletion effect depending on the pointcut
and its relative position when used in the adaptation rule. For
example the relative position before, and after lead to an
enhancement, whereas in case of around the adaptation may
resemble an enhancement, a replacement, or a deletion. Because
of this interdependency, currently the adaptation effect is not

3 In literature (amongst others [27], [5], [14] we find different

interpretations of what a join point is. The focus is on
describing the join points' properties such as dynamicity and
structural & behavioral features, sometimes mixing up terms
(e.g. using static as a synonym for structural).

4 While Hanenberg et al. [20] use the term "abstraction", we
adhere to UML terminology [31] in that we distinguish between
structural and behavioral features.

explicitly represented in the reference architecture, although, this
would be beneficial since it would create more awareness of the
consequence of the aspect introduced.

5. OUTLOOK
Besides further detailing our reference architecture on basis of the
issues identified in the previous section, future work heads into
two different directions.

One crucial activity we are currently focusing on is to
demonstrate the appropriateness of our reference architecture in
terms of its unification ability. For this, we intend to specify
mappings to well elaborated existing AOM and AOP approaches.
Such mappings could be, e.g., defined on basis of OMG's QVT
proposal [34], provided that the approach in question is based on
MOF [31]. On the basis of such mapping definitions our reference
architecture could also act as a pivot model translating between
different aspect-oriented languages.

With respect to application domains for AOM, we concentrate on
context-aware web applications, similar to [3], which is due to the
existence of several projects in this area [26], [18], [38]. This new
generation of web applications, also called ubiquitous web
applications (UWA) adhere to the anytime/anywhere/anymedia-
paradigm and are required to be customizable, i.e. the adaptation
of their services towards a certain context e.g. time, location,
device, and user. Since first, customization can affect all parts of
such applications including content, hypertext and presentation
level and second, the base concerns of an UWA in terms of its
services should be oblivious to the need of customization,
customization is regarded as a crosscutting concern, which allows
making existing web applications context-aware. We are currently
investigating to what extent existing AOM approaches can be
employed for the model-driven development of such ubiquitous
web applications, or if the development of a UML profile for
AOM on basis of our reference architecture would be more
appropriate.

6. ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their very valuable and
elaborate comments.

REFERENCES
[1] M. Akşit, L. Bergmans, and S. Vural. An Object-Oriented

Language-Database Integration Model: The Composition
Filters Approach. In Proc. of the 7th European Conference
on Object-Oriented Programming, June/July 1992.

[2] AspectJ project. http://www.eclipse.org/aspectj/.
[3] H. Baumeister, A. Knapp, N. Koch, and G. Zhang.

Modelling Adaptivity with Aspects. In Proc. of the 5th Int.
Conf. on Web Engineering, LNCS 3579, 406-416, July 2005.

[4] G. Blair, L. Blair, A. Rashid, A. Moreira, J. Araújo, and R.
Chitchyan. Engineering aspect-oriented systems. In Filman
et al. [14], 379-406, 2005.

[5] J. Bézivin. On the Unification Power of Models. Journal on
Software and Systems Modeling, 4(2):171-188, May 2005.

[6] C. Chavez and C. Lucena. A Theory of Aspects for Aspect-
Oriented Software Development. In Proc. of the 17th
Brazilian Symposium on Software Engineering, Oct. 2003.

[7] R. Chitchyan, A. Rashid, P. Sawyer, A. Garcia, M. Pinto
Alarcon, J. Bakker, B. Tekinerdoğan, S. Clarke, and Andrew
Jackson. Survey of Aspect-Oriented Analysis and Design
Approaches. Technical Report AOSD-Europe-ULANC-9,
AOSD-Europe, May 2005.

[8] S. Clarke and R. J. Walker. Generic Aspect-Oriented Design
with Theme/UML. In Filman et al. [14], 425-458, 2005.

[9] ComposeStar project. http://janus.cs.utwente.nl/twiki/bin/
view/Composer/WebHome.

[10] T. Cottenier, A. Van Den Berg, and T. Elrad. Modeling
Aspect-Oriented Compositions. In Proc. of the 7th Int.
Workshop on Aspect-Oriented Modeling, Oct. 2005.

[11] T. Elrad, M. Akşit, G. Kiczales, K. Lieberherr, and H.
Ossher. Discussing aspects of AOP. Communications of the
ACM (CACM), 44(10):33-38, Oct. 2001.

[12] T. Elrad, O. Aldawud, and A. Bader. Expressing Aspects
Using UML Behavioral and Structural Diagrams. In Filman
et al. [14], 459-478, 2005.

[13] T. Elrad, R. Filman, and A. Bader. Aspect-oriented
programming. Communications of the ACM (CACM),
44(10):29-32, October 2001.

[14] R. Filman, T. Elrad, S. Clarke, and M. Akşit (eds). Aspect-
Oriented Software Development. Addison-Wesley, 2005.

[15] R. Filman and D. P. Friedman. Aspect-Oriented
Programming is Quantification and Obliviousness. In Filman
et al. [14], 21-35, 2005.

[16] R. France, I. Ray, G. Georg, and S. Ghosh. Aspect-oriented
approach to early design modelling. IEE Proceedings
Software, 151(4):173-185, Aug. 2004.

[17] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design
Patterns - Elements of Reusable Object-Oriented Software.
Addison-Wesely, 2004.

[18] F. Garzotto, P. Paolini, M. Speroni, B. Pröll, W.
Retschitzegger, and W. Schwinger. Ubiquitous Access to
Cultural Tourism Portals. In Proc. of the 3rd Int. Workshop
on Presenting and Exploring Heritage on the Web (PEH'04),
in conj. with DEXA 2004, Aug./Sept. 2004.

[19] I. Groher, S. Bleicher, C. Schwanninger. Model-Driven
Development for Pluggable Collaborations. In Proc. of the
7th Int. Workshop on Aspect-Oriented Modeling, Oct. 2005.

[20] S. Hanenberg. Design Dimensions of Aspect-Oriented
Systems. PhD Thesis, University Duisburg-Essen, Oct. 2005.

[21] W. Harrison and H. Ossher. Subject-Oriented Programming
(A Critique Of Pure Objects). In Proc. of the 8th Conf.
Object-Oriented Programming Systems, Languages, and
Applications, Sept. 1993.

[22] W. Harrison, H. Ossher, and P. Tarr. Asymmetrically vs.
Symmetrically Organized Paradigms for Software
Composition. Technical report, IBM Research Division,
Thomas J. Watson Research Center, Dec. 2002.

[23] Hyper/J project. http://www.research.ibm.com/hyperspace
/HyperJ/HyperJ.htm.

[24] I. Jacobson and P. Ng. Aspect-Oriented Software
Development with Use Cases. Addison-Wesley, 2005.

[25] M. Kandé, J. Kienzle, and A. Strohmeier. From AOP to
UML - A Bottom-Up Approach. In Proc. of the, 1st
Workshop on Aspect-Oriented Modeling, March 2002.

[26] G. Kappel, B. Pröll, W. Retschitzegger, and W. Schwinger.
Customisation for Ubiquitous Web Applications - A
Comparison of Approaches. Int. Journal of Web Engineering
and Technology, 1(1), Inderscience Publishers 2003.

[27] Kersten. AOP tools comparison (Part 1 & 2). IBM Developer
Works, http://www-128.ibm.com/developerworks
/java/library/j-aopwork1/, March 2005.

[28] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. Loingtier, and J. Irwin. Aspect-Oriented
Programming. In Proc. of the 11th European Conference on
Object-Oriented Programming, 1997.

[29] K. Lieberherr. Adaptive Object-Oriented Software: the
Demeter Method with Propagation Patterns. PWS
Publishing Company, 1996.

[30] A. Moreira, J. Araújo, and A. Rashid. A Concern-Oriented
Requirements Engineering Models. In Proc. of the 17th Int.
Conf. on Advanced Information Systems Engineering, 2005.

[31] Object Management Group (OMG). Meta Object Facility
(MOF) 2.0 Core Specification Version 2.0.
http://www.omg.org/docs/ptc/04-10-15.pdf, Oct. 2004.

[32] Object Management Group (OMG). UML Specification:
Superstructure Version 2.0. http://www.omg.org/docs
/formal/05-07-04.pdf, Aug. 2005.

[33] H. Ossher and P. Tarr. Multi-Dimensional Separation of
Concerns using Hyperspaces. Technical Report 21452, IBM
Research Report, April 1999.

[34] QVT-Merge Group: Revised Submission for MOF 2.0. OMG
Query/Views/Transformations RFP(ad/2002-04-10), Version
2.0, ad/2005-03-02, March 2005.

[35] A. Reina, J. Torres, and M. Toro. Separating concerns by
means of UML-profiles and metamodels in PIMs. In Proc. of
the 5th Aspect-Oriented Modeling Workshop, October 2004.

[36] T. Reiter, E. Kapsammer, W. Retschitzegger, and W.
Schwinger. Model Integration Through Mega Operations. In
Proc. of the Workshop on Model-driven Web Engineering
(MDWE2005), July 2005.

[37] A. Schauerhuber, W. Schwinger, W. Retschitzegger, M.
Wimmer. A Survey on Aspect-Oriented Modeling
Approaches. Technical Report, http://wit.tuwien.ac.at
/people/schauerhuber, January. 2006.

[38] W. Schwinger, Ch. Grün, B. Pröll, W. Retschitzegger, H.
Werthner. Pinpointing Tourism Information onto Mobile
Maps – A Light-Weight Approach. In Proc. of ENTER 2006
- International Conference on Information Technology and
Travel & Tourism, January 2006.

[39] D. Stein, S. Hanenberg, and R. Unland. An UML-based
Aspect-Oriented Design Notation. In Proc. of the 1st Int.
Conf. on Aspect-Oriented Software Development, 2002.

[40] K. van den Berg, J. M. Conejero, and R. Chitchyan. AOSD
Ontology 1.0 - Public Ontology of Aspect-Orientation.
Technical Report AOSD-Europe-UT-01, AOSD-Europe,
May 2005.

