
  

XML-based EIS – 
A Meta Schema for Mapping  

XML Schema to Relational DBS 

Elisabeth Kapsammer  
Information Systems Group (IFS), Department of Bioinformatics 

Johannes Kepler University Linz, Austria 
ek@ifs.uni-linz.ac.at 

http://www.ifs.uni-linz.ac.at/ifs/staff/kapsammer/kapsammer.html 

Abstract. Enterprise information systems (EIS) often employ relational 
database systems to store their content. At the same time, XML constitutes the 
dominant standard for data exchange as well as for the hypertext level of web-
enabled EIS. Thus, the integration of XML with relational database systems to 
allow the storage, retrieval, and update of XML documents is of paramount 
importance in the context of EIS. Data model heterogeneity and schema 
heterogeneity, however, make this a challenging task. This paper proposes X-
Ray, a generic approach facilitating the composition of XML documents out of 
a relational database system as well as the decomposition of XML documents 
to store them within a relational database system in a fully transparent way. 
This is achieved by means of a generic meta schema that stores all relevant 
information for the composition and decomposition process. This meta schema 
covers both, the concepts of DTDs and XML Schema concepts. 

1 Introduction 

Enterprise information systems (EIS) typically employ databases (DB) to store their 
content. At the same time, the Extensible Markup Language (XML) [16] is fast 
emerging as the dominant standard for data exchange between different EIS [19], 
[20]. Furthermore, regarding the realization of EIS based on Web technology, where 
databases constitute the content level, XML has become the first choice for 
representing data at the hypertext level of a web site, i.e., the logical composition of 
web pages and the navigation among them [14]. Because of the great importance of 
XML and database systems (DBS) in the context of EIS, the integration of them with 
respect to storage, retrieval, and update is a major need. Such an integration also 
enables the transformation of legacy data to various data formats via XML. 

Regarding the DBS’s data model underlying an XML-based EIS used for the 
integration we concentrate on the relational data model, which is especially 
motivated by the fact that in EIS currently, a significant amount of data is stored in 



2 Elisabeth Kapsammer 
 

pre-existing relational databases (RDBS) and will continue to be used by existing 
EIS in the future [5]. There is an increasing demand to publish existing relational 
data as XML according to existing standardized XML schemata in terms of a 
document type definition (DTD) [16] or the more powerful XML Schema language 
[17]1 or, vice versa, for storing XML documents in existing DB incorporated by EIS. 

Concerning the integration with RDBS one can distinguish three alternatives as 
well as combinations thereof. XML documents as a whole can be stored within a 
single database attribute, XML documents may be decomposed in some way 
(“shredding”), e.g., into a graph structure and stored into appropriate database 
tables, and finally, the structure of XML documents may be mapped to a 
corresponding relational schema wherein XML documents are stored according to 
the mapping (cf., e.g., [3]). Only the last approach allows to reuse existing relational 
schemata and thus is further investigated in this paper. One major challenge of this 
schema-to-schema mapping approach is the existence of data model heterogeneity 
and schema heterogeneity. In this respect, an important demand on a particular 
integration solution is that the autonomy of both the XML schema specification and 
the relational schema should be preserved in that neither of them has to be changed. 

We have already proposed a generic approach that solves such an integration 
need prevalent in EIS in [7], [8], [9], [10]. X-Ray facilitates the composition of XML 
documents out of a relational database system as well as the decomposition of XML 
documents to store them within a relational database system in a fully transparent 
way. The key mechanism for the genericity of X-Ray is constituted by a meta 
schema that stores all relevant information to map DTDs and relational schemata. 
Since the adoption of XML Schema as schema specification standard for XML 
documents by the W3C in addition to DTDs, more and more XML documents rely 
on XML Schema. Therefore, this paper discusses the enhancement of X-Ray to 
support XML Schema, primarily focusing on the design of the meta schema. 

The remainder of the paper is organized as follows. Section 2 discusses several 
issues of data model heterogeneity by comparing concepts of RDBS and XML 
schema specification languages. Section 3 gives an overview of X-Ray in terms of its 
design goals and architecture. Section 4 gives an insight into the meta schema, 
focusing on the XML Schema part. In Section 5 related work is compared to X-Ray. 
Finally, Section 6 concludes the paper with an outlook to future work. 

2 A Tour on DTDs, XML Schema, and RDBS  

Analyzing and understanding the different kinds of heterogeneities between DTDs, 
XML Schema, and RDBS constitutes the prerequisite for designing an appropriate 
meta schema for mediation purposes. Therefore, this section discusses the most 
crucial heterogeneity aspects. For a more detailed discussion it is referred to [9]. 

2.1 DTD versus XML Schema  
The main differences between DTDs and XML Schema concern the issues of syntax, 
namespaces, integration mechanisms, data types, identification, and references. First 

 
1  Note, that in the following, we use a capital letter to denote the XML Schema standard and a small letter 

to depict any XML schema. 



XML-based EIS – A Meta Schema for Mapping XML Schema to Relational DBS 3
 

of all, concerning the syntax, XML Schema is based on XML itself instead of using a 
proprietary syntax as done by DTDs. Second, opposed to DTDs, XML Schema 
supports namespaces and provides improved mechanisms to integrate different 
schemata. Third, concerning typing mechanisms XML Schema distinguishes 
between elements and types, whereas DTDs allow to specify element types, only. 
XML Schema supports not only the definition of types but also elements with same 
name, but different structure. In addition, DTDs support a few data types, only, 
whereas XML Schema provides various data types and user defined type hierarchies. 
Fourth, DTDs offer limited concepts to realize unique identifiers and references, in 
form of the data types ID and IDREF(S). These data types may be applied to XML 
attributes, only, their values are limited to so called XML names. Thus, neither 
numbers nor composite keys are allowed. The scope of uniqueness of an ID value 
and the references established by IDREF(S) comprise the whole XML document, 
instead of parts thereof. In contrast, XML Schema provides a powerful key and 
keyref concept comparable to the key concept well known from relational DBS. 

2.2 XML versus RDBS 
Similar to heterogeneities between DTDs and XML Schema, there are also several 
kinds of heterogeneities with respect to RDBS. These comprise the relevance of a 
schema, structuring and typing mechanisms, storage of values, uniqueness of names, 
identification, relationships, and order. First, concerning the schema relevance aspect 
XML schemata are optional, can be designed a posteriori, and are implicitly part of 
each XML document in form of tags. In RDBS, schemata are mandatory, have to be 
specified a priory, and are not replicated as part of the content. Second, regarding 
structuring and typing mechanisms, whereas RDBS allow a flat structure made up of 
relations comprising attributes, only, XML supports an arbitrary nested structure, 
consisting of elements of certain element types, and attributes. Element types can be 
categorized along two dimensions. The first dimension depicts whether the element 
type contains an atomic domain whereas the second dimension denotes whether the 
element type contains a composite domain. This distinction results in four different 
kinds of element types, i.e., atomic, composite with element content or mixed 
content, respectively, and empty. Third, looking at the storage of values, in RDBS 
values are stored within attributes, only, whereas XML allows to store values within 
both, elements and attributes. Fourth, regarding uniqueness of names, the name of a 
relation is required to be unique within the whole relational schema, similar to the 
name of an XML element type being unique throughout the DTD. XML Schema is 
more flexible in this respect since the name of an XML element type has to be 
unique within a so-called symbol space, only. Moreover, by means of so called 
namespaces [15], XML allows element types having the same name by using 
different namespace prefixes. The name of an XML attribute has to be unique within 
its element type, again similar to an RDBS attribute’s name which has to be unique 
within its relation. Fifth, concerning identification and relationships, RDBS provide 
the well-known key and foreign key concepts that realize uniqueness of possibly 
composed values within a single relation and typed references. Finally, elaborating 
on the significance of order, in RDBS relations and tuples are not ordered, whereas 
in XML, element types and elements occur in a certain order. 



4 Elisabeth Kapsammer 
 

3 X-Ray at a Glance 

This Section gives an overview of X-Ray by focusing on the underlying design goals 
and by introducing its architecture. 

3.1 Design Goals 
The development of X-Ray as a core middleware technology for EIS was driven by 
the following design goals: In order to allow the integration of existing XML 
schemata and existing RDBS schemata, which shall remain autonomous, X-Ray 
supports a loose coupling by defining explicit mapping knowledge. To achieve 
mapping transparency and reduce maintenance effort, X-Ray stores the mapping 
knowledge reified within a DB. In order to support multiple schemata at both sides, 
X-Ray allows to map a certain schema to multiple schemata at the other side. To 
enhance its universal applicability X-Ray supports both publishing as well as storage 
of XML documents. To establish schema transparency, X-Ray provides a virtual 
XML view over the RDBS, being the target of a query when accessing X-Ray. 
Finally, to provide homogeneous access, X-Ray realizes an XML-centric solution by 
using XQuery as query language to access XML data stored within the RDBS. 

3.2 Architecture 
The architecture of X-Ray consists of three main parts: the generic meta schema, the 
mapping knowledge editor, and the composer/decomposer component (cf. Fig. 1). 

Mapping
Knowledge

Editor

Domain DB Meta Schema 
Repository

Meta Schema

ResultSQL Query

Composer/Decomposer

XQuery......
......
......

......

......

......
XML Doc.
<a>

<b>...</b>
<c d=.../>

</a>

XML Documents and 
XML Schema Specifications

......

......

......

......

......

......

......

......

......
......
......
......

XML Doc.
<a>

<b>...</b>
<c d=.../>

</a>

XML Documents and 
XML Schema Specifications

Mapping
Knowledge

Editor

Mapping
Knowledge

Editor

Domain DBDomain DB Meta Schema 
Repository

Meta Schema

Meta Schema 
Repository

Meta Schema

Meta Schema 
Repository

Meta SchemaMeta Schema

ResultSQL Query

Composer/Decomposer

XQuery......
......
......

......

......

......
XML Doc.
<a>

<b>...</b>
<c d=.../>

</a>

......

......

......
......
......
......

XML Doc.
<a>

<b>...</b>
<c d=.../>

</a>

XML Documents and 
XML Schema Specifications

......

......

......

......

......

......

......

......

......
......
......
......

XML Doc.
<a>

<b>...</b>
<c d=.../>

</a>

......

......

......
......
......
......

XML Doc.
<a>

<b>...</b>
<c d=.../>

</a>

XML Documents and 
XML Schema Specifications

 
Fig. 1. Architecture of X-Ray 

Before X-Ray can be used for storing and retrieving XML documents, the mapping 
knowledge required for mapping a certain XML schema to a certain relational 
schema has to be specified in an initialization phase. To support this task, the X-Ray 
architecture provides a mapping knowledge editor. On the basis of a database schema 
and an XML schema, the user may interactively specify the required mappings, 
guided by proposed mapping patterns (cf. [9]). As soon as the system is initialized 
with the mapping knowledge which is stored within the meta schema repository, the 
user is able to transparently issue queries using XQuery [18] against a virtual XML 
view. Utilizing the mapping knowledge, the query is decomposed into corresponding 
SQL queries on the relational database. The result is used to compose XML 
documents out of flat relational data. The composer/decomposer component serves 



XML-based EIS – A Meta Schema for Mapping XML Schema to Relational DBS 5
 

for storing and retrieving XML documents and therefore performs all necessary 
transformations based on the mapping knowledge. A first prototype of X-Ray, 
implemented on basis of Java and Oracle9i is already operational. Fig. 2 shows the 
mapping knowledge editor and the interface of the composer/decomposer component 
responsible for storing and retrieving data. 

File       Concepts Metadatabase          Options HelpFile       Concepts Metadatabase          Options Help

Company

<Employee>
<Name>Schmid</Name>

</Employee>
<Employee>

<Name>Baker</Name>
</Employee>

for $d in $doc/Company/Employee
return <Employee>{$d/Name}</Employee>

CompanyCompany

<Employee>
<Name>Schmid</Name>

</Employee>
<Employee>

<Name>Baker</Name>
</Employee>

for $d in $doc/Company/Employee
return <Employee>{$d/Name}</Employee>

Mapping Knowledge Editor

Composer/Decomposer

 
Fig. 2. Mapping Knowledge Editor and Composer/Decomposer of X-Ray 

 

The mapping knowledge editor displays on the left hand side a certain schema for 
XML documents by means of graphically representing an XML Schema, whereas 
the right hand side shows a relational schema comprising relations together with 
their attributes. Mappings between these schemata are depicted by lines connecting 
them in an proper way. The composer/decomposer shows the choice of a mapping 
between two schemata and the selection of a particular root element. With respect to 
this choice, an XQuery can be issued and the corresponding result is displayed. 

4 Meta Schema of X-Ray 

The insights gained previously concerning data model heterogeneity and the design 
goals provide the basis for the meta schema. The main task of this meta schema is to 
mediate between heterogeneous concepts at the XML side and the relational side. 
Thus, it provides the basis for EIS, automatically composing XML data out of the 
RDB when requested and decompose them when they have to be stored.  

4.1 Overall Structure of the Meta Schema 
Basically, the meta schema consists of three parts describing the relevant meta 
knowledge (cf. the UML  package diagram in Fig. 3). The DBSchema part is 



6 Elisabeth Kapsammer 
 

responsible for storing information about the relational schemata that shall be 
mapped to XML schemata. It contains information about relations, database 
attributes, relationships, and joins. Analogously, the XMLSchema part stores 
information about XML documents as specified by means of DTDs and XML 
Schemata, respectively. Finally, the XMLDBSchemaMapping component stores the user-
defined mapping knowledge between DBSchema and XMLSchema. The goal of 
XMLDBSchemaMapping is to bridge both data model heterogeneity and schema 
heterogeneity in order to support a proper mapping. 

XMLSchemaDBSchema XMLDBSchemaMapping
<<import>> <<import>>

XMLSchemaXMLSchemaDBSchemaDBSchema XMLDBSchemaMappingXMLDBSchemaMapping
<<import>> <<import>>

 
Fig. 3. Basic Parts of the X-Ray Meta Schema 

In X-Ray, a database schema is not limited to be mapped to a single XML schema 
but may be mapped to several XML schemata and vice versa. Concerning the storage 
of the meta knowledge, X-Ray comprises both a relational representation of the meta 
schema stored within a relational database and an object-oriented representation for 
main memory mapping. The latter is being initialized with the content of the 
relational meta schema at the beginning of an X-Ray session, herewith allowing an 
efficient composition and decomposition of XML documents at runtime. The object-
oriented representation is depicted in the following in terms of UML class diagrams. 
Thereby, it is focused on the XMLSchema part, whereby, for representation 
convenience, we concentrate on several classes and relationships, only. For details 
about the DBSchema and the XMLDBSchemaMapping part it is referred to [9]. 

4.2 XMLSchema Part of the Meta Schema 
As already mentioned, the XMLSchema part stores information about both, DTDs and 
XML Schemata. Note, that X-Ray currently supports not the full range of concepts 
offered by the XML Schema standard. The selection of concepts supported by X-Ray 
in this first stage of development was driven by Pareto’s 80/20 rule, since practice 
[11] has shown that there is a bundle of core XML Schema concepts which is used 
for most problems at hand. For discussion of those concepts not currently supported 
by our meta schema it is referred to Section 6. To reduce complexity, XMLSchema is 
composed into four core packages, namely XS_SchemaComposition, XS_Types, and 
two sub packages (XS_SimpleUDTypes and XS_ComplexUDTypes), DocumentContent, 
and ElementContent (cf. Fig. 4).  

XMLSchema

XS_SchemaComposition

XS_Types

DocumentContent

ElementContentXS_SimpleUDTypes XS_ComplexUDTypes

<<import>>

<<import>>
<<import>>

<<import>>

XMLSchema

XS_SchemaCompositionXS_SchemaComposition

XS_Types

DocumentContentDocumentContent

ElementContentElementContentXS_SimpleUDTypesXS_SimpleUDTypes XS_ComplexUDTypesXS_ComplexUDTypes

<<import>>

<<import>>
<<import>>

<<import>>

 
Fig. 4. Core Packages of XMLSchema 

Note, packages prefixed with XS_ store knowledge specific to information retained in 
XML Schemata and will be further discussed in this paper. DocumentContent and 



XML-based EIS – A Meta Schema for Mapping XML Schema to Relational DBS 7
 

ElementContent describe information relevant for both, DTDs and XML Schema 
and are described in [9], discussing a meta schema for DTDs. The packages 
XS_SchemaComposition, XS_Types, XS_SimpleUDTypes, and XS_ComplexUDTypes are 
described in the following in more detail. 
The package XS_SchemaComposition allows to store information about XML 
Schema documents, their associated namespaces as well as the composition structure 
of different XML Schema documents (cf. Fig. 5). A namespace may be assigned to 
an XML Schema by the hasTargetNS relationship, that allows to associate a prefix 
with the namespace via an association class. Concerning the composition structure, 
three different kinds of relationships between documents can be distinguished, 
covered in the meta schema by using recursive associations, namely include to 
incorporate documents of the same namespace or without namespace, redefine, a 
special form of include that enables to change certain specifications, and import, 
allowing to combine XML Schema documents of different namespaces. Whether 
namespaces of the integrated schemata may be the same or not is determined by 
appropriate constraints. The fact that redefine is a special form of include is 
expressed by means of inheritance between the respective associations, whereby the 
specialized relationship redefines is extended by the association class 
Redefinition, to specify further details. Similar to hasTargetNS the relationship 
imports allows to assign a prefix in the context of the respective schema import. 

0..1 XMLSchemaNamespace

prefix [o..1]prefix [o..1] includes

hasTargetNShasTargetNS 1..*

*
* * *

*
*

redefines

imports

prefix [o..1]prefix [o..1]

Redefinition
{none

or
same}

{none or different}

XS_SchemaComposition

 
Fig. 5. Meta Schema of XML Schema Composition and Namespace 

XS_Types is responsible for providing all necessary information concerning different 
kinds of types supported by XML Schema, comprising the differentiation in built-in 
types, i.e., predefined types versus user defined types as well as in simple types 
versus complex types, expressed by inheritance relationships (cf. Fig. 6). Predefined 
types comprise, for instance, string, integer, date, but also some special ones like 
anyURI to represent URIs and QName (qualified name) to specify a name that may 
have a namespace prefix. Simple types specify domains for atomic values, whereas 
complex types specify domains that hold nested elements, for instance.  

XSType

XSComplexTypeXSSimpleTypeXSUserDefTypeXSBuiltInType

XSSimpleBuiltInType XSSimpleUserDefType XSComplexUserDefType

XS_Types

 
Fig. 6. Meta Schema of XML Schema Types 

Resultant combinations supported by XML Schema, which are depicted in Fig. 6 by 
means of appropriate specializations, are simple built-in types (XSSimpleBuiltIn 



8 Elisabeth Kapsammer 
 

Type) as well as simple and complex user defined types (XSSimpleUserDefType and 
XSComplexUserDefType, respectively). Concrete occurrences of the latter two are 
described in corresponding sub packages. 
XS_SimpleUDTypes allows to specify alternatives of simple user defined types, 
expressed by specializations of XSSimpleUserDefType in Fig. 7. All these 
alternatives are connected to XSimpleType by respective relationships, denoting 
different roles the type may play. The alternatives are restrictions (XSRestriction) 
of simple types (role base), unions (XSUnion) of simple types (role memberType), and 
finally, lists (XSList) of simple types (role itemType). By means of restrictions it is 
possible to specify enumerations, patterns, and lower and upper limits, for instance. 
This is in contrast to DTDs, where just enumerations are supported. Further, 
enumerations in DTDs are restricted to be of type string and may be applied to XML 
attributes, only. This limitation is reflected in the meta schema part for DTDs [9]. 

XSSimpleType

XSSimpleUserDefType

XSRestriction XSUnion XSList

base 1

**

1 itemType

*

1..* memberType

XS_SimpleUDTypes

 
Fig. 7. Meta Schema of XML Schema Simple User-Defined Types 

XS_ComplexUDTypes allows to store different kinds of complex user defined types, 
expressed by specializations of XSComplexUserDefType (cf. Fig. 8). First, there are 
composite types with element content (XSCompositeType ElemContent) and with 
mixed content (XSCompositeTypeMixedContent), both containing nested elements, 
whereby the latter in addition contains atomic values in between the nested elements. 
Second, there are special kinds of types also called complex types, namely types with 
an atomic value together with attributes (XSAtomicTypeWithAttr) and empty types 
possessing neither element content nor an atomic value (XSEmptyType).  

XSCompositeType XSAtomicTypeWithAttr XSEmptyType

XSAttribute*

1..*

1baseXSCompositeType
MixedContent

XSCompositeType
ElemContent

*

XSComplexUserDefType

XSSimpleType

*

*

XS_ComplexUDTypes

extension restriction
** 0..1 0..1

 
Fig. 8. Meta Schema of XML Schema Complex User-Defined Types 

The former holds a relationship to XSAttribute, representing a specialization of the 
general relationship between XSComplexUser DefType and XSAttribute, in that the 
actual type must at least obtain one Attribute. Finally, complex user defined types 
may be extended and restricted, respectively, being depicted in Fig. 8 by recursive 
relationships of class XSComplexUserDefType. 



XML-based EIS – A Meta Schema for Mapping XML Schema to Relational DBS 9
 

5 Related Work 

In [9], we provide an in-depth comparison of X-Ray to thirteen related approaches, 
among them research prototypes like LegoDB [2], SilkRoute [4], and XTABLES [5] 
as well as XML support of commercial RDBS, namely DB2 [1], Oracle [6], and 
SQLServer [13]. In the following, the most distinguishing characteristics of X-Ray 
with respect to the compared approaches will be summarized. Most of the 
approaches hard-code the mapping knowledge and about one-third reifies the 
mapping knowledge within files. Only one approach reifies the mapping knowledge 
within a database as X-Ray does, thus ensuring mapping transparency and easing 
maintenance of mapping knowledge. Only a few of the approaches support multiple 
schemata at the DB-side, whereas half of them support multiple schemata at the 
XML-side. Only one of these approaches supports multiple schemata at both sides, 
like X-Ray does by allowing multiple relationships between the reified concepts of 
the schemata to be defined the meta schema. About one-third serves for both, 
publishing and storing of XML documents and thus, provides a unified approach as 
X-Ray does. Most approaches provide access via the XML schema side, one 
approach allows to access the mapping knowledge as X-Ray does and thus to reason 
about the mapping knowledge by querying the DB storing the mapping knowledge. 

6 Outlook 

Future work goes into three different directions. First, XML Schema concepts 
currently not supported by the meta schema and the prototype, respectively, have to 
be investigated and incorporated appropriately. Concepts actually not supported by 
the prototype are complex types with mixed content, simple user-defined types, 
documentation, notations, the any concept, as well as element and attribute groups. 
Whereas element and attribute groups represent valuable concepts to facilitate reuse 
and thus, should be incorporated, the any concept enables XML documents or parts 
thereof to contain arbitrary data, not necessarily conforming to a particular part of an 
XML schema. Since this is in contrast to the philosophy followed by X-Ray, this 
concept could be supported by mapping such elements or attributes to single 
attributes of an RDBS relation, only, instead of decomposing them and mapping 
them to different attributes.  

Second, it has to be elaborated to which extent existing algorithms for the semi-
automatic detection of heterogeneities and the generation of subsequent mapping 
knowledge (cf., e.g., [12]) could be employed in X-Ray, to at least partly relieve the 
user from the burden of defining the mapping knowledge manually. It has to be 
emphasized, however, that the automatic generation of mapping knowledge, i.e., 
without user interaction, is problematic in case of schemata developed independently 
of each other. Such an automatic generation would be especially feasible for the 
simple case where one schema should be derived from another, already existing 
schema, which is, however, not the focus of X-Ray. 

Third, the approach of X-Ray is currently applied in the realization of ubiquitous 
web-enabled EIS, i.e., EIS relying on the anytime/anywhere/anymedia paradigm, 
being context-aware with respect to time, location, device, and user preferences, for 
instance. The goal is to employ X-Ray to mediate between existing XML-based 



10 Elisabeth Kapsammer 
 

context and content stored in relational databases [11]. With X-Ray, maintainability 
and changeability of context data could be enhanced, since the mapping knowledge 
is not hard-coded but rather reified within a meta schema. The meta schema would 
allow to automatically compose context data out of an RDBS when requested and 
decompose them when they have to be stored. 

References 

[1] S.E. Benham, IBM XML-Enabled Data Management Product Architecture and 
Technology, XML Data Management, Native XML and XML-Enable Database 
Systems, A. Chaudhri, et al. (eds.), Addison Wesley, 2003. 

[2] P. Bohannon, J. Freire, J. Haritsa, M. Ramanath, R. Prasan, and J. Simeon, Bridging the 
XML-Relational Divide with LegoDB: A Demonstration, Proc. of ICDE, 2003. 

[3] A. Deutsch, et al., MARS: A System for Publishing XML from Mixed and Redundant 
Storage, Proc. of the Int. Conf. On Very Large Databases (VLDB), Germany, 2003. 

[4] M.F. Fernandez, et al., SilkRoute : a framework for publishing relational data in XML, 
Published in ACM Transactions on Database Technology , 27(4) , Dec. 2002. 

[5] J. Funderburk, G. Kiernan, J. Shanmugasundaram, E. Shekita, C. Wei, XTABLES: 
Bridging Relational Technology and XML, IBM Systems Journal 41(4), 2002. 

[6] U. Hohenstein, Supporting XML in Oracle9i. XML Data Management, Native XML and 
XML-Enable Database Systems, A. Chaudhri, et al. (eds.), Addison Wesley, 2003. 

[7] G. Kappel, E. Kapsammer, S. Rausch-Schott, W. Retschitzegger, X-Ray - Towards 
Integrating XML and Relational Database Systems, Proc. of the 19th Int. Conf. on 
Conceptual Modeling (ER), LNCS 1920, Springer, USA, Oct. 2000. 

[8] G. Kappel, E. Kapsammer, W. Retschitzegger, Architectural Issues for Integrating XML 
and Relational Database Systems – The X-Ray Approach, Proc. of the Workshop on 
XML Technologies and Software Engineering, Toronto, May 2001. 

[9] G. Kappel, E. Kapsammer, W. Retschitzegger, Integrating XML and Relational 
Database Systems, World Wide Web Journal (WWWJ), Kluwer Academic Publishers, 
Vol. 7(4), December 2004, pp. 343-384 

[10] G. Kappel, E. Kapsammer, W. Retschitzegger, XML and Relational Database Systems – 
A Comparison of Concepts, Proc. of the 2nd Int. Conf. on Internet Computing (IC), 
CSREA Press, Las Vegas, USA, June 2001. 

[11] E. Kapsammer, et al., Bridging Relational DB to Context-Aware Services, Proc. of the 
Workshop on Ubiquitous Mobile Information Systems (UMICS), Portugal, June 2005. 

[12] E. Rahm, P. A. Bernstein, A survey of approaches to automatic schema matching, 
VLDB Journal, 10/4, Dec. 2001, pp. 334-350. 

[13] M. Rys, XML Support in Microsoft SQL Server 2000, in: Native XML and XML-
Enable Database Systems, A. Chaudhri, et al. (eds.), Addison Wesley, 2003. 

[14] M. Schrefl, M. Bernauer, E. Kapsammer, B. Pröll, W. Retschitzegger, T. Thalhammer, 
Self-Maintaining Web Pages, Information Systems, Int. Journal, 28(8), Elsevier, 2003.  

[15] W3C, Namespaces, Jan. 1999, www.w3.org/TR/1999/REC-xml-names-19990114. 
[16] W3C, XML 1.0 (2nd ed.), Oct. 2000, www.w3.org/TR/2000/REC-xml-20001006. 
[17] W3C, XML Schema, May 2001, www.w3.org/XML/Schema. 
[18] W3C, XQuery 1.0, May 2003, www.w3.org/TR/xquery. 
[19] Y.-H. Yao, A. J. C. Trappey, P.-S. Ho, XML-based ISO9000 electronic document 

management system, Robotics and Computer Manufacturing, Vol. 19/4, Aug. 2004. 
[20] D.C. Yen, S.-M. Huang, C.-Y. Ku, The Impact and Implementation of XML on 

Business-to-Business Commerce, Computer Standards & Interfaces, Vol. 24/4, 2002. 


