
Lifting Metamodels to Ontologies:
A Step to the Semantic Integration of

Modeling Languages1

Gerti Kappel1, Elisabeth Kapsammer2, Horst Kargl1, Gerhard Kramler1,
Thomas Reiter2, Werner Retschitzegger2, Wieland Schwinger3, and Manuel Wimmer1

1 Business Informatics Group, Vienna University of Technology
{gerti|kargl|kramler|wimmer}@big.tuwien.ac.at

2 Information Systems Group, Johannes Kepler University Linz
{ek|tr|wr}@ifs.uni-linz.ac.at

3 Dept. of Telecooperation, Johannes Kepler University Linz
wieland.schwinger@jku.at

Abstract. The use of different modeling languages in software development
makes their integration a must. Most existing integration approaches are meta-
model-based with these metamodels representing both an abstract syntax of the
corresponding modeling language and also a data structure for storing models.
This implementation specific focus, however, does not make explicit certain
language concepts, which can complicate integration tasks. Hence, we propose
a process which semi-automatically lifts metamodels into ontologies by making
implicit concepts in the metamodel explicit in the ontology. Thus, a shift of fo-
cus from the implementation of a certain modeling language towards the ex-
plicit reification of the concepts covered by this language is made. This allows
matching on a solely conceptual level, which helps to achieve better results in
terms of mappings that can in turn be a basis for deriving implementation spe-
cific transformation code.

1 Introduction

The shift from code-centric to model-centric software development places models as
first-class entities in model-driven development processes. A rich variety of modeling
languages and tools are available supporting development tasks in certain domains.
Consequently, the exchange of models among different modeling tools and thus the
integration of the respective modeling languages becomes an important prerequisite
for effective software development processes. Due to a lack of interoperability, how-
ever, it is often difficult to use tools in combination, thus the potential of model-
driven software development cannot be fully exploited.
In collaboration with the Austrian Ministry of Defense and based on experiences
gained in various integration scenarios, e.g., [17], [27] we are currently realizing a

1 This work has been partly funded by the Austrian Federal Ministry of Transport, Innovation

and Technology (BMVIT) and FFG under grant FIT-IT-810806.

system called ModelCVS which aims at enabling tool integration through transparent
transformation of models between metamodels representing different tools’ modeling
languages. However, metamodels typically serve as an abstract syntax of a modeling
language and often also as an object-oriented data structure in which models are
stored. A direct integration of different modeling languages by their metamodels is
not a trivial task, and often leads to handcrafted solutions created in an error-prone
process usually inducing high maintenance overheads. The integration can be made
easier, when concentrating on the concepts described by a language, only, without
needing to worry how the language implements these concepts. Geared towards cap-
turing knowledge in a certain domain, ontologies can help to explicitly represent the
concepts of a language, and thus concentrate the integration task on a solely concep-
tual level. Furthermore, ontologies enable tasks like logical reasoning and instance
classification that can yield additional benefits for semantic integration.

In accordance with the general understanding of the term, we refer to the process
of preparing a modeling language for such integration on a conceptual level as lifting,
which allows to transform a metamodel (abstract syntax) into an ontology represent-
ing the concepts covered by the modeling language. The lifting procedure, however,
cannot be carried out straight-forwardly, as it has to achieve a shift in focus, which
stems from the fact that although metamodeling and ontology engineering share a
common ground in conceptual modeling in general, since ontologies and metamodels
are designed with different goals in mind. Metamodels prove to be more implementa-
tion-oriented as they often bear design decisions that allow producing sound, object-
oriented implementations. Due to this, language concepts can be hidden in a meta-
model, which during the lifting procedure have to be made explicit in an ontology.

The main contribution of this paper is to lay out the lifting procedure and discuss
issues that have to be considered when lifting metamodels to ontologies. Hence, the
remainder of this paper is structured as follows: The next section gives a conceptual
overview of that lifting process and establishes a big picture in context with the
ModelCVS project. Section 3 elaborates on the part of lifting, which deals with a
formalism change concerning the way metamodels and ontologies are expressed.
Section 4 introduces a pattern catalogue that helps to explicate hidden language con-
cepts and exemplifies its usage. Based on these examples, Section 5 finally shows
how the lifting procedure can benefit typical integration tasks such as schema match-
ing. Section 7 discusses related work and Section 8 concludes with an outlook on
future work.

2 Lifting at a glance

A key focus of the ModelCVS project is to provide a framework for semi-automatic
generation of transformation programs. Although ModelCVS’ architecture allows for
an immediate integration of metamodels via specific metamodel integration operators
called bridgings, of which executable model transformations can be derived, our
approach sees a conceptual integration of metamodels via the creation of ontologies
from these metamodels as a prerequisite to enhance automation support. As the lifting
process results in ontologies explicitly representing the concepts of a modeling lan-

guage, we propose that matching these ontologies can provide better results in terms
of more concise mappings, which in turn can be derived into bridgings between the
original metamodels. The left-hand side of Fig. 1 shows the general setup of
ModelCVS’ architecture, whereas details on the right hand side especially depicting
the lifting process will be given throughout the following paragraphs. For more de-
tails on ModelCVS we refer the reader to [15],[16].

When trying to lift metamodels to ontologies, the gap between the implementation
oriented focus of metamodels and the knowledge representation focus of ontologies
has to be closed. Our approach separates the lifting process into three steps. The first
step, which we refer to as conversion, involves a change of formalism (1), meaning
that a metamodel is transformed into an ontology. The transformation is given by a
mapping between the model engineering space and the ontology engineering space,
namely a mapping from a meta-metamodel (M3) to an ontology metamodel (M2).
This transformation results in what we call a pseudo-ontology, as the structure of this
ontology basically resembles the original metamodel and typically does not represent
concepts as explicitly as ontology engineering principles would advise to do.

Hence, in the subsequent refactoring step (2), patterns (cf. Section 4) are applied
to the resulting pseudo-ontology, which aim at unfolding typically hidden concepts in
metamodels that should better be represented as explicit concepts in an ontology. As
to be shown in Section 4, however, the decision of which pattern should be applied
where, incorporates new semantics into the model, that were previously retained as
part of the user’s expert knowledge about the modeling language, only.

Fig. 1. ModelCVS conceptual architecture

Finally, ontologies being extracted from modeling languages’ metamodels can be
enriched with axioms (3) and put in relation with other ontologies representing a
shared vocabulary about a certain domain. Thus, semantic enrichment refers to incor-
porating additional information into ontologies for integration purposes.
Instead of the original metamodels, the resulting ontologies are the driving artifacts
that enable semantic integration of the associated modeling languages. In our case,

Class

Class ClassClass

Class
Class Class

Class

Class Class Class

Class
Class Class

Class

Class Class Class

Class
Class Class

align

mapping

Tr
ac

es

mapping

mapping

bridging

de
riv

e

O
nt

ol
og

y

co
nf

or
m

s

de
riv

e

M
et

am
od

el

mapping

de
riv

e

lif
tin

g

lif
tin

g
co

nf
or

m
s

Class

Class Class Class

Class
Class Classbridging

B

M
od

el

Class

Class Class Class

Class
Class Classtrans-

forming

M
etam

odel

Preudo
Ontology

Refactored
Ontology

Enriched
Ontology

1conversion

2refactoring

3enrichm
ent

add

Additional
Axioms

Shared Ontology O
ntology

Tr
ac

es

1conversion

2refactoring

3enrichm
ent

add

Additional
Axioms

align

Class

Class ClassClass

Class
Class Class

Class

Class ClassClass

Class
Class Class

Class

Class Class Class

Class
Class Class

Class

Class Class Class

Class
Class Class

Class

Class Class Class

Class
Class Class

Class

Class Class Class

Class
Class Class

align

mapping

Tr
ac

es

mapping

mapping

bridging

de
riv

e

O
nt

ol
og

y

co
nf

or
m

s

de
riv

e

M
et

am
od

el

mapping

de
riv

e

lif
tin

g

lif
tin

g
co

nf
or

m
s

Class

Class Class Class

Class
Class Class

Class

Class Class Class

Class
Class Classbridging

B

M
od

el

Class

Class Class Class

Class
Class Class

Class

Class Class Class

Class
Class Classtrans-

forming

M
etam

odel

Preudo
Ontology

Refactored
Ontology

Enriched
Ontology

1conversion

2refactoring

3enrichm
ent

add

Additional
Axioms

Shared Ontology O
ntology

Tr
ac

es

1conversion

2refactoring

3enrichm
ent

add

Additional
Axioms

align

we use matching techniques that yield a mapping between two ontologies, which is
then the basis for a code generation process that derives model transformations de-
fined between the original metamodels. To be able to relate ontology mappings back
to the original metamodels, traces linking metamodel and ontology constructs have to
be established during the lifting process and maintained during the refactoring step.
However, a discussion about how our prototype implements the tracing and the code
generation mechanisms is considered out of scope of this paper, as is the not obliga-
tory enrichment step. But nevertheless these concepts are necessary to be mentioned
to understand the lifting as a part of a meaningful whole and as a prerequisite for
operationalizing the discovered mappings in the form of executable model transfor-
mations.

3 Conversion - Mapping Ecore to ODM

This section elaborates on a mapping from the model engineering to the ontology
engineering technical space. In particular, we focus on describing a mapping from
Ecore, which is the meta-metamodel used in the Eclipse Modeling Framework (EMF)
[6] that also constitutes ModelCVS’ technological backbone, to the Ontology Defini-
tion Metamodel (ODM) [12]. This mapping constitutes the basis of our approach, as a
transformation based on this mapping is the first step in our lifting process. However,
this mapping is not yet introducing any kind of additional semantics into the meta-
model and solely provides a change of formalism.

It is relatively easy to find semantic correspondences between Ecore and ODM, as
both formalisms are per se fit for conceptual modeling. The goals aimed at when
using either formalism, however, differ. Often the intentions behind using a certain
construct overlap, like when defining a common superclass for two subclasses to
denote that all instances of the subclasses are also instances of the superclass. This
intention would be equally satisfied in both Ecore and ODM. However, in Ecore this
also means that instances of either subclass can be instance of one of the subclasses
only, whereas individuals in OWL could actually belong to both subclasses. These
subtle semantic nuances have to be considered when committing to a mapping. Al-
though the definition of a standard metamodel for ontology definition is still under
way, the given mapping description refers to terminology used in the latest submis-
sion to the ODM RFP [12]. This mapping is similar to a mapping proposition of
UML to OWL [12] that can give more details on the partly mechanic part of mapping
modeling language constructs to ontology constructs. The next two sub-sections fo-
cus on the caveats and the implementation of the Ecore to ODM mapping.

3.1 Caveats of Mapping

The conversion step can ignore meta-classes that do not represent concepts of the
modeling language and therefore, should not be lifted into an ontology. In case of
Ecore, the classes EFactory, EOperations, and EParameter fall into this category,
because these meta-constructs are necessary when generating Java implementation
classes from the metamodel, only. Furthermore, the Ecore metamodel contains ab-

stract classes which do not directly take part in the mapping as well, but their concrete
subclasses do. Table 1 gives an overview of relevant meta-classes and a catalogue
with the appropriate mapping definitions towards the ODM metamodel.

Table 1. Overview of ECore to ODM mapping.

Ecore Concept OWL Concept Possible Caveat
EFactory, EOperation,
EParameter

no mapping ignored

EPackage OWLOntology inverse hierarchy
EClass OWLClass non-exclusive instanceof
EAttribute OWLDatatypeProperty name clash / qualification
EReference OWLObjectProperty name clash / qualification
EDatatype RDFSDatatype straight-forward
EEnum & EENumLiteral OWLDataRange & RDFSLiteral straight-forward
EAnnotation RDFSLiteral straight-forward

EPackage to OWLOntology. Being both containers for other metaclasses, at first
sight, the constructs EPackage and OWLOntology seem like a straight-forward
match. EPackage can be compared to traditional packaging mechanisms as known
from other modeling languages, that serves to group and compartmentalize modeling
elements or source code. Similarly an OWLOntology consists of a collection of ontol-
ogy elements like cases, properties, axioms and the like. However, the notion of the
eSubpackage reference cannot be straight-forwardly translated into the OWLimports
property: An ontology imports another ontology to make use of all the concepts de-
fined in the import. Thus, the top-level ontology has visibility over all imported con-
cepts. Packages on the other hand can have sub-packages, which have visibility over
all their super-packages. Hence, the semantics of subPackage and OWLimports op-
pose each other. Furthermore, the grouping of model elements in sub-packages lies in
the hands of the modeler and basically allows for arbitrary grouping to keep large
models comprehensible. The import structure of ontologies is rather based on ena-
bling efficient reasoning and creating a meaningful whole out of certain domain con-
cepts.

Albeit the above mentioned issue, from a pragmatic point of view in most cases it
is reasonable to map packages directly to ontologies. Analogously, matching the
subPackage reference to the OWLimports property generally works well, too, when
being aware that the result can be an ‘up-side down’ class hierarchy.

EClass to OWLClass. The metaclasses EClass and OWLClass map straight-
forwardly to an OWLClass, except that an OWLClass is used to cluster a number of
individuals, which can also be individuals of other classes, whereas instances of an
EClass cannot. This issue, however, does not pose a problem when mapping from
Ecore to ODM or when instances are not considered in the lifting process.

The lifting of abstract classes or interfaces depends on whether they represent se-
mantics of the modeling language which should also be represented as concepts in the
ontology, or whether they serve solely implementation specific purposes. Our ap-
proach follows a strategy of lifting all abstract classes and interfaces, as unnecessarily
lifted concepts can usually be better filtered out in the subsequent refactoring step.

EAttribute to OWLDatatypeProperty. In difference to an EAttribute belonging
to an EClass, a property in an ontology is independent of a certain OWLClass. Thus,
the straight-forward mapping from EAttribute to OWLDatatypeProperty can be prob-
lematic, because seemingly identical attributes in different classes can carry different
semantics, which would then be unified in a single ontology property.

To avoid this problem, one can incorporate additional information like the owning
class’ name into the name of the newly created property. In doing so, no information
gets lost and redundant properties can be joined in the subsequent refactoring step.

EReference to OWLObjectProperty. Similar to the previous mapping descrip-
tion, an EReference can be mapped onto an OWLObjectProperty when the mentioned
name clash problem is dealt with accordingly and the associated loss of semantics is
avoided. Apart from this, the eReferenceType reference can be mapped to the
RDFSDomain reference and the eContainingClass reference to the RDFSRange ref-
erence. Just like the former mapping, cardinalities do not pose a problem, as the
Ecore references in question have single cardinality which maps straight onto the
multiple cardinality of the equivalent references in the ODM.

Summarizing the above remarks, it has to be pointed out that the most important
point when defining a mapping from metamodels to ontologies is, that one has to be
aware how the resulting ontology is affected by the mapping decisions taken.

3.2 Creating Transformation Code for the Conversion Step

The executable model transformation code facilitating the conversion step is created
automatically from a mapping specification between Ecore and ODM by means of a
code generator. The mapping specification is created with the Atlas Model Weaver
(AMW) [7] which is an Eclipse plug-in allowing to weave links between metamodels
or models, resulting in a so called weaving model.

In the context of ModelCVS, which builds on AMW’s weaving mechanism, we
more specifically refer to a weaving model as a bridging, as it constitutes a mapping
specification according to a certain integration scenario [15] of which executable
model transformation code can be generated. For defining the mapping between
Ecore and ODM we employ a bridging language that denotes a translation of Ecore
models into ODM models in a semantics preserving way. This language is defined
analogously to a weaving metamodel for the AMW. The semantics of this bridging
language is then operationally specified in an adjacent code generator, which pro-
duces ATL [14] code that finally performs the actual conversion step.

Since the detailed semantics of the bridging language and the inner works of the
code generation mechanism are out of scope of this paper and we remain with a gen-
eral description of the method. In the following paragraphs a rationale for implement-
ing a custom version of the ODM is given.

Since the standardization process for the ODM is still ongoing, a decision was
made to implement a custom version of ODM. Our decision was driven by the fact
that on one hand, a working import/export functionality of XML serialized OWL
ontologies was needed, and on the other hand, an implementation providing an API
which reasoners and other ontological software infrastructure could readily use was
required. Hence, a decision was made to employ the Jena [13] framework that could
satisfy both requirements. To be able to bridge the Jena APIs into the model engineer-

ing technical space, an Ecore model was reengineered from the Jena API that in the
following is referred to as the Jena ODM. Wrapping the Jena ODM directly onto the
structure of the underlying API has the advantage, that the writing of an adapter pro-
gram calling the Jena API to instantiate a Java in-memory model from a Jena ODM
model and vice versa boils down to a trivial task. Nevertheless, once a standard is
finalized, the described approach can be modified with reasonable effort by defining a
transformation from the adopted ODM to the Jena ODM. In MDA terminology, this
approach could be compared to a PIM to PSM transformation introducing a new layer
of abstraction that helps to keep the adapter program free of transformation logic. For
reasons of brevity, we will not further elaborate on implementation details of the
conversion step. The output of this first step is a pseudo-ontology, which is the input
for the refactoring step whose associated patterns will be focused on next.

4 Refactoring Patterns for Pseudo-Ontologies

The aim of metamodeling lies primarily in defining modeling languages in an object-
oriented manner leading to efficient repository implementations. This means that in a
metamodel not necessarily all modeling concepts are represented as first-class citi-
zens. Instead, the concepts are frequently hidden in attributes or in association ends.
We call this phenomenon concept hiding. Consequently, also pseudo-ontologies, i.e.,
the output of the previous conversion step, also lack the explicit representation of
modeling concepts. In order to overcome this problem, we propose refactoring as a
second step in the lifting process, which semi-automatically generates an additional
and semantically enriched view of the conversion step’s output.

As an example for concept hiding in metamodels consider Fig. 2. In the upper part
it shows a simplified version of the UML metamodel kernel which is defined in the
UML Infrastructure [19], represented as a pseudo-ontology. As we see in Fig. 2 the
pseudo-ontology covers twelve modeling concepts but uses only four classes. Hence,
most of the modeling concepts are implicitly defined, only.

To tackle the concept hiding problem, we propose certain refactoring patterns for
identifying where possible hiding places for concepts in metamodels are and also how
these structures can be rearranged to explicit knowledge representations. The refac-
toring patterns given in the following subsections are classified into four categories.
The description of each pattern is based on [11] and consists of pattern name, prob-
lem description, solution mechanism, and finally, of an example based on the UML
kernel. The kernel is shown in the upper part of Fig. 2 as a pseudo-ontology (before
applying the patterns) and in the lower part of Fig. 2 as a refactored ontology (after
applying the patterns). The numbers in the figure identify where a certain pattern can
be applied and how that structure will be refactored, respectively.

4.1 Patterns for Reification of Concepts

a) Association Class Introduction: A modeling concept might not be directly repre-
sented by object properties but rather hidden within an association. In particular, it

might be represented by the combination of both properties representing the context
in which these object properties occur.
Refactoring: A new class is introduced in the ontology similar to an association class
in UML to explicitly describe the hidden concept. Since there is no language con-
struct for association classes in OWL, the association is split up into two parts which
are linked by the introduced class. The cardinalities of the new association ends are
fixed to one and the previously existing association ends remain unchanged.
Example: The combination of the roles of the recursive relationship of Class, subclass
and superclass, occurs in the context generalization.

NamedElement
name : String

C

PD

Class
isAbstract : Boolean

C

subclass *
*

superclass
PD

Property
aggregation : Kind
lower : Integer
upper : Interger

PD

PD

P
D

C
owningClass

*

0..1

AssociationC

0..10..1 association

2..*

ownedEnd
*

owning-
Association

Class
name : String

C

PD

AbstractClassC

ConcreteClassC

GeneralizationC

1

*
1
*

Property
name : String

C

PD

CompositionP.C

SharedCompositionP.C

NonCompositionP.C

{disjoint}

AttributeCNonAttributeC

{disjoint}

C

PD

RoleC

NonRoleC

Multiplicity
upper : Integer
lower : Integer

C

P
D

association

memberEnd

1

2..*
{disjoint}

ownedEnd

*

1
owning-

Association

0..1

owning-
Class

ownedAttribute
*

a

d1

e

f

bAssociation
name : String

memberEnd

ownedAttribute

{xor} d2

PD

f

Re
fa

ct
or

ed
On

to
lo

gy
Ps

eu
do

On
to

lo
gy

C

Kind
none
shared
composite

PD

PD

P
D

E

subClasssuperClass

P
D 1

{disjoint}

NavigableRole
Attribute
Role

NonNavigableRole
NonAttribute
Role

IntrinsicAttribute
Attribute
NonRole

C
C

C

C

C

C

g

U U U

c

c

NamedElement
name : String

C

PDPD

Class
isAbstract : Boolean

C

subclass *
*

superclass
PDPD

Property
aggregation : Kind
lower : Integer
upper : Interger

PDPD

PDPD

P
D

P
D

C
owningClass

*

0..1

AssociationC AssociationC

0..10..1 association

2..*

ownedEnd
*

owning-
Association

Class
name : String

C

PDPD

AbstractClassC

ConcreteClassC

GeneralizationC

1

*
1
*

Property
name : String

C

PDPD

CompositionP.C

SharedCompositionP.C

NonCompositionP.C

{disjoint}

AttributeCNonAttributeC

{disjoint}

C

PDPD

RoleC

NonRoleC

Multiplicity
upper : Integer
lower : Integer

C

P
D

P
D

association

memberEnd

1

2..*
{disjoint}

ownedEnd

*

1
owning-

Association

0..1

owning-
Class

ownedAttribute
*

a

d1

e

f

bAssociation
name : String

memberEnd

ownedAttribute

{xor} d2

PDPD

f

Re
fa

ct
or

ed
On

to
lo

gy
Ps

eu
do

On
to

lo
gy

C

Kind
none
shared
composite

PDPD

PDPD

P
D

P
D

E

subClasssuperClass

P
D

P
D 1

{disjoint}

NavigableRole
Attribute
Role

NonNavigableRole
NonAttribute
Role

IntrinsicAttribute
Attribute
NonRole

C
C

C

C

C

C

g

U U U

c

c

Fig. 2: Part of the UML kernel as pseudo-ontology and as refactored-ontology

b) Concept Elicitation from Properties: In metamodels it is often sufficient to im-
plement modeling concepts as attributes of primitive data types, because the primary
aim is to be able to represent models as data in repositories. This approach is in con-
tradiction with ontology engineering which focuses on knowledge representation and
not on how concepts are representable as data.
Refactoring: Datatype properties which actually represent concepts are extracted into
separate classes. These classes are connected by an object property to the source class
and the cardinality of that object property is set to the cardinality of the original
datatype property. The introduced classes are extended by a datatype property for
covering the value of the original datatype property.

Example: The properties Property.lower and Property.upper represent the concept
Multiplicity which is used for defining cardinality constraints on a Property.

4.2 Patterns for Elimination of Abstract Concepts

c) Abstract Class Elimination: In metamodeling, generalization and abstract classes
are used as a means to gain smart object-oriented language definitions. However, this
benefit is traded against additional indirection layers and it is well-known that the use
of inheritance does not solely entail advantages. Furthermore, in metamodels, the use
of abstract classes which do not represent modeling concepts is quite common. In
such cases generalization is applied for implementation inheritance and not for spe-
cialization inheritance. However, one consequence of this procedure is a fragmenta-
tion of knowledge about the concrete modeling concepts.
Refactoring: In order to defragment the knowledge of modeling constructs, the
datatype properties and object properties of abstract classes are moved downwards to
their concrete subclasses. This refactoring pattern yields multiple definitions of prop-
erties and might be seen as an anti-pattern of object-oriented modeling practice. How-
ever, the properties can be redefined with more expressive names (e.g. hyponyms) in
their subclasses.
Example: The property NamedElement.name is used for class name, attribute name,
association name and role name.

4.3 Patterns for Explicit Specialization of Concepts

d) Datatype Property Elimination: In metamodeling it is convenient to represent
similar modeling concepts with a single class and use attribute values to identify the
particular concept represented by an instance of that class. This metamodeling prac-
tice keeps the number of classes in metamodels low by hiding multiple concepts in a
single class. These concepts are equal in terms of owned attributes and associations
but differ in their intended semantic meaning. For this purpose, attributes of arbitrary
data types can be utilized but in particular two widespread refinement patterns are
through booleans and enumerations.
d1) Refactoring for Boolean Elimination: Concepts hidden in boolean attribute are
unfolded by introducing two new subclasses of the class owning the boolean, and
defining the subclasses as disjoint due to the duality of the boolean data type range.
The subclasses might be named in an x and non-x manner but descriptive names
should be introduced into the ontology by the user.
Example: Class.isAbstract is either true or false, representing an abstract or a con-
crete class, respectively.
d2) Refactoring for Enumeration Elimination: Implicit concepts hidden in an enu-
meration of literals are unfolded by introducing a separate class for each literal. The
introduced classes are subclasses of the class owning the attribute of type enumera-
tion and are defined as disjoint, if the cardinality of the datatype property is one, or
overlapping if the cardinality is not restricted.
Examples: Property.aggregation is either none, shared, or composite, representing a
nonCompositionProperty, a sharedCompositionProperty or a CompositionProperty.

e) Zero-or-one Object Property Differentiation: In a metamodel the reification of a
concept is often determined by the occurrence of a certain relationship on the instance
layer. In such cases, the association end in the metamodel has a multiplicity of zero-
or-one which implicitly contains a concept refinement.
Refactoring: Two subclasses of the class owning the object property with cardinality
of zero-or-one are introduced. The subclass which represents the concept that realizes
the relationship on the instance layer receives the object property from its superclass
while the other subclass does not receive the object property under consideration.
Furthermore, the object property of the original class is deleted and the cardinality of
the shifted object property is restricted to exactly one.
Example: Property.association has a multiplicity of zero-or-one, distinguishing be-
tween a role and a nonRole, respectively.
f) Xor-Association Differentiation: Xor-constraints between n associations (we call
such associations xor-associations) with association ends of multiplicity zero-or-one
restrict models such that only one of the n possible links is allowed to occur on the
instance layer. This pattern can be used to refine concepts with n sub-concepts in a
similar way like enumeration attributes are used to distinguish between n sub-
concepts. Thus, xor-associations bind a lot of implicit semantics, namely n mutually
excluding sub-concepts which should be explicitly expressed in ontologies.
Refactoring: This pattern is resolvable similar to the enumeration pattern by introduc-
ing n new subclasses, but in addition the subclasses are responsible for taking care of
the xor-constraint. This means each class receives one out of the n object properties,
thus each subclass represents exactly one sub-concept. Hence, the cardinality of each
object property is fixed from zero-to-one to exactly one.
Example: Property.owningAssociation and Property.owingClass are both object
properties with cardinality zero-or-one. At the instance layer it is determined if an
instance of the class Property is representing an attribute (contained by a class) or a
nonAttribute (contained by an association).

4.4 Patterns for Exploring Combinations of refactored Concepts

Refactorings that introduce additional subclasses, i.e., patterns from category Spe-
cialization of Concepts, must always adopt a class from the original ontology as start-
ing point since the basic assumption is that different concept specializations are inde-
pendent of each other. Hence, in the case of multiple refactorings of one particular
class, subclasses introduced by different refactorings are overlapping. In Fig. 2 this is
denoted using a separate generalization set for each refactoring. However, this ap-
proach requires an additional refactoring pattern for discovering possible relation-
ships between combinations of sub-concepts.
g) Concept Recombination: In order to identify concepts which are hidden in the
ontology as mentioned above, the user has to extend the ontology by complex classes
which describe the concepts resulting from possible sub-concept combinations.
Refactoring: User interactions are required for identifying the concepts behind the
combination of concepts by evaluating the combinations in a matrix where the dimen-
sions of the matrix are the overlapping generalization sets in consideration.
Example: When studying the textual descriptions of the semantics of UML one finds
out that some relationships between the different kinds of properties define additional

concepts which are not explicitly represented in the ontology. In particular, the
evaluation of role/nonRole and attribute/nonAttribute combinations leads to the addi-
tional intersection classes depicted in the lower part of Fig. 2.

Summarizing, the result of the refactoring step, an ontology which facilitates an im-
plementation neutral view of the metamodel, is characterized as follows:

 Only datatype properties which represent semantics of the real world domain (on-
tological properties) are contained, e.g. Class.className, Multiplicity.upper. This
means no datatype properties for the reification of modeling constructs (linguistic
properties) are part of the refactored ontology.

 Most object properties have cardinalities different from zero-or-one, such that no
concepts are hidden in object properties.

 Excessive use of classes and is-a relations turns the ontology into a taxonomy.

5 Evaluation of Matching Potential

This section discusses the effects of the refactoring step as defined in the previous
section on ontology matching, which is an important task in semantic integration. In
particular, we first point out problems in matching pseudo-ontologies that negatively
affect matching quality. Subsequently we show how the application of our refactoring
patterns can alleviate matching problems and improve mapping quality.

CardinalityCardinality

max:EString

min:EString

IS_A_RelationIS_A_Relation

EntityEntity

name:EString [1..1]

RoleRole

name:EString

RelationshipRelationship

name:EString

AttributeAttribute

name:EString [1..1]

1

0..1

* has_general_Entity *

1 general

has_specific_Entity

*

1
refers_To

role
1

role

cardinalityrole2..*

relationship1attribute*

entity1

C

C

C

C C

C
EntityEntity

name:EString [1..1]

RoleRole

name:EString

CardinalityCardinality

RelationshipRelationship

name:EString

AttributeAttribute

name:EString [1..1]

*

0..1
general_Entity

*

specific_Entity

*

1
refers_To

role
1

role

cardinalityrole2..*

relationship1attribute*

entity1

C

C

C

C

C

max:EString

min:EString

a

RefactoredOntologyPseudoOntology

CardinalityCardinality

max:EString

min:EString

CardinalityCardinality

max:EString

min:EString

IS_A_RelationIS_A_RelationIS_A_RelationIS_A_Relation

EntityEntity

name:EString [1..1]

EntityEntity

name:EString [1..1]

RoleRole

name:EString

RoleRole

name:EString

RelationshipRelationship

name:EString

RelationshipRelationship

name:EString

AttributeAttribute

name:EString [1..1]

AttributeAttribute

name:EString [1..1]

1

0..1

* has_general_Entity *

1 general

has_specific_Entity

*

1
refers_To

role
1

role

cardinalityrole2..*

relationship1attribute*

entity1

C

C

C

C C

C
EntityEntity

name:EString [1..1]

RoleRole

name:EString

CardinalityCardinality

RelationshipRelationship

name:EString

RelationshipRelationship

name:EString

AttributeAttribute

name:EString [1..1]

AttributeAttribute

name:EString [1..1]

*

0..1
general_Entity

*

specific_Entity

*

1
refers_To

role
1

role

cardinalityrole2..*

relationship1attribute*

entity1

C

C

C

C

C

max:EString

min:EString

a

RefactoredOntologyPseudoOntology

Fig. 3. ER pseudo-ontology (left) and refactored ontology (right)

In our example we are using pseudo-ontologies and refactored ontologies originat-
ing from ER and UML metamodels, respectively. The UML ontologies have already
been introduced in the previous section, the ER ontologies are depicted in Fig. 3. The
ontologies are mapped with COMA++ [2], which allows matching OWL ontologies
and produces mappings which represent suggested semantic correspondences. A
mapping consists of triples of source element, target element, and a specific confi-
dence rate ranging from zero to one. It is configurable, by associating weights with
certain matching rules that can be modified to fit the user’s preferences. Hence, the
use of COMA++ is naturally a semi-automatic task involving tweaking of the match-
ing algorithm and manual editing of the proposed mapping.

In the following we discuss four general problem classes that can be identified
when defining mappings between pseudo-ontologies, and how they become obsolete
by applying refactoring. The manifestation of the mapping problems in the UML to

ER mapping and their solutions using refactored ontologies are shown in Fig. 4. The
numbers in that figure refer to the following list of problems:

_Attribute

_Role

_Attribute_name:String

_Role_name : String

NamedElementNamedElement
namename : : stringstring
ClassClass

isAbstractisAbstract : : BooleanBoolean
ownedAttributeownedAttribute : : PropertyProperty
subClasssubClass : : ClassClass
superClasssuperClass : : ClassClass

AssociationAssociation
memberEndmemberEnd : : PropertyProperty
ownedEndownedEnd : : PropertyProperty

PropertyProperty
upperupper : integer: integer
lowerlower : integer: integer
associationassociation : Association: Association
owningAssociationowningAssociation : : AssoAsso……
owningClassowningClass : : ClassClass
aggregationaggregation

_Role

EntityEntity
namename : : stringstring
general_Entitygeneral_Entity : : EntityEntity
specific_Entityspecific_Entity: : EntityEntity
rolerole : : RoleRole
attributeattribute : Attribute: Attribute

AttributeAttribute
entityentity : : EntityEntity
namename : : stringstring

RoleRole
relationshiprelationship : : RelatioRelatio……
refersTorefersTo : : EntityEntity
namename : : stringstring
cardinalitycardinality : : CardinalityCardinality

RelationshipRelationship
rolerole : : RoleRole
namename : : stringstring

CardinalityCardinality
min : min : stringstring
maxmax : : stringstring

Property

Attribute

Role

UML.owl ER.owl

?

2

4

1

ClassClass
ConcreteClassConcreteClass
AbstractClassAbstractClass
ownedAttributeownedAttribute : Attribute: Attribute
classNameclassName : String: String

MultiplicityMultiplicity
lowerlower : integer: integer
upperupper : integer: integer

PropertyProperty
RoleRole

roleNameroleName : : stringstring
associationassociation : Association: Association

NonRoleNonRole
IntrinsicAttributeIntrinsicAttribute

intrinsicAttributeNameintrinsicAttributeName : : stringstring
NavigableRoleNavigableRole
NonNavigableRoleNonNavigableRole
AssociationAssociation

associationNameassociationName : : stringstring
memberEndmemberEnd : : RoleRole
ownedEndownedEnd : : NonAttributeNonAttribute

EntityEntity
namename : : stringstring
has_general_Entityhas_general_Entity : IS_A: IS_A……
has_specific_Entityhas_specific_Entity: IS_A: IS_A……
rolerole : : RoleRole
attributeattribute : Attribute: Attribute

AttributeAttribute
entityentity : : EntityEntity
namename : : stringstring

RoleRole
relationshiprelationship : : RelationshipRelationship
refersTorefersTo : : EntityEntity
namename : : stringstring
cardinalitycardinality : : CardinalityCardinality

RelationshipRelationship
rolerole : : RoleRole
namename : : stringstring

CardinalityCardinality
min : min : stringstring
maxmax : : stringstring

IS_A_RelationIS_A_Relation

ER.owlUML.owl

Attribute

RoleRole

IntrinsicAttribute

3

2

3

1

1

2

2

2

RefactoredOntologyPseudoOntology

_Attribute

_Role

_Attribute_name:String

_Role_name : String

NamedElementNamedElement
namename : : stringstring
ClassClass

isAbstractisAbstract : : BooleanBoolean
ownedAttributeownedAttribute : : PropertyProperty
subClasssubClass : : ClassClass
superClasssuperClass : : ClassClass

AssociationAssociation
memberEndmemberEnd : : PropertyProperty
ownedEndownedEnd : : PropertyProperty

PropertyProperty
upperupper : integer: integer
lowerlower : integer: integer
associationassociation : Association: Association
owningAssociationowningAssociation : : AssoAsso……
owningClassowningClass : : ClassClass
aggregationaggregation

_Role

EntityEntity
namename : : stringstring
general_Entitygeneral_Entity : : EntityEntity
specific_Entityspecific_Entity: : EntityEntity
rolerole : : RoleRole
attributeattribute : Attribute: Attribute

AttributeAttribute
entityentity : : EntityEntity
namename : : stringstring

RoleRole
relationshiprelationship : : RelatioRelatio……
refersTorefersTo : : EntityEntity
namename : : stringstring
cardinalitycardinality : : CardinalityCardinality

RelationshipRelationship
rolerole : : RoleRole
namename : : stringstring

CardinalityCardinality
min : min : stringstring
maxmax : : stringstring

Property

Attribute

Role

UML.owl ER.owl

?

2

4

1

ClassClass
ConcreteClassConcreteClass
AbstractClassAbstractClass
ownedAttributeownedAttribute : Attribute: Attribute
classNameclassName : String: String

MultiplicityMultiplicity
lowerlower : integer: integer
upperupper : integer: integer

PropertyProperty
RoleRole

roleNameroleName : : stringstring
associationassociation : Association: Association

NonRoleNonRole
IntrinsicAttributeIntrinsicAttribute

intrinsicAttributeNameintrinsicAttributeName : : stringstring
NavigableRoleNavigableRole
NonNavigableRoleNonNavigableRole
AssociationAssociation

associationNameassociationName : : stringstring
memberEndmemberEnd : : RoleRole
ownedEndownedEnd : : NonAttributeNonAttribute

EntityEntity
namename : : stringstring
has_general_Entityhas_general_Entity : IS_A: IS_A……
has_specific_Entityhas_specific_Entity: IS_A: IS_A……
rolerole : : RoleRole
attributeattribute : Attribute: Attribute

AttributeAttribute
entityentity : : EntityEntity
namename : : stringstring

RoleRole
relationshiprelationship : : RelationshipRelationship
refersTorefersTo : : EntityEntity
namename : : stringstring
cardinalitycardinality : : CardinalityCardinality

RelationshipRelationship
rolerole : : RoleRole
namename : : stringstring

CardinalityCardinality
min : min : stringstring
maxmax : : stringstring

IS_A_RelationIS_A_Relation

ER.owlUML.owl

Attribute

RoleRole

IntrinsicAttribute

3

2

3

1

1

2

2

2

RefactoredOntologyPseudoOntology

Fig. 4. COMA++ mapping between pseudo-ontologies and refactored ontologies

(1) Ambiguous Concept Mappings: This problem originates from classes in a
pseudo-ontology that represent multiple concepts. The example illustrated in Fig. 4
(left) is the mapping from Property in UML to Role and Attribute in ER. This ambi-
guity arises because the UML pseudo-ontology defines a general concept (Property)
without explicitly stating the sub-concepts which in contrast are represented as ex-
plicit concepts in the ER pseudo-ontology. This kind of problem is solved by the
patterns from the Specialization and the Combination categories, which introduce the
hidden concepts as subclasses and complex classes, respectively, thus avoiding am-
biguous mappings. In Fig. 4 (right) one can see that the classes introduced from class
Property allow semantically unambiguous mappings for roles, and attributes in the
sense of UML IntrinsicAttribute.

(2) Ambiguous Property Mappings: The use of abstract classes in a metamodel
is a design decision. Hence, when mapping properties that are defined in abstract
classes, they may be fragmented over different inheritance layers. This problem is
depicted in Fig. 4 (left) by mapping the datatype property NamedElement.name to
multiple targets. After applying patterns from the Elimination category, the inheri-
tance layers become flattened and the properties are shifted to the subclasses of the
abstract classes, thus enabling unambiguous one-to-one mappings. E.g., in Fig. 4
(right) the datatype property name of the class NamedElement is flatted into the sub-
classes which lead to unambiguous mappings for the datatype property name.

(3) No Counterparts: Pseudo-ontologies might differ in their granularity of mod-
eling concept definitions, although the same modeling concepts are useable by the
modeler. Consequently, some mappings cannot be expressed, because explicit con-
cepts of some pseudo-ontology are missing as explicit concept representations in the
other. In our mapping example shown in Fig. 4 (left) no corresponding concept in the
UML pseudo-ontology exists for the Cardinality concept of the ER pseudo-ontology.
Patterns from the Reification category tackle this problem by the reification of hidden
concepts, allowing to define mappings that were not possible before the refactoring

step. Concerning the missing counterpart for the Cardinality concept, after applying
the patterns it is possible to map the Cardinality concept to the introduced Multiplic-
ity concept as shown in Fig. 4 (right).

(4) Linguistic-to-Ontology Property Mappings: Concerning invalid mappings,
one source of defect is mapping linguistic properties to ontological properties. For
instance, in our example shown in Fig. 4 (left) Class.isAbstract which represents a
linguistic property was automatically mapped by COMA++ to Entity.name which
represents an ontological property. Patterns from the Specialization category trans-
form linguistic properties to concepts, thus tackling this problem, because only onto-
logical properties remain in the refactored ontology. In Fig. 4 (right) one can see that
no mappings between linguistic and ontological properties are possible.

When considering the effect of the refactoring step on the mapping process, one can
see a higher potential for manually fine-tuning the mapping due to the finer granular-
ity of a refactored ontology. The improvement in mapping potential, however, comes
at the cost of performing the refactoring step and of dealing with a higher number of
classes. The alternative would be to use a more sophisticated mapping language to
describe unambiguous mappings. In contrast, our approach of using refactoring pat-
terns offers a way to solve the discussed mapping problems through simple semantic
correspondences, only. Consequently, the overall complexity of the mapping process
is decreased due to its splitting into a refactoring part, which brings the pseudo-
ontologies to a common granularity and a mapping part, which relies on simple equal-
ity mappings that can be generated semi-automatically.

6 Related Work

Our work is to a good deal influenced by efforts which try to close the gap between
the model engineering technical space and the ontology engineering technical space.
Among these are, e.g. Bezivin et al. [3] who argue for a unified M3 infrastructure and
Atkinson [1] who showed that there are plenty of similarities between the two techni-
cal spaces and that differences are mostly community-based or of historic nature.
Naturally, an M3 unified infrastructure could possibly ease the proposed lifting pro-
cedure. Concrete efforts aiming to provide an adequate bridge encompass [8], speci-
fying a mapping from UML to DAML-OIL, and most prominently the submissions to
the OMG’s ODM RFP [12] also suggesting a mapping from UML to OWL. Although
these efforts influenced the mapping proposed in our conversion step, our focus is not
on making a rich language like UML fit for ontology modeling, but on extracting
meaningful ontologies from metamodels defining modeling languages.

Many other efforts aiming at semantic integration of data also use a procedure that
lifts metadata to ontologies. These efforts use XML Schemata [26],[5],[10],[24]
which are mapped to RDFS or to OWL [9], respectively. [20] carries out an addi-
tional normalization step after lifting, but focuses on ameliorating lexical and simple
structural heterogeneities, only. All of these approaches are not immediately reusable
in our metamodel-centric context, however, and none of the above approaches relies
on refactoring patterns that would allow to make hidden concepts explicit. As an

example, [22] lifts XML schemata and states that the resulting ontologies “will be ad-
hoc”. Our refactoring approach of pseudo-ontologies tries to deal with this problem.
Furthermore, the refactored OWL ontologies can be matched without the need for a
complex mapping or query language, which addresses the problem identified in [18]
that calls for an OWL query language. There is few related work in terms of refactor-
ing ontologies that were created from an underlying metadata representation aiming
at a shift in focus as we do. [21] tries to find implicit semantics through linguistic and
structural analysis in labels of hierarchical structures on the Web, but seems not ap-
plicable to find hidden concepts in modeling languages, nor does it provide means
like to reify these. An interesting approach to ontology refactoring is discussed in [4],
which, as opposed to our approach, has the goal of pruning an ontology and deriving
a schema thereof, that is then refactored towards an implementation oriented focus.

[25] identifies variability, which is the ability to express semantically equal con-
cepts differently, as the reason for different conceptual models being able to meet the
same requirements. Our work can be seen as addressing the problems of heterogenei-
ties introduced due to variability, as the refactoring step can help to make concepts
explicit in a uniform way, even though they are initially hidden in different ways.

7 Conclusion

In this paper we have introduced the lifting procedure, which allows to create ontolo-
gies from metamodels representing modeling languages. The application of refactor-
ing patterns on the resulting ontologies can make originally hidden concepts explicit
and thus improve automation support for semantic integration tasks. Although it is
not foreseeable that such tasks will ever be fully automated, we believe that support
for the at least semi-automatic integration of modeling tools via their modeling lan-
guages is feasible. It is easy to see, that such tool integration tasks require proper tool
support and methods guiding the integration process themselves.

Lifting metamodels to ontologies is only one important step in realizing the
ModelCVS project. Future work will focus on defining specific domain ontologies
that can be relied on in the enrichment step to further enhance ontology matching, as
well as enhancing the tracing and the code generation mechanisms to automatically
derive model transformation programs from higher-level integration specifications.

References

1. Atkinson C.: On the Unification of MDA and Web-based Knowledge Representa-
tion Technologies. 1st International Workshop on the Model-Driven Semantic Web (2004)

2. Aumueller, D.; Do, H., Massmann, S.; Rahm, E.: Schema and ontology matching with
COMA++. SIGMOD Conference, June, (2005)

3. Bézivin J. et. al.: An M3-Neutral infrastructure for bridging model engineering and ontol-
ogy engineering. In: Proc. of the First International Conference on Interoperability of En-
terprise Software and Applications. Springer, p. 159-171. (2005)

4. Conesa J.: Ontology-Driven Information Systems: Pruning and Refactoring of Ontologies.
Doctoral Syposium of 7th Int. Conf. on the Unified Modeling Language, Lisbonl, (2004)

5. Cruz I. F., Xiao Huiyong, Hsu Feihong.: An Ontology-Based Framework for XML Seman-
tic Integration. Int. Database Engineering and Applications Symposium, 217-226 (2004)

6. Eclipse Tools Project: Eclipse Modeling Framework (EMF), http://www.eclipse.org/emf/
7. Didonet Del Fabro M., Bézivin J., Jouault F., Breton E., Gueltas G.: AMW: a generic

model weaver. Proc. of the 1ères Journées sur l'Ingénierie Dirigée par les Modèles, (2005)
8. Falkovych K., Sabou M., Stuckenschmidt H.: UML for the Semantic Web: Transforma-

tion-Based Approaches. Knowledge Transformation for the Semantic Web. IOS Press,
(2003)

9. Ferdinand M. et al.: Lifting XML Schema to OWL, 4th Int. Conf. on Web Engineering
(ICWE), Munich, Germany, July, (2004)

10. Fodor O., Dell'Erba M., Ricci F., Spada A., Werthner H.: Conceptual normalisation of
XML data for interoperability in tourism. Proc. of the Workshop on Knowledge Transfor-
mation for the Semantic Web, Lyon, France, July, (2002)

11. Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional, (1997)

12. IBM, Sandpiper Software: Fourth Revised Submission to the OMG RFP ad/2003-03-40,
www.omg.org/docs/ad/05-09-08.pdf

13. Jena 2 Ontology API, http://jena.sourceforge.net/ontology/
14. Jouault F., Kurtev I.: Transforming Models with ATL: Proceedings of the Model Trans-

formations in Practice Workshop at MoDELS, Montego Bay, Jamaica (2005)
15. Kappel et. al.: On Models and Ontologies - A Layered Approach for Model-based Tool

Integration. Modellierung 2006, Innsbruck, March (2006)
16. Kappel et. al.: Towards A Semantic Infrastructure Supporting Model-based Tool Integra-

tion. 1st Int. Workshop on Global integrated Model Management, Shanghai, May, (2006)
17. Kappel G., Kapsammer E., Retschitzegger W.: Integrating XML and Relational Database

Systems, in WWW Journal, Kluwer Academic Publishers, June, (2003).
18. Lehti P., Fankhauser P.: XML Data Integration with OWL: Experiences and Challenges.

Symposium on Applications and the Internet, p. 160, (2004)
19. OMG: UML 2.0 Infrastructure Final Adopted Specification, formal/05-07-05, (2005)
20. Maedche A., Motik B., Silva N., Volz R.: MAFRA - An Ontology Mapping Framework in

the Semantic Web. ECAI Workshop on Knowledge Transformation, Lyon, France, (2002)
21. Magnini B., Serafini L., Speranza M.: Making explicit the Semantics Hidden in Schema

Models. Proc. of the Workshop on Human Language Technology for the Semantic Web
and Web Services, ISWC, Florida, October, (2003)

22. Moran M., Mocan A.: Towards Translating between XML and WSML. 2nd WSMO Imple-
mentation Workshop (WIW), Innsbruck, Austria, June (2005)

23. Noy N.F.: Semantic Integration: A Survey Of Ontology-Based Approaches. SIGMOD
Record, Special Issue on Semantic Integration, 33 (4), December, (2004)

24. Roser S.: Ontology-based Model Transformation. Doctoral Symposium of the 8th Int. Con-
ference on Model Driven Engineering Languages and Systems, Jamaica, October, (2005)

25. Verelst J., Du Bois B., Demeyer S.: Using Refactoring Techniques to Exploit Variability in
Conceptual Modeling. ERCIM-ESF Workshop, Challenges in Software Evolution, (2005)

26. Volz et al.: OntoLIFT. IST Proj. 2001-33052 WonderWeb, Del. 11, (2003)
27. Wimmer M., Kramler G.: Bridging Grammarware and Modelware, in Proc. of Satellite

Events at the MoDELS 2005 Conference, Montego Bay, Jamaica, October, (2005)

