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Abstract

In recent years a number of model transformation languages have emerged that deal with fine-grained, local
transformation specifications, commonly known as programming in the small. To be able to develop complex
transformation systems in a scalable way, mechanisms to work directly on the global model level are desir-
able, referred to as programming in the large. In this paper we show how domain specific model integration
languages can be defined, and how they can be composed in order to achieve complex model management
tasks. Thereby, we base our approach on the definition of declarative model integration languages, of which
implementing transformations are derived. We give a categorization of these transformations and rely on
an object-oriented mechanism allowing to realize complex model management tasks.

Keywords: model integration, model transformation, model management, domain-specific languages.

1 Introduction

Model-driven Development (MDD) in general aims at raising the productivity and
quality of software development by automatically deriving code artifacts from mod-
els. Even though an immediate model-to-code mechanism can yield tremendous
benefits, it is commonly accepted that working model-to-model mechanisms are
necessary [21] to achieve integration among multiple models describing a system
and to make models first-class-citizens in MDD.
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In recent years, therefore, a number of model transformation languages (MTLs)
have emerged, which allow to specify transformations between metamodels. Such
transformations are defined on a fine-grained, local level, upon elements of these
metamodels. Albeit the advantages that MTLs bring in terms of manipulating
models, it is quite clear that defining model transformations on a local level, only,
can pose substantial scalability problems.

There are already first approaches trying to alleviate the above mentioned prob-
lem from two different angles (cf. also Section 5). The first category adheres to
a bottom-up approach, meaning that existing general purpose MTLs are extended
for special tasks like model merging [12] or model comparison [19]. Furthermore,
mappings carrying special semantics can be established between metamodels and
further on be derived into executable model transformations [6].

The second category of approaches is more top-down-oriented and falls into the
area of model management, where relationships between models are expressed on a
coarse-grained, global level through a set of generic model management operators.
The aim of model management is to ease and speed up the development of meta-
data intensive applications, by factoring out common tasks in various application
scenarios and by providing generic model management operators for these tasks.
The generality of these operators allows to make assumptions about, e.g., algebraic
properties of model management operations, but does not necessarily make any
specific assumptions about the actual implementations of these model management
operators. For instance, Rondo [5] is an actual implementation of such a system,
oriented towards managing relational and XML schemata.

It is our opinion that both, bottom-up and top-down approaches are valuable
contributions and should be considered as potentially complementing each other,
as opposed to be thought of as two sides of a coin. One of model management’s
main contributions is to provide a conceptually well-founded framework guiding the
actual implementation of model management operators, for which the capabilities
of increasingly more powerful MTLs can be leveraged.

Therefore, this paper represents early work in drafting an approach that tries
to build on the strengths of both paradigms. On the one hand, the model man-
agement rationale to make models first-class-citizens and to achieve complex model
management tasks by assembling global operations on models, is followed. On the
other hand, our approach relies on domain-specific languages (DSLs) developed
atop general-purpose MTLs for locally handling fine-grained relationships between
metamodels.

The proposed approach resides in the context of the ModelCVS [16][15] tool
integration project, which aims at integrating various modeling tools via metamod-
els representing their respective modeling language. Concretely, the problems that
need to be solved are finding efficient ways to integrate various metamodels on a
local level, and solve common problems, e.g., metamodel evolution, on a global level.

The remainder of this paper is structured as follows. Section 2 discusses the
rationale behind our approach. Section 3 deals with the composition of model
management operators and classifies different kinds of transformations. Section 4
goes into detail about how domain specific integration languages can be defined.
Section 5 discusses related work and Section 6 summarizes our approach.
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2 Rationale for our Approach

To better motivate the rationale underlying our approach, this section starts with
an analogy referring to the definition of primitive recursive functions. Table 1 shows
the various abstraction layers our approach is built on and introduces terms and
concepts used throughout this paper. Referring to computability theory, using only
the constant, successor, and projection functions, all primitive recursive functions,
such as addition or subtraction operators, can be defined. Analogous to that, on
top of existing model transformation languages residing on the local level, we define
integration operators on the local composite level for handling fine-grained relation-
ships between model elements. Algebraic as well as integration operators are then
bundled up into sets representing algebras or integration languages, respectively. We
refer to this level as intermediate, because the elements of algebras and integration
languages act upon the local level, but are used to define transformations acting
upon the global level. Hence, on the global level, complex functions and concrete re-
alizations of model management operators are found. These algebras and languages
are at a suitable level of abstraction and are commonly used to assemble algebraic
terms or model management scripts [4]. After establishing a view across the ab-
straction layers, ranging from bottom-level MTLs to top-level model management
scripts, we illustrate our approach in a top-down fashion in more detail.

Level Natural Numbers Example Proposed Approach Example

Global Composite Terms power(max(x,y)) Model Mgmt. Scripts m’’=translate(m.merge(m’))

Global Complex Functions power(z),max(x,y) Model Mgmt. Operators Translation,PackageMerge

Intermediate Algebras {+,-,N},{*,/,N} Integration Languages FullEquivLang,MergeLang

Local Composite Operators +,-,* Integration Operators FullEquivClass,MergeClass

Local Base Functions succ(x),null() MTL Expressions ATLRule,OCLExpression

Table 1
Analogy referring to the definition of primitive recursive functions.

Global and Global Composite. As depicted in Figure 1, we believe it is helpful
to view the composition of complex model management operations as an object-
oriented (OO) meta-programming task [2], where models are understood as objects
and transformations as methods acting upon these “objects”. Consequently, we
think that an integral part of defining a metamodel should be to specify integration
behavior in the form of transformations (1) that are tied to that metamodel (e.g.,
merging state-machines). The composition of transformations can then be facili-
tated by writing model management scripts in an OO-style notation, which invokes
transformations on models (2) just like methods on objects. Transformations repre-
senting actual realizations of model management operators are defined by languages
(3) which we refer to as domain specific integration languages (DSIL).
Intermediate. A DSIL consists of operators that enable to locally handle fine-
grained relationships between metamodels and is formalized as a weaving meta-
model [8]. The domain specificity of a DSIL stems from the fact that a DSIL can
only be applied to certain kinds of metamodels (4). For instance, a MergeLang
may be used to specify a merge for metamodels representing structures (e.g., class
diagrams). As behavioral integration poses a very different challenge than struc-
tural integration [23], a merge on a metamodel representing some kind of behavior
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Fig. 1. Illustration of our approach’s abstraction layers.

(e.g., business process), would have to be specified in a FlowMergeLang, whose op-
erators are specifically aimed towards metamodels representing flows [22]. Efforts
to formalize a metamodel’s domain (e.g., by mapping metamodels onto ontologies
[17]), could help to check whether a metamodel falls into the domain of a certain
DSIL. From our point of view, this still poses an open research question and the
applicability of a DSIL on a metamodel ultimately requires a user’s judgement.
Local and Local Composite. An integration specification in a DSIL is a weaving
model that conforms to its weaving metamodel, which is a certain DSIL’s metamodel
(5). A weaving consists of a set of typed links between elements of a model or a
metamodel. The types of links represent different kinds of integration operators (6),
whose execution semantics are defined through a mapping towards an executable
MTL. Thus, an integration specification is finally derived into an executable model
transformation (7).

Notably, our approach focuses on specifying integration between metamodels
in a purely declarative way, as such a specification (which abstracts imperative
implementations) is the basis for reasoning tasks like analysis or optimization.

3 Managing Models on a Global Level

This section discusses the two top-most layers of abstraction which have been pre-
viously introduced as global and global composite. The following subsection exem-
plifies transformation composition on the global composite layer through a model
management script. Based on observations gained in the example, the global level is
elaborated on in more detail by laying out a useful classification of transformations.

3.1 Model Manangement Scripts on the Global Composite Level

The following example deals with the merging of two domains represented by two
metamodels, as depicted in Fig. 2. When these metamodels are merged, however,
also their conforming models should be merged. We refer to such a model man-
agement task as an exogenous merge. A concrete application would be to merge
previously modularized metamodels (e.g., a BPEL metamodel split into a structural
and a behavioral part) or to extend a metamodel with a certain aspect (e.g., add
“Marks” to a Petri-net metamodel) [18]. Throughout the example, however, for
simplicity reasons and to emphasize the global perspective at this abstraction layer
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we will not go into detail about the makeup of the metamodels, which are simply
referred to as A and B and their conforming models as a and as b, respectively.

There may be multiple ways to describe an exogenous merge. A straightforward
way would be to program the whole task as one monolithic transformation in a
general purpose transformation language. As already argued before, such ad-hoc
approaches suffer poor scalability and reuse potential. Instead, a description of such
complex tasks as a composition of global model management operations favors scal-
ability and reuse: Firstly, one is not concerned with handling fine-grained relation-
ships on the local model element level, and secondly, model management operations
can be easily reused in order to assemble scripts for different tasks. Thinking of
model management scripts as OO programs, as we propose to do, furthermore has
the advantage that the code for this model management script does not need to
be changed in order to work with other metamodels, as the actual transformations
that are invoked, are dynamically bound depending on a model’s metamodel.

Fig. 2 depicts the described setting and gives a listing of the according exogenous
merge model management script. Details of the various steps in that script are
discussed in the following.

A.mark();
B.mark();

Ecore AB = A.merge(B);

FullEquiv wa = AB.Fe_match(A);
FullEquiv wb = AB.Fe_match(B);

Transformation ta = wa.generate();
Transformation tb = wb.generate();

AB a′ = a.ta();
AB b′ = b.tb();

AB ab′ = a′.merge(b′);
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Fig. 2. Model management script for exogenous merge.

In the first step (1) a mark transformation is run that tags all metamodel elements
with a unique id by adding annotations. In the second step (2) a merge transfor-
mation is executed that unites the metamodels A and B as specified in the merge
integration specification, for instance through overlapping the two metamodels on
certain join points. This results in a new metamodel AB, which also contains the ini-
tially introduced markings. In the third step (3) a transformation creates a weaving
between each of the original A and B metamodels and the newly created AB meta-
model. A transformation creating such a weaving does a relatively easy job, as it can
rely on the previously introduced traceability annotations to match model elements.
The weavings created in our example comprise a certain integration specification,
which in step (4) is derived into executable transformations, which are executed in
(5) and migrate the models a and b towards models a’ and b’ that conform to the
AB metamodel. Since these models now conform to the same metamodel, they can
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be overlapped in a merge transformation (6). We would like to mention, that also
other ways of realizing traceability mechanisms exist, for instance through weav-
ing a traceability aspect into a base transformation in an aspect-oriented fashion
[14]. Embedding traceability information into a model through annotations, in our
opinion has the advantage that a transformation producing a weaving can relatively
easy create a trace weaving model. For further processing, the annotations could
be easily pruned from the model.

3.2 Categorizing Transformations on the Global Level

After having discussed the composition of global model management operations, the
following section will establish a better understanding of the transformations that
were used in the previous example. However, this will not be done by discussing the
behavior of these transformations in terms of how model elements are manipulated,
as this is transparent on the global level and would differ for different kinds of
metamodels. Rather, the global level requires to put thought on what kinds of
transformations are being employed.

Hence, we classify our approach’s DSILs used to define actual transformations,
into certain categories. These categories reflect recurring kinds of transformations
prevalent in model engineering. Such a categorization favors the definition of modu-
lar and comprehensible transformations and creates a mindset where one can think
of solving complex model management tasks through composition of such modular
transformations, as exemplified in the previous subsection. Another advantage of
this approach is that for every category a generic toolset can be built that allows
to manipulate languages falling into a certain category. Transformations producing
weavings can all share a tool like the Atlas Model Weaver [8], whereas translating
transformations, for instance, can benefit from tooling to capture execution traces.

A similar distinction is made in the area of generic model management [4]. How-
ever, we allow the distinction between different categories according to the kind of
input (IMM) and output metamodels (OMM) (cf. Table 2) that the transforma-
tions act upon, as opposed to focus on making assumptions about the behavior or
algebraic properties of transformations.

Table 2 gives an overview by showing a category’s input/output characteristics,
example transformations, a reference to similar operators proposed in literature,
and a function signature being representative for a category’s transformations. To
put each of the example transformations in a concrete context, we refer to the
previously used traceability mechanism in more detail now. First, the containsAn-
notations transformation is called to check whether a model is free of traceability
annotations. If so, with addTraceAnnotations traceability annotations are added to
all model elements. Next, translateWithAnnotations or mergeWithAnnotations is
called that produces an output model in which the traceability annotations are mi-
grated from source to target model elements. Then, matchByAnnotations is invoked
which establishes a weaving model representing traceability links according to the
annotations contained in source and target model. In a final step, this traceability
weaving is input to the createReverseTranslation transformation which produces a
round-tripping translation transformation.
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Category Arity Output Function Signatur Example Operators in Lit.

Check 1 Prim. Type P p = check(M m); containsAnnotations Check-property [11]

Rewrite 1 OMM==IMM M m’ = rewrite(M m); addTraceAnnotations Refactorings [15]

Translation 1 OMM!=IMM Mb mb = translate(Ma ma); translateWithAnnotations ModelGen [3]

Fusion 2 OMM==IMM M m = fuse(M ma, M mb); mergeWithAnnotations Merge [11]

Relation 2 Weaving W w = relate(Ma ma, Mb mb); matchByAnnotations Match [3]

Generation 1 Transform. T t = generate(W w); createReverseTranslation GlueCodeGen [10]

Table 2
Categories of transformations on the global level.

Check. The first category deals with transformations that map models onto prim-
itive value ranges, like booleans or natural numbers. This kind of functions allow
to determine whether certain properties hold for models (consistency checks), or to
evaluate certain criteria (e.g., number of inheritance relationships) of models.
Rewrite. This category encompasses transformations that modify a model but do
not transform it into a model of another metamodel. This kind of transformations
can be associated with editing or specialized refactoring operations [15], that do
not require input from another model. An example language discussed later on is
a language that allows to mark elements in a model with certain annotations.
Translation. A translating function maps concepts of one metamodel onto con-
cepts of another metamodel and henceforth transforms a model conforming to one
metamodel into a model conforming to another metamodel. A special case of a
translating transformation would be if the source and target metamodels are the
same, but nevertheless concepts are translated into other concepts. This would
especially be the case when using UML, which, by means of stereotypes or tagged
values offers a somewhat weaker mechanism than DSLs to represent concepts. Still
we consider such transformations as part of this class, as the same translation lan-
guage constructs can be of use, even though binding these needs some special effort.
Fusion. We classify a transformation as a fusion, if it takes two models as input and
produces an output model taking into account each of the inputs. The input and
output models thereby conform to the same metamodel. For instance, this class
includes transformations that are usually associated with a merge or a diff [11],
although domain specific realizations may potentially blend these two behaviors, by
overlapping and clipping certain parts of the source models.
Relation. Transformations of this kind produce special kinds of models, which
relate two other models. These models are referred to as weaving models [8] and
consist of typed links between elements of left-hand side (LHS) and right-hand side
(RHS) models. An example for a transformation creating a weaving could be carried
out through a matcher, which heuristically establishes weaving links. Therefore, the
creation of a weaving is often a task involving manual effort.
Generation. This kind of transformations generates other transformations. More
precisely, they function as a compiler which turns weaving models into executable
transformations. Typically this is either accomplished through a transformation
whose target metamodel is the abstract syntax of a model transformation language
or through a templating mechanism. It is important to note, that our view of a
weaving is that a weaving model implicitly references its LHS and its RHS model,
hence we omit these models in the above signature. Thus, we can still assume that
the generation function has access to read the LHS and RHS models.
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4 Integrating Models on the Local Level

The previous section has detailed the global composite and the global level. Hence,
this subsection focuses on the remaining abstraction layers. As integration languages
reside on the intermediate layer and this section makes use of a concrete example
DSIL, the first subsection is dedicated to the intermediate level and to introducing
the example language. The second subsection discusses the local composite level
and discusses integration operators for the example DSIL. The local level is dealt
with in the third subsection and focuses on the definition and extension of execution
semantics for integration operators through a mapping towards MTL code.

4.1 An Example DSIL on the Intermediate Level

The abstract syntax of a DSIL is defined in a weaving metamodel [8], which is
basically made up of meta-classes for the languages’ integration operators. Further-
more, constraints are specified that enable to check whether a certain integration
specification is valid. Such an analysis is comparable to static compile-time check-
ing in traditional programming languages. In the following we will give an example
for a basic language for the translation category. Due to space limitations we will
not go into detail about languages of other categories, just as we are not claiming
that the described integration operators are complete, as a precise definition is out
of scope of this paper.

The setting for our example is depicted in Fig. 3, which shows a simple meta-
model for activity diagrams (AD) as the LHS metamodel, and a Gantt-chart project
plan (PP) metamodel as the RHS metamodel. An activity diagram consists of ver-
tices and transitions in-between. A project consists of a number of tasks and every
task has a reference to its previous task.

subVertices transitions

tasks

preFullEquivAttr

FullEquivAttr

FullEquivRef

FullEquivClass
FullEquivClass

TransitionVertex
name

ActivityDiagram

description

outgoingtarget
incomingsource

Project
title

Task
label

FullEquivRefordered

rule ActivityDiagram2Project {
from
src : AD!ActivityDiagram

to
tgt : PP!Project (
description <- src.title,
tasks <- src.subVertices

)
}

rule Vertex2Task {
from
src : AD!Vertex

to
tgt : PP!Task (
label <- src.name,
pre <- src.incoming.source

)
}

rule ActivityDiagram2Project {
from
src : AD!ActivityDiagram

to
tgt : PP!Project (
description <- src.title,
tasks <- src.subVertices

)
}

rule Vertex2Task {
from
src : AD!Vertex

to
tgt : PP!Task (
label <- src.name,
pre <- src.incoming.source

)
}

Fig. 3. Example integration specification in the FullEquiv language.

The intention is to transform ADs into PPs in a semantics preserving way. Instead
of programming the transformation directly, a DSIL is used to specify a mapping
that denotes the translation of concepts of the AD metamodel onto concepts of
the PP metamodel. The code snippet on the right side of Fig. 3 shows the final
transformation code that should be generated in an ATL-like 6 notation.

6 For simplicity reasons code snippets use simplified ATL syntax.
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4.2 Integration Operators on the Local Composite Level

The DSIL used is the so called FullEquivalence language, which can be seen as a
basic language for the translation category. It consists of three operators, namely
FullEquivClass, FullEquivAttr, and FullEquivRef, which in a pair-wise manner link
classes, attributes, and references, respectively. During the definition of a DSIL, it
is important to define how its operators relate to each other. In our example, for
instance, the FullEquivAttr and the FullEquivRef operators have to stand in the
context of the FullEquivClass operator, as the assignment of values and the setting
of references needs to happen in the context of the model elements which these
attributes and references belong to. Such a relationship is defined through contain-
ment in the metamodel of the FullEquivalence language by making the FullEquivAttr
and theFullEquivRef operators children of the FullEquivClass parent. Relationships
not inferable from structure (e.g., precedence rules) can be specified in a constraint
language. An example for a constraint that should be enforced is that an attribute
in a target model element cannot be referenced by more than one FullEquivAttr
operator having the same FullEquivClass parent, as this would lead to ambiguity
concerning which source attribute should be used to set the target attribute.

4.3 Mapping Integration Operators onto the Local Level

After describing the operators, in the following example it is shown how a gener-
ating function can derive an implementation in the form of MTL code. Further-
more, we will exemplify the extension of an existing operator’s semantics. The
execution semantics are expressed through a function, mapping integration specifi-
cations expressed as weaving models onto executable transformations. This is either
achieved through a template producing MTL code, or through a transformation cre-
ating a transformation program encoded as a model (higher-order transformation).
However, writing transformations that produce transformation programs can be a
daunting task. Thus, for better understandability, our explanation uses an example
template language, which allows to see the output in bits of concrete syntax more
intuitively.

Depending on what kind of transformation engine is used, the semantics of the
resulting transformations are for instance formalized as abstract state machines [13]
or as graph-based formalisms, such as triple-graph-grammars [20].

Continuing the above example, the subsequent paragraphs concentrate on the
execution semantics for each of the operators given in Fig. 3, by using ATL-like
code templates. At compile-time, each operator is derived into a fragment of ATL-
code, only. A weaving in a certain language, though, stands for a complete ATL
transformation. The generator, therefore, needs to integrate all these fragments
into a complete ATL transformation as shown in Fig. 3.

Fig. 4 depicts pseudo-template code to show how semantics of operators can
be specified. The template code consists of target code (ATL) in plain text, and
template code in angle brackets which is bound at compile-time against LHS and
RHS model elements. Square brackets contain control-flow instructions for the gen-
erator. In the template body of the parenting FullEquivClass operator for instance,
templates of children operators are invoked.
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template FullEquivClass {
rule <smodel>2<tmodel> {
from
<sname>:<smodel>!<sclass>
[extensionpoint: precondition,

requiredType: BooleanExpression]
to
<tname>:<tmodel>!<tclass> ( 
[applyTemplates(this.children)]

)
}

template FullEquivClass {
rule <smodel>2<tmodel> {
from
<sname>:<smodel>!<sclass>
[extensionpoint: precondition,

requiredType: BooleanExpression]
to
<tname>:<tmodel>!<tclass> ( 
[applyTemplates(this.children)]

)
}

template FullEquivAttr {
<tattr> <- <sname>.<sattr>
}

template FullEquivAttr {
<tattr> <- <sname>.<sattr>
}

template FullEquivRef {
<tref> <- <sname>.<sref>
}

template FullEquivRef {
<tref> <- <sname>.<sref>
}

template CondEquivClass extends FullEquivClass{
[extension FullEquivClass::precondition] {
( [applyTemplates(this.condition)] )

}
}

template CondEquivClass extends FullEquivClass{
[extension FullEquivClass::precondition] {
( [applyTemplates(this.condition)] )

}
}

Fig. 4. Template code for integration operators.

To enable the extension of existing operators, a plugin-mechanism can be used.
Thereby, templates can offer extension-points, into which templates of more spe-
cialized operators can plug-in their contributions. In Fig. 4, the FullEquivClass
template declares an extension point that requires the contribution of a boolean
expression. An example for an extension is given by the template of the CondE-
quivClass operator, which itself invokes a template that returns a boolean expression
bound to the operator’s context. Through this inheritance-based reuse, a CondE-
quivClass iterator can inherit all of FullEquivClass’ behavior and additionally denote
that a model element should be transformed if a certain condition holds, only.

5 Related Work

In this paper we have laid out an approach stretching across various abstraction
layers, from global model management to local MTLs. As shown in Table 3, existing
work typically focuses on certain abstraction levels, but, in our opinion, have not
established a common understanding of how bottom-up approaches can be utilized
for the implementation of top-down approaches in a scalable way. Furthermore, we
compare related works on basis of certain key characteristics of our approach, like
the employment of DSILs, OO-style model management scripts, the extensibility of
operators and the explicit use of declarative integration specifications.

Related Key Characteristics Abstraction Levels

Work DSIL OO Extensible Declarative Glob. Comp. Glob. Intermed. Loc. Comp. Loc.

MMgmt. - - - + + + - - -

MOMENT - - ∼ + - + - - +

GGT + - - + - + + + ∼
AMW + - + + - - + ∼ -

EOL + - + ∼ - - + + +

ATL - - - ∼ - - - - +

Table 3
Comparison of related work.

Model management as proposed by Bernstein et al. aims at applying operators on
the model level [3] [11]. In [4] a language-independent semantics is established to
guide the implementation of model management operators. Although our work em-
braces the ideas of model management operators, e.g., by categorizing transforma-
tions, we also extend the notion of model management scripts with OO-mechanisms
and explicitly focus on providing for scalable implementations through DSILs.
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MOMENT [9] realizes model management operators by defining their semantics
in QVT relations [21] that are mapped onto the algebraic specification language
Maude, which, through term rewriting, executes the defined transformations. Al-
though we focus on supporting the implementation of model management operators,
the justified intention behind MOMENT to study formal properties of transforma-
tions could complement our approach in the future. However, our approach could
potentially do this on the more abstract level of basically language independent
integration operators and DSILs, as opposed to MOMENT, where Maude doubles
as an execution environment as well as a testbed for proving formal properties.

The Glue Generator Tool (GGT) [7] aims at the reuse of existing MDA applica-
tions by specifying composition relationships between platform-independent models
(PIMs), of which glue code for the integration of platform-specific models (PSMs)
can be derived. Although rules similar to our integration operators are offered, our
approach seems to be more flexible as we allow to extend the semantics of integra-
tion operators. Furthermore, the integration scenario described in GGT could be
realized as a model management script carrying out the necessary transformations,
which could allow for better modularity and maintainability of the overall approach.

The Atlas Model Weaver (AMW) [8] is a generic, extensible tool that aims at
supporting modelers to establish semantic links between elements of arbitrary mod-
els or metamodels. The links are referred to as weavings and are formalized in a
weaving metamodel, which can be extended to denote link types with special seman-
tics. This extension mechanism is the basis for defining the syntax of integration
operators and DSILs in our approach. Created weavings can then be subject to
further processing like derivation of MTL code.

The Epsilon Object Language (EOL) is a language for managing models of arbi-
trary metamodels [19]. It can either be used as a standalone language for model nav-
igation and comparison, or also as an infrastructure on which task-specific languages
such as the Epsilon Merging Language (EML) or the Epsilon Comparison Language
(ECL) can be built. Similarly, the Atlas Transformation Language (ATL) [1] is a
hybrid (imperative/declarative) MTL based on the Eclipse Modeling Framework.
In our opinion, both efforts present themselves as possible execution environments
for our approach. Especially the definition of execution semantics for DSILs falling
into categories like Check or Fusion could be conveniently accomplished relying on
the expressiveness of languages like ECL or EML.

6 Conclusion and Future Work

In this paper we have proposed a conceptual approach which allows to define declar-
ative model integration languages to implement model management operators, and
to compose these into model management scripts. The distinction between local and
global transformations fosters reuse of existing integration operators, and allows
for sound composition of transformation functions. We have given a description
of transformation categories and exemplified the composition of transformations
into model management scripts. According to the understanding of transforma-
tions defining the integration behavior of metamodels, these scripts rely on an OO
mechanism to invoke transformations which are dynamically bound depending on
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a metamodel’s type. Furthermore, we discussed the syntax and the semantics of an
example integration language and described a way to extend integration operators.

We think of the approach described in this paper as a step towards the realiza-
tion of future transformation systems which operate on the global model level, as
opposed to the local model-element level, only. To raise the level of abstraction,
domain specific languages in the form of declarative integration specifications play
a key part in our approach. These are built on existing general-purpose transfor-
mation languages and are basically technology neutral. We have experimented with
the implementation of various weaving languages which consist of operators that
form the language kernels for the proposed transformation categories. Current work
deals with building a technical framework based on existing model engineering in-
frastructure supporting our approach and a generically reusable toolset for various
transformation categories.

In the context of ModelCVS, besides the integration of modeling tools, a crucial
issue is the support for language evolution through metamodel modification. Future
work will investigate to what extent such metamodel extensions can have character-
istics analogous to traditional OO sub-classing, which would allow transformations
to be inherited towards extended versions of metamodels.
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