Towards Mapping the Semantics of References
between Metamodels*

Thomas Reiter!, Werner Retschitzegger?

Information Systems Group (IFS)
Johannes Kepler University Linz, Austria

Kerstin Altmanninger?

Department of Telecooperation (TK)
Johannes Kepler University Linz, Austria

Abstract

In model driven development, model transformation languages play an important role as a way to specify
and execute transformations on models. Methods and processes that can guide the development of trans-
formations, however, still have to be formulated. In this paper we take a first step towards describing such
a process, which is built on a step-wise establishment of mappings between metamodels. In particular, we
focus on the mapping of references, for which we propose an initial set of mapping constructs, that allow
taking into account certain semantics of references. Consequently, such mappings enable to specify complex
relationships between references in different metamodels, which is an important step towards the derivation
of model transformations implementing these mappings.

Keywords: model transformation, semantic mapping, mapping language, metamodel matching.

1 Introduction

The emergence of model driven development leads to the increase of different model
transformation languages and systems. The different approaches towards build-
ing transformation languages can basically be separated into graph-rewriting and
transformation approaches [5], as well as responses to OMG’s QVT RFP [8][1].
Although these approaches may differ in the way how transformations are spec-
ified or how they are actually executed, the basic commonality they share, is that
transformations are specified on the metamodel level and carried out on the model

I Email:reiter@ifs.uni-linz.ac.at

2 Email:werner@ifs.uni-linz.ac.at

3 Email:kerstin@tk.uni-linz.ac.at

4 This work has been partly funded by the Austrian Federal Ministry of Transport, Innovation and Tech-
nology (BMVIT) and FFG under grant FIT-IT-810806.

mailto:reiter@ifs.uni-linz.ac.at
mailto:werner@ifs.uni-linz.ac.at
mailto:kerstin@tk.uni-linz.ac.at

REITER AND ALTMANNINGER

level. Analogous to traditional general purpose programming languages, the men-
tioned model transformation languages basically allow for arbitrary manipulations
upon models. In model driven development in general, however, several different
kinds of transformations can be characterized, such as horizontal (PIM-to-PIM) or
vertical (PIM-to-PSM) transformations in MDA, as well as more specific transfor-
mation scenarios like the merging of models or code generation. Compared to tra-
ditional programming, for various kinds of problems, different software engineering
principles, heuristics and patterns [6] have been established that guide a developer
towards solving a programming task, e.g. step-wise refinement [10].

In our opinion, similar methods that guide the development of transformations
still have to be formulated. Hence, we sketch a view of how such a method may look
like, specifically for the task of developing transformations that facilitate a trans-
lation between two different metamodels by mapping semantically equal concepts
of one metamodel onto concepts of another metamodel. By mapping semantically
equal concepts, we particularly refer not just to the mapping of classes, but to the
mapping of references representing relationships between these classes, too.

The remainder of this paper is structured as follows. Section 2 introduces two
transformation examples and illustrates the proposed mapping approach. Section 3
generalizes the insights gained in the examples and lays out various constructs for
the mapping of references. Section 4 discusses related work and section 5 concludes
with an outlook on future work.

2 Matching References

This section introduces two transformation scenarios which will serve as running
examples throughout this paper and illustrate the development of two transforma-
tions through a mapping of classes and references. The metamodels chosen in these
examples represent two frequently encountered transformation situations, namely
a transformations of flows (e.g., directed graphs), and the transformation of con-
tainers and elements (e.g.; arrays or lists). In particular, the first example deals
with the transformation between metamodels representing flows, thus necessitating
a not straight forward graph traversal. The second example deals with a transfor-
mation between structurally equal metamodels that however represent differently
structured models. Hence, these examples allow to show up transformations prob-
lems which are typically linked to the correct understanding of the semantics of
references in metamodels. Many difficulties with transformation development are
associated with correctly reifying the semantics of references of the source meta-
model in the target metamodel. The process laid out in the following, specifically
takes into account the semantics of references, and allows to establish mappings
between references denoting their relationship to each other.

We approach the development of transformations in two steps. The first step
deals with the mapping of semantically equivalent classes. Such a mapping could
be supported by schema or ontology matching tools [4]. Those tools, however, are
mainly built on discovering naming similarities and simple structural relationships,
and aim at integrating large, but rather similar schemas and ontologies. Using such
matchers on metamodels can yield undesirable results [7]. Hence, in our opinion

2

REITER AND ALTMANNINGER

the matching of metamodels representing domain-specific languages poses a consid-
erably different challenge, and basically relies on a user’s domain knowledge, which
lets one intuitively find corresponding concepts. Such a mapping between classes
is assumed as a prerequisite in the following examples and should express semantic
equivalence, for instance resulting in model transformation code causing the cre-
ation of a target model element for every source model element. The second step
in transformation development deals with the correct setting of references in the
target metamodel, and is often not a trivial task. Hence, we aim at offering support
through a process guiding the step-wise discovery of a mapping between references
based on an initial class mapping between metamodels. Thus, in a semi-automatic
fashion, for every reference in the RHS metamodel, a most likely mapping towards
references in the LHS metamodel can be proposed to the user. Heuristics (e.g.,
suggest shortest paths first) can be used to rank likely matches. Finally, a mapping
expressing an often not straight forward relationship between references is estab-
lished, which consequently can be used to derive the actual implementation of a
transformation. The following examples will detail the above described process for
the mapping of references.

2.1 Activity Diagram to Project Plan

The setting for the first example is depicted in Fig. 1, which shows a metamodel for
activity diagrams (AD) as the left-hand side (LHS) metamodel, and a metamodel
for Gantt-chart project plans (PP) as the right-hand side (RHS) metamodel [2].

’ LHS ‘ ’ Class & Reference Mappings ‘ ’

L~ ~ = ProjectPlan
b y
"5,.5.9,:_@055 B ActivityDiagram= " sk
* J * - ’ <

’ | ActionState‘ H pseudoState ’ =] FinaIState‘
= kind

’ Closer look on Reference Mapping (Example: predecessor <— incoming.source) \

Fig. 1. Activity Diagram to Project Plan.

An activity diagram consists of vertices and transitions in between. Vertex is an ab-
stract class with the concrete sub-classes Action-, Final- and PseudoState. The kind
attribute in the PseudoState class differentiates Fork-, Join- and InitialStates® .

5 For reasons of simplicity we refer to a PseudoState with the kind attribute set to ’initial’, fork’ or ’join’
as an Initial-, Fork- or JoinState.

REITER AND ALTMANNINGER

A ProjectPlan consists of a number of Tasks and every Task has a predecessor
reference to its previous Task.

Class Mapping. A mapping between classes denotes StateMachine and Project-
Plan to be semantically equivalent. Intuitively ActionState maps onto Task. We
take a design decision and also map FinalState and InitialState onto Task. Control
flow structures like Fork- or JoinState should however not be represented as a Task.
Reference Mapping. After the mapping of classes, one has to deal with finding a
mapping for each reference in the target model. Firstly, as a most likely candidate,
the subVertices reference is chosen to map onto the tasks reference. Secondly, the
predecessor reference has to be mapped, which could be achived either by an in-
coming.source query as well as an outgoing.target query. Choosing the appropriate
query lies in the responsibility of the user, who needs to interpret the word “prede-
cessor” correctly. Once the decision for incoming.source is made, a straightforward
assignment of incoming.source to predecessor would however be wrong. A correct
setting of predecessor requires a traversal of the input model by repeatedly calling
incoming.source to collect all ActionStates and InitialStates that are equivalent to
the respective Task objects. The set of objects returned by the incoming.source
query can contain Fork- or JoinStates which are not equivalent to Task, hence a
repeated traversal of incoming.source is necessary. Due to the fact that Vertex is
an abstract class, and not all of its subclasses map to Task, all possible instances
of domains and ranges of the incoming.source query have to be considered in the
way how they map onto predecessor. Fig. 1 shows how the discovery of a mapping
towards the predecessor reference can go about, by specifying special relationships
between all possible instances of incoming.source links.

First, we state that an incoming.source query originating from an InitialState (1)
or going towards a FinalState (2) is invalid. An incoming.source query originating
from a Vertex towards a Fork- or JoinState causes a repeated traversal of the query
(3,4). ActionStates yielded by by an incoming.source query should be collected as
a result without further traversal of incoming.source (5,6).

This information about the relationship between the incoming.source query and
the predecessor reference can further be used to derive model transformations to
actually implement the specified relationship, informally given as follows.

predecessor «— pred(start) = foreach(n € start.incoming.source){p(n)}

break() start.isTypeO f(InitialState) V n.isTypeO f(FinalState)
p(n) s n n.isTypeO f (Initial State) V n.isTypeO f (ActionState)
pred(n) n.isTypeO f(ForkState) V n.isTypeO f(JoinState)

2.2 Priority Sequence to Priority Sequence.

The second example depicted in Fig. 2 shows a transformation between two meta-
models representing sequences of prioritized tasks. The LHS metamodel has a
contains reference indexing all tasks and a next reference where the first task of a
given priority points directly to the first task of the next lower priority within the
sequence. The RHS metamodels has a successor reference to impose an order on
the tasks, similar to a linked list. The priorityClasses reference indexes the first

4

REITER AND ALTMANNINGER

task in a given priority class. It is to note, that both metamodels are structurally
equal and can represent the same state of affairs, but due to the different semantics
of their references produce different object graphs.

’ LHS H Class & Reference Mappings ‘ ’ RHS ‘

A
v

B Sequence

B Sequence

% l contains 7 priorityClasses l %
N

I
= Task ~0m1’|\\ o B Task

’ ot
= N
—_— next |« * | SUCCESSOr | mmm—

Fig. 2. Priority Sequence to Priority Sequence.

Class Mapping. An initial mapping of classes would denote the respective Se-
quence classes and the Task classes as equivalent.

Reference Mapping. In a first step, candidates for the mapping of references have
to be found. Similar to the previous example this could be carried out by finding
likely matches based upon the structure of references and classes in the context of an
existing class mapping. This might seem trivial as the metamodels are structurally
equal. Seemingly equivalent references like contains and priorityClasses, however,
have very different semantics. The contains and successor references actually ad-
dress the ordering of tasks, whereas the next and the priorityClasses reference serve
to denote classes of priorities. Hence, the successor reference has to be mapped to a
correctly indexed contains query, and priorityClasses is mapped onto the contains
reference followed by a repeated traversal of the next reference. In this example,
the indexing of references becomes of special importance, for traversing the cor-
rect contains links, as well as for correctly iterating the nextPriority reference. For
instance, the resulting relationship for the priorities references is given as follows.

priorityClasses < prior(n) =

contains|0] n=0
prior(n — 1).next n>0

3 Mapping Constructs

The examples in the previous section show how important it is to be aware of the
semantics of references, as references forming loops can necessitate an often counter-
intuitive recursive traversal, and even transformations between structurally equal
metamodels may not be as straightforward as it may seem at first look. This sec-
tion builds upon the previously introduced examples and generalizes a number of
mapping constructs to specify relationships between references of two metamodels.
Similar to a mapping between classes, these constructs can denote special semantics
for mappings between references, which are finally derived into model transforma-
tions.

We associate these mapping constructs with different patterns observable in the
structure of references in the context of a mapping between classes. As depicted
in Fig. 3 we differentiate three such patterns, dealing with the composition and

5

REITER AND ALTMANNINGER

recursion of queries. Followed by that, a brief description and an overview of the
mapping constructs is given.

Composition Examples Recursion Examples
Sequence Inverse Index R Recall Recall & Recursion
] H Collect Depth
Ox | OV | On

Stop Stop & Break

x| | 4

Fig. 3. Patterns categorized by the structure of references.

Composition. It is often the case that a reference on the RHS is equivalent to
a query consisting of a sequence of references on the LHS. Furthermore, a RHS
reference is often equivalent to a union or an intersection of queries on the LHS.
Besides these basic navigational constructs, useful helper constructs could allow to
specify that two references express inverse semantics (e.g., contains/containedBy)
or use indexing mechanisms to express relationships between ordered references.
The requirements for the activity diagram to project plan example could change
and require that a Task is equivalent to Vertices except Initial- and FinalStates.
Then, the tasks reference could be mapped onto a subVertices query (yields all
Vertices) intersected with a transitions.source query (yields all Vertices without
FinalStates) intersected with a transitions.target query (yields all Vertices without
InitialStates), which would yield all Vertices except Initial- and FinalStates. A con-
dition between references can denote a selection of a certain link, for instance when
mapping from a higher cardinality to a lower cardinality reference. Furthermore,
how a reference has to be set can differ in certain situations, which can be expressed
by a conditional mapping between references. Referring to the activity diagram to
project plan example for instance, one could decide not to set the tasks reference
equivalent with the subVertices reference, but instead denote an equivalence with
a transitions.source query to reference nodes in general, and an equivalence with
a transitions.target query in case of the last node. This also shows that finding a
matching reference is not always unambiguous, but often rather a matter of choice.
Recursion. References having the same domain (source class) and range (target
class), either directly or through a composed query, often require a repeated invo-
cation resulting in a traversal of the model. Such recursive references often occur in
metamodels representing containment hierarchies or navigations in a flow. In such
a case it is necessary to specify the query representing the recursion and conditions
that will either cause a stop or a repeated traversal of the query, and what kind
of queried model elements should join the result set (cf. Fig. 3). Furthermore, it
can be useful to specify a certain maximum recursion depth or conditions causing
a traversal’s break off.

It has to be noted that we are not claiming completeness of the described pat-
terns and the semantics we associated with mappings between references, as this
paper focuses on laying out the idea of mapping references and fostering discussion
about the establishment of a method that can guide the definition of transforma-

6

REITER AND ALTMANNINGER

tions. Further patterns and mapping constructs could deal with situations involving
cardinality restrictions and inheritance relationships.

4 Related Work

In [3] the idea of patterns and reusable idioms for the area of graph transformations
has been introduced to foster the build up of pattern catalogues that transformation
developers can rely on. Although it seems that our matching constructs for refer-
ences can be used to instantiate these patterns, our work is more general as we rather
focus on creating a semi-automatic process to guide transformation development.

As our approach to establish mappings between references in different metamod-
els is based on the mapping between classes, schema and ontology matching tools [4]
are of relevance to our approach. To the best of our knowledge, however, these tools
are not immediately usable for eliciting equivalent references in metamodels. For
instance, the initial set of mapping constructs proposed in this paper, specifically
takes into account recursive references, which are a frequently recurring pattern in
model transformations and are therefore paid special attention.

The approach to finding the mapping of references between two metamodels
can also be compared to the construction of wrappers in federated databases [9],
which translate DB queries between different schemas. The final goals however
differ, as wrappers aim at translating DB queries between schemas, whereas in our
case, the knowledge of equivalent references serves our focus to finally support the
implementation of model transformations between two metamodels.

5 Conclusion and Future Work

In this paper we have stated a position that encourages the importance of the
mapping of references as a step in the definition of model transformations. We have
laid out an initial set of mapping constructs to denote special semantics between
references.

In our view, a structured approach discovering the mapping of classes and ref-
erences can help the development of transformations between metamodels. An
advantage of capturing mappings between classes and references in such a way, is
that such specifications are declarative and basically technology independent, which
can ease the porting of transformations between various model transformation lan-
guages and systems.

Future work will deal with extending our initial experiments to build a tool to
support a user in finding equivalent references. Furthermore, we plan to detail the
initial set of mapping constructs by specifically taking into account more complex
patterns addressing cardinalities and inheritance relationships.

A final goal would be to come forward with a method and tool support that
could guide the establishment of transformations between metamodels representing
domain specific languages. Such a method would be based on an integrated match-
ing tool for classes and references, and a mapping language to declaratively express
complex relationships between references.

7

REITER AND ALTMANNINGER

References

[1] Atl homepage. http://www.eclipse.org/gmt/atl/, 2006.
[2] Uml activity diagram to msproject. http://www.eclipse.org/gmt/atl/atlTransformations, 2006.

[3] Aditya Agrawal, Attila Vizhanyo, Zsolt Kalmar, Feng Shi, Anantha Narayanan, and Gabor Karsai.
Reusable idioms and patterns in graph transformation languages. In T. Mens, A. Schrr, and G. Taentzer,
editors, Proceedings of the International Workshop on Graph-Based Tools (GraBaTs 2004), volume 127
of Electronic Notes in Theoretical Computer Science, pages 181-192, October 2004.

[4] David Aumueller, Hong-Hai Do, Sabine Massmann, and Erhard Rahm. Schema and ontology matching
with coma++4. In SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD international conference on
Management of data, pages 906-908, New York, NY, USA, 2005. ACM Press.

5

Karsten Ehrig, Esther Guerra, Juan de Lara, Laszlé6 Lengyel, Tihamér Levendovszky, Ulrike
Prange, Gabriele Taentzer, Daniel Varré, and Szilvia Varr6-Gyapay. Model transformation by
graph transformation: A comparative study. In MTiP 2005, International Workshop on Model
Transformations in Practice (Satellite Event of MoDELS 2005), 2005.

6

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Professional, 1995.

=

Gerti Kappel, Elisabeth Kapsammer, Horst Kargl, Gerhard Kramler, Thomas Reiter, Werner
Retschitzegger, Wieland Schwinger, and Manuel Wimmer. Lifting metamodels to ontologies: A step to
the semantic integration of modeling languages. In Proceedings of the 9th International Conference on
Model Driven Engineering Languages and Systems (MoDELS/UML), Genova, Italy, October 2006.

[8] Object Management Group (OMG). Mof qvt final adopted specification.

[9] Philippe Thiran, Jean-Luc Hainaut, and Geert-Jan Houben. Database wrappers development: Towards
automatic generation. volume 00, pages 207-216, Los Alamitos, CA, USA, 2005. IEEE Computer
Society.

[10] Niklaus Wirth. Program development by stepwise refinement. In Communications of the ACM, Vol.
14, No. 4, April 1971, pp. 221-227. ACM, April 1971.

	Introduction
	Matching References
	Activity Diagram to Project Plan
	Priority Sequence to Priority Sequence.

	Mapping Constructs
	Related Work
	Conclusion and Future Work
	References

