
A Survey on Aspect-Oriented Modeling
Approaches

A. Schauerhuber1?, W. Schwinger2,
E. Kapsammer3, W. Retschitzegger3, M. Wimmer4, and G. Kappel4

1 WIT Women’s Postgraduate College for Internet Technologies,
Vienna University of Technology,

Favoritenstrasse 9-11/E188-4, A-1040 Vienna, Austria
schauerhuber@wit.tuwien.ac.at
2 Department of Telecooperation
Johannes Kepler University Linz,

Altenbergerstrasse 69, A-4040 Linz, Austria
wieland.schwinger@jku.ac.at
3 Information Systems Group

Johannes Kepler University Linz,
Altenbergerstrasse 69, A-4040 Linz, Austria

{ek,werner}@ifs.uni-linz.ac.at
4 Business Informatics Group

Vienna University of Technology,
Favoritenstrasse 9-11/E188-4, A-1040 Vienna, Austria

{wimmer,gerti}@big.tuwien.ac.at

Abstract. Aspect-orientation provides a new way of modularization by
clearly separating crosscutting concerns from non-crosscutting ones. Al-
though originally emerged at the programming level, aspect-orientation
meanwhile stretches also over other development phases. Not only due to
the rise of model-driven engineering, approaches already exist for deal-
ing with aspect-orientation at the modeling level. Nevertheless, concepts
from the programming level are often simply reused without proper adap-
tation. Consequently, such approaches fall short in considering the full
spectrum of modeling concepts not present in programming languages,
like, e.g., different views on the application’s structure and behavior.
In this paper we present a survey on existing aspect-oriented modeling
approaches. In doing so, we first discuss a common reference architecture
for aspect-oriented modeling and thus, take a step towards a consolidated
and more comprehensive view on aspect-orientation. Second, we set up
a framework of evaluation criteria directly derived from the common
reference architecture and thus, allowing for a structured evaluation of
approaches. And third, we provide a comparison of aspect-oriented mod-
eling approaches by means of a running example making the approaches’
strengths and shortcomings more explicit and report on lessons learned.

? This research has been partly funded by the Austrian Federal Ministry for Education,
Science, and Culture, and the European Social Fund (ESF) under grant 31.963/46-
VII/9/2002.

1 Introduction

The idea of Separation of Concerns (SoC), i.e., the identification of different
concerns in software development and their separation by encapsulating them
in appropriate modules or parts of the software, can be traced back to Dijk-
stra [19] and Parnas [51]. Aspect-oriented software development (AOSD) adopts
this idea and further aims at providing new ways of modularization in order
to separate crosscutting concerns from traditional units of decomposition dur-
ing software development. AOSD, formerly also called Advanced Separation of
Concerns (ASoC), is a fairly young but rapidly advancing research field. In par-
ticular, AOSD represents the convergence of different ASoC approaches, such
as Adaptive Programming (AP) [43], Composition Filters (CF) [1], Subject-
Oriented Programming (SOP) [32], Multi-Dimensional Separation of Concerns
(MDSoC) [50], [49], and Aspect-Oriented Programming (AOP) [40].

Aspect-Oriented Modeling. From a software development point of view,
aspect-orientation originally emerged at the programming level with AspectJ5 as
one of the most prominent protagonists. Not only due to the rise of model-driven
engineering (MDE) [7], however, the aspect-oriented paradigm is no longer re-
stricted to the programming level but more and more stretches over phases prior
to the implementation phase of the development life cycle such as requirements
engineering, analysis, and design. According to Pressman [55], modeling is the
progressively detailed representation of software and encompasses parts of the re-
quirements engineering phase as well as the analysis and design phase. Likewise
in the field of aspect-orientation, aspect-oriented modeling (AOM) encompasses
modeling activities from requirements engineering via analysis to design. Still,
we observe that there are differences in the understanding of how the prevailing
categorization of AOM approaches into requirements, architecture, and design
approaches is mapped on the software development phases of requirements engi-
neering, analysis and design [55]: In [9] requirements and architecture approaches
are mapped onto the analysis phase6 (e.g., [4], [36], [44]), and AO design ap-
proaches (e.g., [14], [20], [24], [38], [53], [58], [66]) are mapped onto the design
phase, whereas in [55] architecture design is described as an early task in the
design phase. Admittedly, the boundaries between software development phases
are continuous. And thus, while architecture approaches certainly are found in
between requirements and design approaches, some might be more aligned with
the earlier software development phase and some with the later software devel-
opment phase. In the context of this work, we focus on aspect-oriented modeling
languages at the design level, only, and in the following, use aspect-oriented
modeling as a synonym for those design level approaches.

State-of-the-Art in Aspect-Oriented Modeling. In the field of aspect-
oriented modeling, developers are already facing an immense amount of AOM
approaches each of them having different origins and pursuing different goals

5 http://www.eclipse.org/aspectj/
6 Please note that requirements engineering and architecture design is also the focus

of the Early Aspects Initiative (www.early-aspects.net).

dealing with the unique characteristics of aspect-orientation. This entails not
only the problem of different terminologies but also leads to a broad variety of
aspect-oriented concepts. In several cases, concepts of aspect-oriented program-
ming languages are simply incorporated unaltered into a modeling language fail-
ing to consider the different levels of abstraction. Applying aspect-orientation at
the modeling level, however, is not just injecting code at a certain point within
a program [70] but requires the consideration of the full spectrum of modeling
concepts not present in programming languages, like, e.g., different views on the
application’s structure and behavior as provided by current modeling languages
like UML [47].

Contribution. This paper’s contribution is threefold.

1. Based on the considerations outlined above and our initial work in [63], an
initial step towards a common reference architecture (cf. Section 3) is taken
to identify the basic ingredients of aspect orientation, abstracted from cer-
tain AOP languages and AOM approaches. Since a common understanding
of aspect-oriented concepts has not yet been established, our reference ar-
chitecture on the one hand proposes such a common understanding and on
the other hand summarizes the issues that have to be evaluated in a survey
on aspect-oriented modeling.

2. A framework of evaluation criteria (cf. Section 4) for a structured evaluation
of AOM approaches is proposed which is derived from the common reference
architecture. Furthermore, we provide additional criteria that are more gen-
eral and go beyond the concepts presented in our reference architecture, e.g.,
maturity and tool support.

3. A comparison of existing AOM approaches (cf. Section 5) is provided on the
basis of a running example, i.e., the approaches’ strengths and shortcomings
are identified, illustrated using a running example, and summarized on a
per-approach basis.

This methodology, i.e., deriving a criteria catalogue from the previously defined
reference architecture and a following evaluation of AOM approaches according
to those criteria, represents, in fact, an indirect mapping of the concepts iden-
tified within our reference architecture onto several AOM approaches and thus,
provides for an indirect evaluation of the reference architecture itself.

The remainder of this paper is organized as follows. We motivate our work in
Section 2 by reporting on related surveys. Our common reference architecture for
aspect-oriented modeling and the framework of evaluation criteria are presented
in Section 3 and Section 4, respectively. The results of evaluating eight aspect-
oriented modeling languages are provided in Section 5. Finally, we summarize
our overall findings and report on lessons learned in Section 6 and provide an
outlook on future work in Section 7.

2 Related Work

In an effort to shed light on the different approaches to aspect-orientation, some
surveys comparing aspect-oriented approaches at different levels in the software

development life cycle have already been published. In the following, we distin-
guish between closely related surveys particularly emphasizing on AOM, more
widely related ones focusing on AOP, and work aiming at unifying the cur-
rently prevailing inconsistencies of concepts in the aspect-orientation paradigm.
In particular, the latter either focus on the conceptual level by elaborating on a
common understanding of aspect-orientation in terms of a definition of aspect-
oriented concepts and reference architectures or aim at the language level by
integrating best practises of previous AOM approaches in the definition of new
AOM languages.

An extensive survey done by Chitchyan et al. [9], including aspect-oriented
approaches for requirements engineering, analysis, and design phases, presents
the evaluation results of 22 aspect-oriented design proposals. Based on this eval-
uation, an initial proposal for an integrated aspect-oriented analysis and design
process is outlined. Although a set of criteria has been identified, a precise defi-
nition of some of the criteria used to evaluate the approaches is missing.
Similar, but less extensive AOM surveys - with respect to both the set of criteria
and the amount of surveyed approaches - have been provided by Reina et al.
[60], Blair et al. [8], and Op de beeck et al. [18]. While Reina et al. compare
different AOM approaches with respect to four criteria, Blair et al. provide in
separate sets of criteria for the phases of aspect-oriented requirements engineer-
ing, specification, and design. The major goal in Op de beeck et al. is to inves-
tigate existing AOM approaches within the realm of product-line engineering of
large-scale systems and to position them within the full life-cycle of a software
engineering process. In this respect, the authors have refined a set of six crite-
ria, which partly have been presented in Chitchyan et al. [9], and additionally
provide a discussion of the criteria’s impact on certain software quality factors
(e.g., understandability, evolvability, reusability, scalability, maintainability, and
traceability).
With respect to these closely related surveys our work is different in four ways.
Firstly, we have put great emphasis on the criteria’s definition, whereas, e.g.,
in [9] not all criteria have been elaborated on in detail. Secondly, although we
partly adopt and refine criteria found in those surveys, our evaluation framework
comprises a different set of criteria with respect to AOM. It is derived from our
common reference architecture and thus, subsumes all aspect-oriented concepts
that have to be evaluated in a survey on aspect-oriented modeling. Third, our
survey includes also recently published approaches such as [16], [48] not included
in the other surveys. Finally, we provide a running example that is realized with
each surveyed modeling approach. This further supports our evaluation in that
it first, illustrates each approach and second, allows to better compare the mod-
eling means of the approaches and understand their strengths and shortcomings.

Less closely related, since focusing on AOP, is the survey of Hanenberg et al.
[31] which presents a set of criteria used to evaluate four AOP languages. Mik
Kersten [39] also provides a comparison of four leading AOP languages having
only AspectJ in common with Hanenberg et al. In addition, Mik Kersten also
investigates the development environments of these AOP languages.

The evaluation criteria defined in those surveys are only partly applicable in our
context, since they are defined at the programming level. Nevertheless, we have
adopted their criteria where appropriate and refined them such that they can be
applied at the modeling level, too.
In Chavez et al. [76], a conceptual framework for AOP has been proposed in
terms of Entity-Relationship diagrams. Based on this conceptual framework an
evaluation of four programming level approaches, namely AspectJ, Hyper/J7,
Composition Filters, and Demeter/DJ [43] is presented.
Since the definitions in the conceptual framework have been defined at the pro-
gramming level they are only partly applicable in our reference architecture
because ours is defined at a higher level of abstraction.

Considering the last category of related work aiming at unification in the
aspect-orientation paradigm, in van den Berg et al. [75], an attempt towards es-
tablishing a common set of concepts for AOSD has been made, based on previous
work by Filman et al. [22]. In particular, the concepts of two AOP languages,
namely AspectJ and ComposeStar8 have been examined and expressed in terms
of separated UML class diagrams. Based on these results the initial textual def-
initions of concepts have been revised.
In contrast to that, our common reference architecture for aspect-oriented mod-
eling [63] is complementary to the AOSD ontology of van den Berg et al., in
that it takes up a broader view on aspect-orientation by proposing a conceptual
model of AOM concepts in terms of a UML class diagram. It is different, how-
ever, in that it specifically focuses on AOM concepts, while the AOSD ontology’s
textual definitions describe more generic AOSD concepts and are intended to be
appropriate for all phases in the software development life cycle. The reference
architecture identifies the important AOM concepts, their interrelationships and
even more importantly their relationships to an arbitrary modeling language
(e.g., general purpose modeling languages such as UML, or any other domain-
specific modeling language). It therefore can be used as a blueprint for designing
new AOM languages or for extending existing (domain-specific) modeling lan-
guages with concepts of the aspect-oriented paradigm.
Recently, Fuentes et al. [25] and Krechetov et al. [42] each have proposed a
new AOM approach, both aiming at unifying the inconsistent notions of aspect-
oriented concepts present in earlier AOM languages. The generic, MOF-based
aspect-oriented design metamodel of Fuentes et al. is aimed at enabling model
transformation between AOM approaches. The authors go for a least common
denominator approach in identifying the important aspect-oriented concepts but
allow the metamodel’s extension through package merge in order to support addi-
tional aspect-oriented concepts provided in different AOM proposals. Krechetov
et al. integrate best practices from four existing aspect-oriented architectural
modeling languages focusing on a common notation for an integrated aspect-
oriented architectural modeling approach.
Our reference architecture for AOM is different to both, the generic metamodel

7 http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm
8 http://janus.cs.utwente.nl/twiki/bin/view/Composer/WebHome

for aspect-oriented design and the integrated aspect-oriented architectural mod-
eling language, in that it does not primarily represent a language specification.
Instead, our intention was to first identify the concepts that are necessary in
specifying a new AOM language, i.e., starting from these basic ingredients of
aspect-oriented modeling the design of a new AOM language is straight-forward.

Finally, by providing a running example, our survey is conducted at a de-
tailed level and enhances our evaluation in that it first, provides an insight into
each approach and second, allows to easier compare the modeling means of the
approaches.

3 Basic Ingredients of Aspect-Oriented Modeling

Applying aspect-oriented concepts originally coined for the programming level
(e.g., by AspectJ) to the modeling level turns out to be a challenging task.
This is on the one hand due to the very specific meaning of programming level
aspect-oriented concepts [70] and on the other hand due to different concepts
introduced by related AOSD approaches (e.g. AP, CF, SOP, and MDSoC). An
example for the first issue are AspectJ’s join points which are defined as points
in the execution of the program including field accesses, method, and constructor
calls [73]9. This definition is too restrictive for the modeling level, however, since
runtime is not the only focus of modeling. An example for the second issue
is the concept of aspect in AOP, where similar though different concepts have
been introduced in other approaches, e.g., hyperslice in Hyper/J, filter in CF,
and adaptive method in Demeter/DJ [76]. Consequently, instead of sticking with
AOP concepts, it is rather advisable to find general definitions of aspect-oriented
concepts that apply to any level in the software development life cycle.

In order to support the process of establishing a common terminology, we
have proposed an initial version of a reference architecture for aspect-oriented
modeling in previous work [63], which serves herein as a basis. Since the term
reference architecture is used quite differently in literature [21] depending on
various factors, e.g., domain and goals, we adhere to the following definition:

A reference architecture is a conceptual model identifying and describing
the concepts of a domain and the interrelationships thereof.

Thus in the sense of the categorization of reference architectures in [21], our
AOM reference architecture represents a set of general assertions and normative
assertions, which are true for AOM languages, as well as a technique for design-
ing new AOM languages or for extending existing (domain-specific) modeling
languages with concepts of the aspect-oriented paradigm.

9 Admittedly, AspectJ also allows the introduction of adaptations with respect to the
program’s structure, but join points are defined with respect to runtime, only.

For the concepts used in our reference architecture we primarily adopt the
definitions presented in [75] but refine them to be suitable for the modeling
level. Additionally, based on the surveyed approaches we extend the definitions
to provide a broad base of conceptualization of aspect-orientation. In Figure 1
our reference architecture is shown as a UML class diagram, which comprises the
concepts of aspect-orientation at a higher level of abstraction. Thus, it represents
an initial proposal for a conceptual model for aspect-oriented modeling in the
sense it is asked for in [75].

In the following, the concepts of the reference architecture are described along
with its major building blocks.

AdaptationSubject AdaptationKind

Language

ConcernComposition

*

*

weavingTarget

*

superaspect

subaspect

*

*

Base

Weaving

dynamicity

AdaptationRule

«enumeration»
RelativePositionKind

before
around
after

Adaptation

Simple
Adaptation

Structural
Element

Behavioral
Element

Element
1..*

representedAs

0..1

1

*

1

1

ownedElement

1..*

*

consistsOf
consistsOf

ownedJP

Conflict

*

*

implementedBy

Simple
JoinPoint
Selection

JoinPointSelection

*

formalizedBy *

relPos:RelativePositionKind

RelativePosition

representedElement

*

* owner

1..*

owner

owner

Composite
JoinPoint
Selection

1..*

children

Composite
Adaptation

Aspect

JoinPoint

dynamicity

Behavioral
Adaptation

Structural
Adaptation

JoinPoint

Model

Language

1..*

children

*

*

1..*

implementedBy

**

ConflictResolution

Concern

*

operator

Composition

**

0..1

refines

consistsOf

selectedJP

Structural
JoinPoint

Behavioral
JoinPoint

1

1

1..*

Selection

Method 1 *

*

1

1

AdaptationEffect

eff:AdaptationEffectKind

«enumeration»
AdaptationEffectKind

enhancement
replacement
deletion

1 *

*

0..1

0..1 0..1

Fig. 1. The AOM Reference Architecture

3.1 ConcernComposition

Concern composition deals first, with the separation of a system’s concerns into
appropriate units of modularization and second, with their interrelationships,
i.e., their composition by means of a weaving specification.

Concern. Along with [75] we define a concern as an interest which pertains to
the system’s development, its operation or any other matters that are critical
or otherwise important to one or more stakeholders. A concern in this respect
represents an inclusive term for aspect and base, which is depicted using
generalization in Figure 1. We refrain from referring to crosscutting and non-
crosscutting in our reference architecture since they represent interests with
respect to a system at the level of requirements rather than the modeling
level. Aspect and base, however, form a representation of concerns in a more
formalized language (e.g., a modeling language or a programming language).
A distinction between aspect and base concerns means supporting the asym-
metric approach to composition [33]. An aspect might, at the same time, act
as a base, i.e., as a weavingTarget, for other aspects and by this allow for
both symmetric and asymmetric approaches to composition10.

Base. A base is a unit of modularization formalizing a non-crosscutting con-
cern. This goes in line with most programming and modeling paradigms,
where the provided units of modularization allow for decomposing a system
according to one dimension, only, called dominant decomposition [72]. The
object-oriented paradigm for example provides hierarchically ordered units
of modularization (i.e., classes and methods) in terms of a vertical decompo-
sition. Thus, it does not support horizontal decomposition, i.e., crosscutting
concerns, that are typically scattered across the dominant decomposition.

Aspect. An aspect is a unit of modularization formalizing a crosscutting con-
cern, i.e., a set of adaptations (cf. Adaptation), that otherwise would be
scattered across other concerns. Aspects are related to other aspects in three
ways. First, aspects themselves may be acting as base for other aspects (cf.
weavingTarget in Figure 1), i.e., an aspect may adapt another aspect. A cer-
tain aspect, however, can not be its own weavingTarget, which is expressed
by the following OCL constraint11:

context Aspect inv:
self.weavingTarget->forAll(a:Aspect | a <> self)

Second, an aspect might be specialized into several sub-aspects, thus refin-
ing12 where and how concerns might be adapted. Third, two or more aspects

10 Please note that, the symmetric approach is implicitly represented in our reference
architecture with the aspect-concern relationship, only. This is done by disallow-
ing base concerns in this specific case and ignoring the weaving direction, i.e., the
concerns take equal parts in the composition and none acts as the weavingTarget.

11 For readability reasons we omit the specification of package names in OCL con-
straints.

12 A discussion on possible refinement policies (e.g., with respect to adaptation rules,
join point selections, and adaptations) is subject to future work.

might introduce adaptations to a concern in a way that causes conflicts (cf.
Conflict in Figure 1), i.e., contradicting adaptations with respect to the same
element in the model. Thus, for such aspects a conflict resolution (cf. Con-
flictResolution) may be specified defining the precedence of one aspect over
another.

Weaving. In AOSD the composition of aspects with other concerns, which in
turn are either bases or aspects, is called weaving. Weaving yields a woven
model of the overall system, i.e., models where aspects have been woven
into the base and therefore ceased to exist separately. For our purposes, we
distinguish between two ways of weaving aspects into other concerns, namely
static (i.e., at design time) and dynamic (i.e., at runtime). Thereby, one
aspect of a system may be statically composed with other concerns, whereas
another aspect may be dynamically woven, which is taken into account by
an attribute (cf. dynamicity) of the respective association class Weaving.
This design decision has been motivated by weaving concepts in AOP. At
modeling level, it still can be argued that being able to distinguish between
static and dynamic weaving of bases and aspects is advantageous for two
reasons. First, if the runtime semantics of the language’s metamodel has
been specified, i.e., models are executable (which, considering, e.g., UML,
is the case for parts of the language like state machines, only), dynamic
weaving may happen while executing the models, similarly to the way it
happens at code level [24]. Second, this distinction allows specifying - at the
modeling level - what aspects need to be statically or dynamically woven
into the base program during later stages of the development process. The
weaving relationship is navigable from the aspect’s side, only, meaning that
the concern is oblivious [23] to possible adaptations by aspects13.

AdaptationRule. Adaptation rules are part of a particular weaving and intro-
duce an aspect’s adaptations at certain points of other concerns, i.e., they
specify where to adapt how. Consequently, an adaptation rule consists of
an adaptation describing how to adapt the concern, as well as a join point
selection and an optional relative position describing where to adapt the
concern. We modeled the consists-of relationships using weak aggregations,
since adaptation, join point selection, and relative position might be reused
in other adaptation rules. The adaptations used in the adaptation rules of
a certain weaving specification of an aspect and a concern have to be de-
fined within the aspect taking part in the specific weaving. This constraint
is expressed by the following OCL expression:

context Weaving inv:
self.aspect.adaptation->exists(

a : Adaptation | a = self.adaptationRule.adaptation)

Furthermore, the join points selected within an adaptation rule of a cer-
tain weaving specification of an aspect and a concern have to be elements

13 Please note that, for symmetric approaches to composition this weaving direction is
obsolete, since both concerns represent equal participants in the composition.

formalizing the concern taking part in the specific weaving. Note that, the
getAllSimpleJPSelections() operation collects all simple join point selections
that are part of a join point selection.

context JoinPointSelection def:
getAllSimpleJPSelections():Bag(SimpleJoinPointSelection)=

if self.oclIsTypeOf(SimpleJoinPointSelection)
then Bag{self}
else self.children->iterate(
jps:JoinPointSelection;
allSimpleJPSs:Bag(SimpleJoinPointSelection) = Bag{} |
if jps.oclIsTypeOf(SimpleJoinPointSelection)
then allSimpleJPSs.including(jps)
else allSimpleJPSs.union(jps.getAllSimpleJPSelections())
endif)

endif

context Weaving inv:
self.adaptationRule.joinPointSelection.

getallSimpleJPSelections().selectedJP->forAll(
jp : JoinPoint |self.weavingTarget.element->exists(

e : Element | e = jp.representedElement))

In AOP, the specification where to adapt how (such as the pointcut-advice
combination in AspectJ) were specified in an intermingled way. For reusabil-
ity reasons some AOM approaches [17], [28] provide an adaptation rule spec-
ification that is independent from both, base and aspect. In [17], the authors
distinguish between modeling the aspect’s adaptations and modeling adapta-
tion rules by proposing a connector metamodel for aspect-oriented composi-
tion. Furthermore, in [28] independence of linking technology (e.g., AspectJ)
is achieved by introducing the connector concept to link aspect and base con-
cerns. Along with those approaches, we clearly separate the adaptation rule
from both, base and aspect, for reasons of enhanced variability, reusability,
and expressiveness.

AdaptationEffect. The adaptation effect specified with the adaptation rule
describes what effect an aspect has on the base. One and the same adap-
tation may have an enhancement effect, a replacement effect, or a deletion
effect (cf. AdaptationEffectKind in Figure 1) depending on the join point
selection and its relative position when used in the adaptation rule. This dis-
tinction resembles a differentiation proposed in [31] in terms of constructive
(cf. enhancement), and destructive (cf. replacement and deletion) adaptation
effects. There exists an inherent relationship between a join point selection
together with its relative position and an adaptation with respect to the
adaptation effect an aspect has on the base. For example, the relative po-
sitions before, and after lead to an enhancement, whereas in case of around
the adaptation may resemble an enhancement, a replacement (i.e., deleting
the join point with the adaptation), or a deletion (i.e., deleting the join point

with an empty adaptation). This interdependency is assured by the following
OCL constraint:

context AdaptationRule inv:
if(self.relativePosition.relPos = RelativePositionKind::before
OR self.relativePosition.relPos = RelativePositionKind::after)
then
self.adaptationEffect.eff = AdaptationEffectKind::enhancement
endif

Conflict. Concerns might be composed in a way that causes conflicts. Accord-
ing to Blair et al. [8] aspect interaction occurs if the behavior of one aspect
is affected by the behavior of another aspect. In [41], Kienzle et al. present
a classification of aspects14 with respect to their dependency relations, dis-
tinguishing between orthogonal aspects which are independent from other
aspects, uni-directional preserving aspects based on adaptations provided
by other aspects without modifying the latter, and uni-directional modify-
ing aspects that change services provided by other aspects (cf. definition
by [8]). Thus, aspects’ definitions may contradict with the specification of
other non-orthogonal, or rather uni-directional modifying aspects. Addition-
ally, aspects may also contradict with the specification of base models (e.g.,
introducing features that already exist in the base model) and base models
themselves might contradict each other, e.g., due to multiple inheritance,
which is an already known problem in the modeling field in general. Conse-
quently, a conflict resolution mechanism (cf. ConflictResolution) should be
provided by an approach allowing to specify the application of aspects - and
allowing composition of concerns in general - in an unambiguous way.

ConflictResolution. Which kind of conflict resolution is applicable for a cer-
tain conflict depends on the particular domain. This fact is represented in
the reference architecture by the abstract class ConflictResolution, which - in
form of a Strategy pattern [26] - can embrace any concrete conflict resolution,
(e.g., relative or absolute ordering) that might be applicable.

3.2 Language

The following concepts describe the language underlying the specification of base
and aspect.

Language. Depending on the current focus in the software development life
cycle, the language might represent for example a modeling language or
a programming language. Currently, the reference architecture focuses on
a single language, i.e., the same language is used, first for specifying base
concerns, second for specifying the adaptation and third for specifying adap-
tation rules. Still, an interesting direction for future work is the consideration

14 There have been several attempts to classify aspects according to different criteria,
amongst them [15], [31], and [77].

of multiple languages. In this respect, drawing from the benefits of different
domain specific languages (DSL) would by possible. This raises, however, the
question to which extent these languages may be different and how much they
must have in common to still allow for aspect weaving. Considering again
the case of UML, it has to be investigated, if it is preferable to base these
languages on the same meta-metamodel, i.e. MOF [46], or if it is beneficial
to bridge the heterogeneity between the bases’ and aspects’ languages by
means of a weaving model.

Element. Concerns are formalized using elements of a certain language. With
respect to aspect-orientation, elements serve two purposes. First, they may
represent join points and thus in the role of join points specify where to intro-
duce adaptations. Second, elements of a language are used for formulating
an adaptation. Such elements are either structural elements or behavioral
elements as depicted in Figure 1 using generalization.

StructuralElement. Structural elements of a language are used to specify a
system’s structure.

BehavioralElement. Likewise to structural elements, behavioral elements of a
language are used to specify a system’s behavior.

3.3 Adaptation Subject

The adaptation subject describes the concepts required for identifying where to
introduce an aspect’s adaptations.

JoinPoint. A join point specifies where an aspect might insert adaptations.
Thus, a join point is a representation of an identifiable element of the under-
lying language used to capture a concern. Join points can be distinguished
along two orthogonal dimensions. In Hanenberg et al. [31], join points of
aspect-oriented programming languages are categorized according to two
dimensions15, feature16 and dynamicity. In contrast to that, our focus is
broader in that we consider modeling level join points and in that we consider
these two dimensions as being orthogonal also at the modeling level. Con-
sequently, join points are representations of structural elements (cf. Struc-
turalJoinPoint) or behavioral elements (cf. BehavioralJoinPoint) of a lan-
guage, while at the same time, they are also modeling level representations
of static or dynamic elements (cf. attribute dynamicity) in a software sys-
tem. In this respect, the reference architecture supports four different kinds
of join points.

StructuralJoinPoint. Structural join points represent structural elements of
a language where an aspect’s adaptations can be introduced. In addition,

15 In literature (amongst others [5], [22], [39], [76]), we find different interpretations of
what a join point is. The focus is on describing the join points’ properties such as
dynamicity and structural and behavioral features, sometimes mixing up terms (e.g.
using static as a synonym for structural).

16 While Hanenberg et al. [31] use the term ”abstraction”, we adhere to UML termi-
nology in that we distinguish between structural and behavioral features [47].

structural join points can be either static or dynamic (cf. dynamicity at-
tribute). Static join points are elements of a language that can be identified
based on information available at design time (e.g., method definition). Dy-
namic join points are elements of a language that can not be identified before
runtime (e.g., object and method execution). Exemplifying those two cat-
egories by means of UML modeling elements, structural-static join points
would be classes and structural-dynamic join points would be objects. Ad-
mittedly, not all languages may offer elements which allow for dynamic join
points as is the case with UML.

BehavioralJoinPoint. Analogous, behavioral join points represent behavioral
elements of a language where an aspect’s adaptations can be introduced.
Additionally, we distinguish between behavioral-static join points (e.g., ac-
tivities) and behavioral-dynamic join points (e.g., method executions).

JoinPointModel. The join point model comprises as possible join points all
elements of a certain language where aspects are allowed to introduce adap-
tations, i.e., where the representedAs association connects the element with
JoinPoint.
For one join point model thereby, the associated join points may represent
elements of one language, only, which is expressed by the following OCL
constraint:

context JoinPointModel inv:
self.ownedJP->forAll(jp1, jp2 : JoinPoint |

jp1.representedElement.owner = jp2.representedElement.owner)

JoinPointSelection. A join point selection17 represents a subset of the join
point model, i.e., the join points selected for the purpose of specifying cer-
tain adaptations. The selection of join points can be done for example by
means of a query on the join point model (cf. SimpleJoinPointSelection and
SelectionMethod). A join point selection specification is implemented by ei-
ther a SimpleJoinPointSelection or a CompositeJoinPointSelection. We re-
frain from associating join points directly to an adaptation rule but instead
use join point selections as a level of indirection, and thus allow for reusing
join points in other adaptation rules and other join point selections.

SimpleJoinPointSelection. A simple join point selection represents a set of
join points of a certain kind (e.g., structural-static), which are selected ac-
cording to a certain selection method (cf. SelectionMethod).

CompositeJoinPointSelection. For reuse purposes, join point selections can
be composed of other join point selections by means of logical Operators, e.g.,
AND, OR, NOT. All children of a composite join point selection refer to the
same join point model, which is assured by the following OCL constraint.
In particular the constraint uses the getAllSimpleJPSelections() operation,
which has been introduced before, to collect all children, i.e., simple join
point selections, of the composite join point selection and ensures that they
all refer to the same join point model.

17 As in [31], we refrain from using the term pointcut, since it has been coined for
AspectJ.

context JoinPointSelection inv:
self.getAllSimpleJPSelections().selectedJP->forAll(jp1, jp2 :
JoinPoint | jp1.owner = jp2.owner)

SelectionMethod. The selection method concept describes a method for se-
lecting from the potential join points of the join point model those that
should be available for adaptation. The selection method corresponds to
what is termed a primitive pointcut designator in AspectJ.

RelativePosition. A relative position may provide further information as to
where adaptations have to be introduced. This is necessary since in some
cases, selecting join points by join point selections, only, is not enough to
specify where adaptations have to be inserted, since an adaptation can be
introduced for example before or after a certain join point. Still, in some
other cases a relative positioning is not necessary, e.g., when a new attribute
is introduced into a class the order of the attributes is insignificant. (cf. mul-
tiplicity 0..1). In AspectJ, the relative position is specified with the advice,
i.e., an adaptation. Instead of modeling the relative position with the adapta-
tion, in our reference architecture it is modeled separately from adaptation.
Since the relative position basically represents some kind of a location spec-
ification, it perfectly fits into the AdaptationSubject package. Furthermore,
there is an inherent relationship between the relative position and the kind
of selected join points. For dynamic join points, the relative position resem-
bles a temporal specification, for example before an event occurs. A typical
example is AspectJs before advice, which is an adaptation for dynamic join
points, a technique called wrapping in [22]. For static join points the relative
position resembles rather a local specification and is defined with respect to
the element’s structure. For example, if a link is added, its relative position
in terms of the participating object is specified. Consequently, the nature
of a relative position depends on the kind of element representing the join
point.

3.4 Adaptation Kind

The adaptation kind comprises the concepts necessary to describe an aspect’s
adaptation.

Adaptation. An adaptation specifies in what way the concern’s structure or
behavior is adapted, i.e., enhanced, replaced or deleted (cf. AdaptationEf-
fect). Historically, structural adaptations (cf. StructuralAdaptation) have
been called introduction, while behavioral adaptations (cf. BehavioralAdap-
tation) have been termed advice. Recently, the advice concept is more and
more used as an inclusive term for structural and behavioral adaptations
[75]. Thus, our adaptation concept is similar to the commonly found defini-
tion of an advice which represents an artifact that augments or constraints
concerns (cf. [75]). An adaptation specification is implemented by structural
adaptations, behavioral adaptations, or both, i.e., by composite adaptations.

StructuralAdaptation. A structural adaptation comprises a language’s struc-
tural elements for adapting concerns (e.g., adding a new attribute to a class’s
structure).

BehavioralAdaptation. Likewise, a behavioral adaptation comprises a lan-
guage’s behavioral elements for adapting concerns (e.g., adding a method
call).

CompositeAdaptation. For reuse purposes, adaptations can be composed of
a coherent set of both, structural and behavioral adaptations (cf. Composite
pattern [26]). In this respect, the adaptation concept extends the general
understanding of the advice concept described in [75].

4 Evaluation Framework

4.1 Methodology

In the following, we propose a criteria catalogue for the structured evaluation
of aspect-oriented modeling languages. First, the criteria are the result of a top-
down approach considering the reference architecture presented in Section 3.
The reference architecture subsumes the concepts that have been identified as
important for aspect-oriented modeling and thus, corresponding criteria in the
evaluation framework operationalize the reference architecture. Our goal has
been to provide criteria for each concept of the reference architecture. This im-
plies that either a concept of the reference architecture maps onto one-to-many
criteria in the evaluation framework or one-to-many concepts of the reference
architecture map onto one criterion in the evaluation framework. A concept
that is represented as an abstract class, however, does not need a corresponding
criterion in the evaluation framework, since it is implicitly evaluated by its sub-
concepts and their criteria.
Second, we provide additional criteria, e.g., criteria describing maturity and tool
support, which do not necessarily have corresponding concepts in the reference
architecture. Those criteria partly have been identified following a bottom-up
approach, taking into consideration interesting issues from related surveys [8],
[9], [18], [31], [39], [60], [76].
The overall emphasis of our evaluation framework focuses on functional crite-
ria. The inclusion of non-functional criteria in terms of several ”ilities” such as
evolvability, scalability, traceability, reusability, understandability, maintainabil-
ity, or flexibility is subject to future work. This is due to the fact that a serious
evaluation according to these criteria would require testing the approaches in
real-world projects with real users.

Concerning the selected set of criteria, it turned out that some of them still
were difficult to evaluate, which was due to ambiguous definitions found in liter-
ature. In fact, for some prominent criteria such as platform dependency and level
of abstraction, articulating good definitions is a highly challenging task, and we
have not come across any that would allow the inference of proper metrics as to
measure them. Consequently, we have tried to avoid blurred criteria by working
out, if possible, un-ambiguous definitions and the criteria’s values that are also

• Modeling Support
• Weaving Support
• Code Generation

• Modeling Examples
• Application in
Real-World

• Topicality
• Available
Information

• Modeling Language
• Extension
Mechanism

• Influences

• Domain Specifity
• Aspect Specifity
• Diagrams
• Design Process

Language

Aspect
Oriented
Modeling

• Structural Join Point
• Behavioral Join Point
• Join Point Model
• Join Point Selection
• Simple Join Point Selection
• Comp. Join Point Selection
• Selection Method
• Relative Position
• Abstraction

Adaptation
Subject

Adaptation
Kind

• Aspect
• Element Symmetry
• Composition Symmetry
• Relationship Symmetry
• Weaving
• Conflict Resolution
• Adaptation Effect

• Structural Adaptation
• Behavioral Adaptation
• Composite Adaptation
• Abstraction

Concern
Decomposition

Maturity Tool Support

Fig. 2. Categorization of Criteria

measurable. Thus, each criterion is described by a set of properties: the name
along with an abbreviation allowing to reference the criteria during evaluation of
the approaches in Section 5, an optional discussion on difficulties in defining the
criterion and a definition specifying the criterion as unambiguously as possible
by providing appropriate means of measurement, such as a list of possible values
or a measurement scale, including unknown as a default value for each criterion.
Since aspect-orientation is often considered an extension to object-orientation,
it seems almost natural to use and/or extend the standard for object-oriented
modeling, i.e., Unified Modeling Language (UML), for AOM. To the best of our
knowledge, there are only a few AOM proposals that do not base their concepts
on UML, such as [71], [78]. Therefore, in this work we consider UML-based ap-
proaches, only, which in turn influences some criteria and their possible values.

We have categorized the criteria of our evaluation framework into six groups
(see Figure 2) with four out of them being specifically inferred from correspond-
ing parts in the reference architecture (cf. Section 3) and Maturity and Tool
Support providing general criteria.

Some basic characteristics of AOM languages, amongst them the modeling
language, extension mechanism used and kinds of behavioral and structural di-
agrams employed, are evaluated by criteria within the Language category. In
the ConcernComposition category, we consider amongst others the representa-
tion of the aspect concept and the weaving mechanism used. We also investigate

which model elements represent join points and how model elements for a spe-
cific aspect are selected in the AdaptationSubject category. The AdaptationKind
category focuses on modeling support of aspect-oriented concepts for adaptation
purposes. The Maturity of an approach is discussed along the criteria of provided
modeling examples, real-world application, and available information in terms of
manuals, papers, and books. And finally, an AOM approach should be supported
by appropriate tools to improve developer productivity and ensure syntactical
correctness of the model [29]. Since a thorough evaluation of Tool Support for
AOM would go beyond the scope of this work, tool support is evaluated on the
basis of the available literature, only.
Following, each categories’ criteria are presented.

4.2 Language

This category contains criteria describing the modeling language philosophy. We
do not provide separate criteria for evaluating the element concept described
in the reference architecture (cf. Section 3), since it is implicitly evaluated with
several other criteria that investigate the corresponding reference architecture’s
AO concepts with respect to their modeling representation.
Modeling Language (L.L) Since we consider UML-based AOM approaches,
only, with respect to the modeling language18 used, a distinction between the
underlying UML version, i.e., version 1.x 19, version 2.0 [47] , and unknown is
made.
Extension Mechanism (L.E) Although UML is very expressive, its modeling
mechanisms do not provide for aspect-oriented concepts. Thus, AOM proposals
tend to use one out of two UML extension mechanisms to cater for the neces-
sary modeling mechanisms. First, in what is called heavy-weight extension, the
UML metamodel itself is extended through inheritance and redefinition of meta-
model elements. Second, profiles, grouping user-defined extensions to metamodel
elements in terms of stereotypes [61], represent UML’s built-in light-weight ex-
tension mechanism, which permits only extensions that do not change the meta-
model. This way a new dialect of UML can be defined in order to better support
specific platforms or domains [47]. Designed in a way that tools can store and
manipulate the extensions without understanding their full semantics, the light-
weight extension mechanism fosters tool inter-operability [61]. Besides the above
mentioned possibilities, an AOM approach can also rely on non-UML-conform
(or UML-like) extensions. Finally, the fourth value for this criterion is unknown,
which is used in those cases where it is not clear what kind of UML extension
mechanism has been chosen.
Influences (L.I) Originally, we intended to use platform dependency as a crite-
rion for this evaluation framework. We have found, however, no clear definitions

18 Please note, that the reference architecture’s language concept in principal comprises
both, programming and modeling languages. Still, this work’s focus is the modeling
level and thus, we consider modeling languages in the language category, only.

19 See http://www.omg.org/technology/documents/vault.htm#modeling

in literature of what a platform or what platform (in)dependence is such as
in the context of OMG’s Model Driven Architecture (MDA) [45]. Since there
may be many abstraction levels between MDA’s Platform Independent Models
(PIM) and Platform Specific Models (PSM), what defines platform and platform-
independence is a matter of objectives and has to be determined in the context
of one’s own work. We refrain, however, from trying to find a common platform
definition for the evaluated approaches. Thus, for want of a clear definition, we
resume the inspired by criterion of Reina et al. [60], according to which, many
of the aspect-oriented modeling approaches have been inspired by concepts ex-
pressed in a specific aspect-oriented programming language. In contrast to [60],
this criterion is not restricted to AOP platforms but lists research areas (e.g.,
SOP [32], MDSoC [50], [49], CF) and platforms in general that have influenced
a particular approach. In addition, platforms are also listed if models can be
mapped onto them, provided that proof is given through a mapping definition
or at least appropriate examples.

Domain Generality (L.DG) Our focus of interest is if an aspect-oriented
modeling language provides general support for different kinds of domains, or if
it is defined for a particular class of problems. This criterion therefore has two
possible values, namely general-purpose or domain-specific, including a declara-
tion of the supported domain.

Aspect Generality (L.AG) Besides being a general-purpose modeling lan-
guage with respect to the application domain, an AOM approach also may be
general-purpose with respect to aspects. We distinguish between the following
two forms of aspect generality20: A general-purpose aspect-oriented modeling
language supports modeling of all kinds of aspects, whereas an aspect-specific
modeling language considers one21 specific aspect, only.

Diagrams (L.D) The emphasis in specifying an aspect can be structural and/or
behavioral. In this respect, we evaluate which kind of structural and/or behav-
ioral diagrams are supported by the approach to specify aspect-orientation.
Hence, this property lists all UML diagram types and possibly proprietary di-
agram types that have been used to support on the one hand structural and on
the other hand behavioural modeling of aspects.

Design Process (L.DP) A design process describes a well-defined, step-wise
approach to modeling22. This criterion evaluates if the surveyed AOM approach
provides explicit support for a design process or if some implicit design process
support is available, e.g., in terms of guidelines, only.

20 This criterion has been termed ”purpose” in [60].
21 Theoretically, there could be modeling languages that support two, three or more

specific aspects. We do not consider these as aspect-specific, since in that case, the
definition for general-purpose modeling languages gets blurred.

22 This criterion has been adopted from [18].

4.3 ConcernComposition

Aspect (C.A) This criterion investigates the aspect’s representation in the
modeling language in terms of a UML meta-class or a stereotype definition and,
if provided, the notational element used.
Element Symmetry (C.ES) Considering the broader research area of ASoC,
we are able to distinguish between two possible ways of concern decomposi-
tion, symmetric and asymmetric. While, in the asymmetric paradigm one distin-
guishes between concerns of different structure, i.e. between aspects and all other
core concerns of a base model, in the symmetric paradigm no such distinction is
made. In fact, the symmetric paradigm treats all concerns, both crosscutting and
non-crosscutting, as ”first-class, co-equal building-blocks of identical structure”
[33].
Composition Symmetry (C.CS) While in the asymmetric paradigm compo-
sition happens between aspects and base models only, i.e. aspects are woven into
base models, in the symmetric paradigm all concerns are orthogonal, which re-
sults in three composition possibilities: aspects-base, base-base, aspects-aspects.
A detailed discussion on the ramifications of symmetric and asymmetric compo-
sition approaches can be found in [33].
Relationship Symmetry (C.RS) The relationship between concerns can be
specified in a symmetric or in an asymmetric way [33]. In particular, the sym-
metry is determined by the placement of the weaving specification or rather the
adaptation rules. Relationship asymmetry defines the adaptation rules within
one of the concerns that are to be composed, whereas relationship symmetry
defines them in neither of the concerns.
Weaving (C.W) This criterion evaluates the weaving mechanism provided by
an AOM approach, taking into consideration if it is possible to specify the dy-
namicity of how aspects are woven into a base, i.e., statically or dynamically.
Nonetheless, a particular approach might just provide aspect and base models
and defer weaving to later phases in the software development process by sepa-
rately generating aspect and base code from models, which are finally woven by a
dedicated mechanism of the underlying aspect-oriented programming language.
The advantages of approaches that support model weaving are first, at code
level non aspect-oriented platforms can be used and second, the weaving results
can be validated prior to implementation. However, once the aspects have been
eliminated, they cannot be recovered at later stages thus causing traceability
problems.
Adaptation Effect (C.AE) This criterion evaluates if the approaches provide
means for visualizing the adaptation effect of aspects or rather their adaptations
in models. The criterion’s possible values are supported or not supported.
Conflict Resolution (C.CR) In accordance with [8], conflict resolution may
be based on a mechanism to avoid conflicts in advance or to detect conflicts23 and
then resolve them manually by using graphical or textual means. While conflict
23 A mechanism for identifying conflicts in models is implicitly provided if a conflict

resolution mechanism is available. Thus, we do not provide a separate criterion for
evaluating the conflict concept of the reference architecture (cf. Section 3).

avoidance might be a possible solution to cope with conflicting aspects, we still
might need ways to detect and resolve conflicts that could not be captured by
conflict avoidance in advance. Finally, in case no conflict resolution has been
specified, this criterion evaluates to not supported.

4.4 AdaptationSubject

Structural Join Point (S.SJp) This criterion evaluates if structural join
points are supported. On one hand, we are interested what kind - with respect
to dynamicity - of structural join point are considered in the approaches, i.e.,
structural-static or structural-dynamic. And on the other hand we are interested
in their realization by concepts of the modeling language or extensions thereof
(i.e., in terms of the UML meta-class used or a stereotype definition) and how
they have been depicted in the notation, if provided.
Behavioral Join Point (S.BJp) This criterion evaluates if behavioral-static or
behavioral-dynamic join points are supported by the approaches. Furthermore,
this criterion provides information on their representation based on concepts of
the modeling language or extensions thereof and their notational representation,
if provided by the approach.
Join Point Model (S.JpM) We distinguish two possible ways of specifying a
join point model. First, the join point model can be made explicit by identifying
a language’s model elements as join points. This can be done for example by
enhancing the language’s metamodel in a way that certain model elements inherit
from a join point metaclass such as in [74] or by at least identifying and declaring
the join points of a language in ”natural language” such as in [68] or [73]. Second,
the join point model can be defined implicitly by the AOM language’s join point
selection mechanism, thus, comprising all join points that the join point selection
mechanism is able to select.
Join Point Selection (S.JpS) Although the join point selection concept is
represented as an abstract class in the reference architecture (cf. Section 3), a
separate criterion is required for evaluating the commonalities of the concrete
join point selection sub-classes. In particular, we evaluate if the join point se-
lection mechanism has been realized based on a standard (e.g., AspectJ code,
UML, OCL) or on a proprietary language.
Simple Join Point Selection (S.SJpS) This criterion evaluates the realiza-
tion of the join point selection concept by concepts of the modeling language or
extensions thereof and particularly distinguishes between graphical and textual
representations of simple join point selections.
Composite Join Point Selection (S.CJpS) Furthermore, we evaluate if at
all and how composite join point selections are represented in the modeling
approach. Again, we distinguish between graphical and textual representations
of composite join point selections.
Selection Method (S.SM) This criterion evaluates in which ways join points
are selected in a certain approach. The selection of join points can be specified
declaratively, imperatively, or simply by enumeration.

Relative Position(S.RP) This criterion evaluates the general support of spec-
ifying a relative position with respect to join points and, if provided, lists the dif-
ferent possibilities of relative position specification, i.e. after, before, and around,
supported by the approaches.
Abstraction (S.A) The importance of the appropriate level of detail to model
an aspect has already been acknowledged before [9], [34], [56], [60]. However, we
feel that there is need for a more precise definition of what abstraction is in the
context of AOM, than what is given in the above mentioned literature. The de-
finition that a ”low-level design of a system can also be viewed as the high-level
coding of its implementation” [34], comes closest to our understanding of ab-
straction. However, we consider two dimensions of abstraction in aspect-oriented
modeling, namely abstraction with respect to the subjects of adaptation and ab-
straction concerning the kind of adaptation (cf. Section 4.5). In the following,
we distinguish between high and low levels of abstraction. Thus, models on a
high level of abstraction are incomplete with respect to providing a specification
for code generation. A high level of abstraction with respect to the subjects of
adaptation means that the weaving points might not be identified yet, i.e., the
model only specifies the fact that a certain aspect affects other concerns, but
not exactly where. On the contrary, modeling languages providing a low-level of
abstraction allow specifying the exact points where adaptations take effect.

4.5 AdaptationKind

Structural Adaptation (K.SA) This criterion evaluates if AOM approaches
provide ways of specifying structural adaptations and in particular what concepts
or extensions of the modeling language and what notational elements have been
used for representation.
Behavioral Adaptation (K.BA) Likewise to structural adaptations, this cri-
terion evaluates if AOM approaches provide ways of specifying behavioral adap-
tations and in particular what concepts or extensions of the modeling language
and what notational elements have been used for representation.
Composite Adaptation (K.CA) In addition to evaluating structural and be-
havioral adaptation support, we are particularly interested, how the approaches
provide ways of composing adaptations to more complex adaptations in terms
of concepts or extensions of the modeling language and appropriate notational
elements.
Abstraction (K.A) Since models on a high level of abstraction are incomplete
with respect to providing a specification for code generation, a high level of
abstraction with respect to the adaptation kind means that it is not yet clear
how the base model should be adapted, i.e., the model only specifies that a
certain aspect exists, but not the actual adaptations it provides. Consequently,
low -level models provide detailed information on how the aspect’s internals (i.e.
the actual adaptations and auxiliary functionality) look like.

4.6 Maturity

Modeling Examples (M.E) One indication for maturity of an approach is
the number of different modeling examples discussed. Thus, the values for this
criterion are different numbers of provided modeling examples by each approach.
Application in Real-World Projects (M.A) The successful deployment of
the AOM approach in the design of a real-world application proves its applica-
bility and consequently indicates a high level of maturity of the modeling con-
cepts24. Possible values are yes, no, and partially.
Topicality (M.T) The topicality criterion checks for each approach when, the
most recent piece of work has been published to indicate whether the approach
is still under development or not. The possible values, thus, provide the the year
of publication of the most recent piece of work.
Available Information (M.I) Another measure of the approaches’ maturity
is the available amount of manuals, papers and books. Although, admittedly,
the amount of publications does not necessarily correlate with an approach’s
quality. The values for this criterion provide the number of different resources of
information.

4.7 Tool Support

Tool support improves developer productivity and ensures syntactical correct-
ness of the model [29]. While we distinguish between modeling support, weaving
support and support for code generation, support for both weaving and code
generation are dependent on modeling support.
Modeling Support (T.M) Modeling support is defined as the support of
the modeling language’s notation and furthermore the support of validating
the created aspect-oriented models for syntactical and semantical correctness
[29]. If the modeling language is realized in terms of a UML profile, modeling
support should be portable to any UML modeling tool. This criterion evaluates
to supported, possibly providing further information on modeling support, or not
supported.
Weaving Support (T.W) If modeling concepts for weaving are provided by
the AOM approach, this criterion specifies if weaving of aspects into base models
is also supported or not supported by a tool.
Code Generation (T.G) In line with the concepts of model-driven engineering,
code generation facilities should be provided, thus requiring a mapping between
the notation and the supported implementation language. With this criterion, we
evaluate if code generation, in principle, is possible and beyond, if there is a more
sophisticated mechanism to code generation such as the OMG’s MDA [45] (i.e.
existence of platform-independent models, platform definition models and their
transformation into platform-specific models by using a mapping mechanism).

24 It has to be noted that, in [8] ”maturity” was used to evaluate if aspect-oriented
requirements engineering approaches had been used in real projects.

Thus, possible values for this criterion are supported or not supported. Addi-
tional information is provided in case of a more sophisticated code generation
mechanism.

5 Comparison of Approaches

Developers are already facing an immense amount of AOM approaches each of
them having different origins and pursuing different goals dealing with the unique
characteristics of aspect-orientation. A comparison of all of them obviously can
not be covered in this work. Following, we present the results of evaluating eight
approaches to AOM. The rationale behind choosing these eight is to assort a
representative mix of approaches having different origins and goals, thus, sup-
porting different concepts and different application areas, as well as approaches
having a different level of maturity and topicality.

Our findings are based on a literature study, including modeling examples,
provided by the individual AOM approaches. While we make our findings avail-
able in the Appendix at a glance (cf. Table 1 to 6), in the following, we provide
additional information and discussion on a per-approach basis. The evaluation
of each approach follows the ordering of categories of our evaluation framework
presented in Section 4. Moreover, we provide a running example (cf. Section 5.1)
that is modeled by means of the concepts of each AOM approach. This further
enhances our evaluation in that it first, provides an insight into each approach
and second, allows to easier compare the modeling means of the approaches25.

5.1 The Observer Pattern applied to a Library Management System

As an appropriate example for an aspect to be applied to a system we decided
to adopt the observer pattern [26], which is already popular in AOSD literature
[14], [25], [28], [35], [66], [54]. In our running example, we apply the observer
pattern as an aspect to a library management system, a prominent example not
only in AOSD literature [14], [28], [35] but also in software engineering literature.
A Library Management System. In Figure 3, the Library package models
the structure of a library management system based on [14] for managing books
in a library. It depicts a small excerpt of a such a system, primarily containing
those parts of the system that are crosscut by the observer aspect.
The BookManager manages a list of Books (cf. addBook(Book) and remove(Book))
allowing users to search (cf. searchBook(Book)) the list and access provided in-
formation for each book (e.g., authors). The library may offer several copies of
each Book, i.e., the physical entities (cf. BookCopy). The BookManager asso-
ciates BookCopies with their Books as they are bought (cf. buyBook(BookCopy)
and addCopy(BookCopy)) and likewise, disassociates them as they are discarded
25 Due to space limitations, we have included only the core parts of the modeling

examples in this work. The fully modeled examples and implementations of the
running example in several AOP languages are provided at a dedicated web site
(http://wit.tuwien.ac.at/schauerhuber/aomSurvey/).

Book

Location

+roomNumber

+shelfNumber

+addBook(BookCopy)

+removeBook(BookCopy)

Author

*

1..*1..*

1..*

BookCopy

+id

+available

+getId()

+setId()

+getAvailability()

+borrowCopy()

+returnCopy()

+getState()

BookManager

1
*

+title

+ISBN

+getTitle()

+getISBN()

+addCopy(BookCopy)

+removeCopy(BookCopy)

+addBook(Book)

+removeBook(Book)

+searchBook(Book)

+buyBook(BookCopy)

+discardBook(BookCopy)

+update(Subject)

+name

+getName()

+setName()

Library

LibraryManagement

1

Observer

Subject

+add(Observer)

+remove(Observer)

+notify()

+getState()

Observer

+start(Subject)

+stop(Subject)

+update(Subject)

observers

**

Fig. 3. The Library Management System with Observer Aspect.

(cf. discardBook(BookCopy) and removeCopy(BookCopy)). Books, in particular
their copies, have a Location on a certain shelf in a certain room of the library.
The status of each BookCopy, i.e., its availability, should be kept up-to-date.
Thus, each time a BookCopy is borrowed or returned (cf. borrowCopy() and re-
turnCopy()), the BookManager has to be notified. This notification functionality
is not provided by the base system, but is applied using the observer pattern as
depicted in Figure 3.
Observer Pattern. The observer pattern [26] as depicted in the Observer pack-
age in Figure 3 defines a one-to-many dependency between objects in a way that
whenever a Subject (i.e., a BookCopy) changes its state, all its dependent Ob-
servers (i.e., instances of BookManager) are notified (cf. notify()) by using their
provided update interface (cf. update(Subject)). While Observers can register
and unregister with their Subjects of interest using the methods start(Subject)
and stop(Subject), a Subject keeps a list of Observers (cf. add(Observer) and
remove(Observer)), which are interested in changes of the Subject ’s state.

In Figure 3, thus, the Subject and Observer roles are adopted by BookCopy
and BookManager, respectively. Applying the observer pattern, however, affects
the library management system’s modularity. In particular, the abstract meth-
ods getState() and update(Subject) have to be implemented by BookCopy and
BookManager, respectively. Additional code modifications are necessary to call
start(Subject)/stop(Subject) whenever a BookCopy is bought/discarded and to

call notify() whenever a BookCopy is borrowed or returned. Therefore, the ob-
server functionality can be regarded as crosscutting concern and, thus, be real-
ized with the concepts of various AOM approaches.

In the following, the modeling means of each surveyed AOM approach is eval-
uated by means of this running example. Basically, we present the approaches in
an age-based ordering, with the first three ones being approaches that have been
introduced very recently. While the approaches of Ortiz et al. and of Conejero et
al., i.e, the first two approaches, focus on a specific domain and aspect, respec-
tively, the approaches of Groher et al., Pawlak et al., and Stein et al. have been
influenced by specific AOP models or languages and thus, represent AOM ap-
proaches that are more platform-specific. The last three approaches of Aldawud
et al., Clarke et al., and France et al., provide support for weaving aspect models
and base models. In this respect, France et al. represent the most sophisticated
approach, since a prototype tool for weaving models has already been developed.

5.2 Modeling Aspect-Oriented Web Services by Ortiz et al.

Language. In [48], Ortiz et al. propose an MDA approach to modeling Web
Services, thus restricting the modeling language to the domain of Web Services
(L.DG). They propose a general-purpose AOM language with respect to aspect
generality, however (L.AG). Ortiz et al. give no information on the UML ver-
sion used (L.L), but present a UML profile (L.E) devised to model aspects at
a platform-independent level (L.I). As means for structural modeling, class dia-
grams have been taken into consideration by the proposed language, only (L.D).
The authors provide neither guidelines nor outline a process for designing models
based on their approach (L.DP).

«ApplyExecutionAspect»

Library

BookCopy

+id

+available

+getId()

+setId()

+getAvailability()

+borrowCopy()

+returnCopy()

+doGetState()

BookManager

+addBook(Book)

+removeBook(Book)

+searchBook(Book)

+buyBook(BookCopy)

+discardBook(BookCopy)

+doUpdate(BookCopy)

«aspect»

Observer

«ApplyExecutionAspect»

«ApplyExecutionAspect»

«ApplyExecutionAspect»

{actionType:after} + add(Observer)

+ remove(Observer)

+ «action» notify()

+ getState()

+ «action» start(Subject)

+ «action» stop(Subject)

+ update(Subject)

Fig. 4. The Observer Aspect modeled using the UML Profile of Ortiz et al.

ConcernComposition. Aspect behavior is encapsulated in the ¿aspectÀ ste-
reotype derived from the UML meta-class Class and for notation purposes the
UML class symbol is reused (C.A), (C.ES). The modeling approach follows the
asymmetric paradigm of composition (C.CS), (C.RS). While three possible ways
of weaving are discussed, the authors have not yet decided if weaving should
be performed first, at the platform-independent level, thus, producing platform-
specific woven models or second, maintain aspects in the platform-specific models
and provide a weaving mechanism for platform-specific models, or third, defer
weaving to implementation level (C.W). Similarly, no mechanisms for conflict
resolution (C.CR) or specifying adaptation effects have been presented (C.AE).

AdaptationSubject. Ortiz et al. have explicitly identified two types of join
points comprising the join point model for the Web Service domain (S.JpM).
However, the join point concept has neither entered the UML profile nor does
there exist a graphical representation of join points in the models. Both join point
types represent behavioral-dynamic join points (S.BJp). On the one hand there
are service execution join points (at the service provider’s side) called Execution-
Aspects and on the other hand there are service call join points (at the service
consumer’s side) called CallAspects. Join point selections are represented in the
form of two stereotypes derived from the UML meta-class Association (S.JpS),
(S.SJpS), (S.SM). Depending on the join point, the associations are stereotyped
with¿ApplyExecutionAspectsÀ or with¿ApplyCallExecutionAspectÀ. They
bind an aspect’s adaptation either directly to the operation of a Web Service
or to the class with all its operations. Hence, on the one hand composite join
point selections are possible (S.CJpS) and on the other hand the modeling lan-
guage allows modeling at a low level as well as at a high level of abstraction
with respect to the subjects of adaptation (S.A). The enumeration ActionType
allows three relative positions with respect to join points where adaptations can
be inserted, namely before, after, and around. In models, the relative position is
attached to adaptations as a tagged value using UML comments (S.RP).

AdaptationKind. Since Web Services are black boxes, structural adaptations
are not possible in this domain and consequently not supported within the ap-
proach (K.SA). This restriction and the restriction of the subjects of adaptation
to behavioral join points, however, means that the approach does not offer ap-
propriate means to model the observer pattern within our library management
system as presented in Section 5.1. The library management system would have
to provide appropriate interfaces for retrieving the availability of a BookCopy
and for updating the BookManager (cf. doGetState() and doUpdate(BookCopy)
in Figure 4) in advance that could then be called by the Observer Aspect using
getState() and update(Subject), respectively. Behavioral adaptations of an aspect
are represented by the¿ActionÀ stereotype that is derived from meta-class Op-
eration with a tagged value of type ActionType that indicates the applied relative
position (K.BA). Thus, adaptations are described at a low level of abstraction
(K.A). No information has been given on composite adaptations(K.CA).

Maturity. The approach has recently been introduced (M.T), (M.I) and has not
yet been tested in real-world projects (M.A). The applicability of the proposed

UML profile, however, has been illustrated by modeling security, logging, and
service composition aspects in a travel agency case study (M.E).
Tool Support. While modeling support for UML profiles can be provided by
any UML tool (T.M), further support for weaving and code generation is not
offered (T.W), (T.C).

5.3 The Notification Aspect Profile of Conejero et al.

Language. In [16], Conejero et al. propose the aspect-specific UML profile As-
pectNotification (L.AG), (L.E) for modeling the event notification aspect, i.e.,
the notification functionality of the observer pattern, in Corba distributed appli-
cations (L.DG). The authors base their extension on the UML 2.0 meta-model
(L.L) and claim independence from any aspect-oriented platform or the Corba
version chosen, although the provided example has been described using As-
pectJ at the programming level (L.I). Besides class diagrams for modeling the
structural features of aspects, sequence diagrams are used to model aspectual be-
havior (L.D). A design process, however, has not been described for the approach
(L.DP).

AspectNotification

«Supplier»

BookCopy

«Consumer»

BookManager

Library

BookCopy

+id

+available

+getId()

+setId()

+getAvailability()

+borrowCopy()

+returnCopy()

BookManager

+addBook(Book)

+removeBook(Book)

+searchBook(Book)

+buyBook(BookCopy)

+discardBook(BookCopy)

«Channel»

BookChannel

push_pull_model:boolean

getChannel:EventChannel

«Crosscut»

Update

0..*0..*

«Crosscut»

StateChange

«Introduction»consumers: Vector

Fig. 5. The Observer Aspect using the Notation of Conejero et al.

ConcernComposition. A distinct representation for aspects does not exist,
since the profile actually provides modeling concepts for one specific aspect,

i.e., the event notification aspect, only. However, special stereotypes derived
from meta-class Class are introduced to represent the participating roles in the
notification aspect, namely ¿SupplierÀ, i.e., modeling the aspect of produc-
ing events, ¿ConsumerÀ, i.e., modeling the aspect of consuming events, and
¿ChannelÀ, i.e., modeling the aspect of transporting events (C.A). Still, the
modeling approach follows the asymmetric school of thought with respect to
elements (C.ES) and composition (C.CS), since there is a distinction between
the aspect’s roles, i.e., ¿SupplierÀ and ¿ConsumerÀ, and the composition
is directed (cf. ¿Supplier crosscutÀ and ¿Consumer crosscutÀ in Figure 5),
respectively. With respect to relationship symmetry (C.RS), however, the ap-
proach is symmetric (cf. AdaptationSubject, stereotype ¿CrosscutÀ). Neither
a weaving mechanism (C.W), nor means of conflict resolution (C.CR), nor ways
to specify adaptation effects (C.AE) are provided by the modeling approach.
AdaptationSubject. In Conejero et al., a join point model is implicitly de-
fined, only (S.JpM). The join point selection mechanism consist of several parts
(S.JpS). First, the subjects of adaptation are identified at a high level of abstrac-
tion (S.A) using the stereotyped UML Associations ¿Supplier crosscutÀ and
¿Consumer crosscutÀ between roles of the aspect (S.SM), i.e., ¿SupplierÀ
and ¿ConsumerÀ, respectively, and classes (S.SJp) in the base model. Second,
a stereotyped UML AssociationClass ¿CrosscutÀ can be added to these asso-
ciations. The sets of points where to apply behavioral adaptations can then be
specified by stereotyped Operations, i.e., ¿PointcutÀ, of the association class
(S.A). Since, no further information is given on how these join point selections
are realized, we have not been able to apply the ¿PointcutÀ concept in the
modeling example (S.SJpS), (S.CJpS). Furthermore, specifying a relative posi-
tion is not possible (S.RP).
AdaptationKind. The AOM language proposed by Conejero et al. allows
modeling adaptations at a high level of abstraction, only, since information
on how to use the ¿CrosscutÀ stereotype to detail adaptations is not pro-
vided (K.A). Structural adaptations are specified in the attributes compartment
of the ¿CrosscutÀ stereotype. Specifically, a stereotype ¿IntroductionÀ has
been defined for modeling structural adaptations, i.e., introducing new attributes
(K.SA). While the authors introduced the ¿PointcutÀ stereotype as a means
for identifying where to apply behavioral adaptations, no further information
has been given on how behavioral adaptations have been reified in the model-
ing language (K.BA). Finally, composite adaptations are not considered by the
approach (K.CA).
Maturity. The approach of Conejero et al. has recently been published in [16]
(M.T),(M.I). Nevertheless, the profile has been applied in a real-world project, a
distributed control application of European Installation Bus (EIB) installations
(e.g., Facility Management, Temperature Control) (M.A). The aspect-specific
approach has been illustrated using one modeling example, only (M.E).
Tool Support. While modeling support is guaranteed due to the use of UML’s
light-weight extension mechanisms (T.M), weaving support is not considered at
all (T.W). A code generation tool is planned for future work, however (T.C)

5.4 The sUFA approach of Groher et al.

Language. sUFA (Standard UML for Aspects) proposed by Groher et al. [28]
supports the aspectual collaborations programming model, i.e., a collaboration
of classes that collectively realize an aspect (L.I). The approach is based on
the UML for Aspects (UFA) approach [35], i.e., a graphical design notation for
aspectual collaborations. In contrast to the non-UML-conform UFA approach,
sUFA extends UML 1.4 (L.L) using the UML profile extension mechanism (L.E).
The approach is neither restricted to a specific aspect (L.AG) nor to a specific
domain (L.DG). sUFA uses package and class diagrams, only (L.D), and does
neither provide a design process nor guidelines (L.DP).

«abstract»

Observer

«connector»

LibraryObserver
«adapt»«extend»

Library

Subject

+add(Observer)

+remove(Observer)

+notify()

+getState()

Observer

+start(Subject)

+stop(Subject)

+update(Subject)

observers

**

Subject = BookCopy

«callinAfter» notify()|borrowCopy()

«callinAfter» notify()|returnCopy()

+getState()

Observer = BookManager

«callinAfter» start(Subject)|buyBook(BookCopy)

«callinAfter» stop(Subject)|discardBook(BookCopy)

+update(Subject)

Fig. 6. The Observer Aspect modeled with sUFA.

ConcernComposition. sUFA distinguishes between base and aspects (i.e., as-
pectual collaborations), where aspects are woven into bases, only. Hence, the
approach follows element and composition asymmetry (C.ES), (C.CS). Aspec-
tual collaborations form patterns, i.e., collaborations of classes which together
implement aspect functionality independently of the context in which they will
be used. Since they contain abstract methods, which are bound to concrete meth-
ods when applying the pattern onto a certain application, they are represented
using the ¿abstractÀ stereotype which is derived from the UML meta-class
Package (C.A) (cf. Observer Figure 6). The binding of aspects to the base,
i.e., the specification of the subjects of adaptation, is realized by a separate,
i.e., symmetric, ¿connectorÀ package (cf. LibraryObserver Figure 6) (C.RS).
In particular, while a dependency relationship stereotyped with ¿extendÀ de-
fines the relationship between the ¿connectorÀ and the aspect, a dependency
relationship stereotyped with ¿adaptÀ defines the relationship between the
¿connectorÀ and base. A woven representation of aspects and bases is not

supported by sUFA (C.W), a conflict resolution mechanism has not been men-
tioned either (C.CR), and the approach offers no modeling means for specifying
the adaptation effect (C.AE).
AdaptationSubject. An explicit join point model does not exist (S.JpM), nei-
ther are join points expressed as a modeling language concept. In the ¿con-
nectorÀ package each nested class of the aspectual collaboration is bound to a
class of the base, e.g., in Figure 6 Subject is bound to class BookCopy. Each join
point is bound separately to the adaptation using stereotyped methods (S.SM),
e.g., notify() is bound to borrowCopy() and returnCopy(), respectively. Although
the approach provides no explicit join point selection concept, the binding mech-
anism uses, e.g., UML class names for specifying the subjects of adaptation
(S.JpS) and is thus restricted to simple join point selections (S.SJpS), (S.CJpS).
The binding mechanism further allows selecting structural-static (S.SJp) and
behavioral-static join points, only (S.BJp). The relative positions before, after,
and around are defined in association with behavioral adaptations, only, i.e.,
they are part of the name used for stereotypes describing adaptations (e.g.,
¿callinBeforeÀ) (S.RP). The sUFA notation in general can be seen as both
low-level and high-level (S.A). This is since, the binding between aspects and
the base is done in such a way, that the subjects of adaptation are visible and
code can be generated in an automated way. But it is also possible to hide the
internals of the ¿connectorÀ to obtain a high-level view of the system.
AdaptationKind. sUFA provides means to represent structural and behavioral
adaptations (K.SA), (K.BA). Composite adaptations, however, are not men-
tioned (K.CA). The stereotypes ¿callinAfterÀ, ¿callinBeforeÀ, and ¿callin-
ReplaceÀ26, allow to specify method calls from the base application (e.g., bor-
rowCopy()) to aspect method calls (e.g., notify()). The ¿calloutÀ stereotype
is used to express that the aspect’s classes call the external behavior of base
classes. They define how the base class methods should behaviorally be adapted.
As an example, update() might call existing behavior of BookManager. In our
modeling example, however, we do not bind update() to an existing method of
the base, but directly ”implement” it in the binding specification. Again with
respect to adaptation, the approach supports both a high and a low level of
abstraction depending if the internals of the aspectual collaboration are made
explicit such as in Figure 6 or not (K.A).
Maturity. The sUFA approach has been recently developed (M.T), (M.I). So
far, one modeling example is available, only, realizing the observer aspect for
a library management system similarly to the example presented in Figure 6
(M.E). There is no evidence for applications of sUFA in real-world projects
(M.A).
Tool Support. While tools for modeling support (T.M) and code generation
support are available (T.G) within sUFA, weaving is deferred to the program-
ming level. Developers only need to graphically specify how components are

26 It has to be noted that, with respect to the relative position the authors introduced
the ¿callinReplaceÀ stereotype with the semantics of the relative position kind
around.

linked together using Enterprise Architect27 and the bindings are generated au-
tomatically using openArchitectureWare28.

5.5 The JAC Design Notation of Pawlak et al.

Language. The UML notation proposed by Pawlak et al. [52], [53] is mainly
designed for the JAC Framework29 (L.I). The notation is based on light-weight
UML extensions (L.E). It has been developed out of a pragmatic need to express
crosscutting concerns in the JAC Framework and the authors do not claim full
compliance with UML but aim at keeping it intuitive and simple. The notation
is based on UML version 1.x (L.L)30. It can be seen as general-purpose (L.DS),
(L.AS), since no restriction on a domain or aspect support exists. The approach
relies on class diagrams (L.D) and provides no description of a design process or
guidelines (L.DP).

«aspect»

Subject
+«role» add(Observer)

+«role» remove(Observer)

+«after» notify()

+«role» getState()

«pointcut»

stateChanged

Library

+«after» start(Subject)

+«after» stop(Subject)

+«role» update(Subject)

notify

«aspect»

Observer

«pointcut»

startObserving

«pointcut»

stopObserving

!BookManager.buyBook(BookCopy)

!BookManager.discardBook(BookCopy)

start

stop

1

1

1

*

*

BookCopy

+id

+available

+getId()

+setId()

+getAvailability()

+borrowCopy()

+returnCopy()

BookManager

+addBook(Book)

+removeBook(Book)

+searchBook(Book)

+buyBook(BookCopy)

+discardBook(BookCopy)

*
!BookCopy.MODIFIERS

Fig. 7. The Observer Aspect Depicted using the JAC Design Notation.

ConcernComposition. The design notation for JAC follows the asymmetric
approach for both elements (C.ES) and composition (C.CS). With respect to
relationships (C.RS), the design notation represents a symmetric approach us-
ing a UML Association stereotyped with ¿pointcutÀ (cf. AdaptationSubject).
The stereotype ¿aspectÀ which is derived from the UML meta-class Class is
27 http://www.sparxsystems.com.au/
28 http://www.openarchitectureware.org/
29 JAC (http://jac.objectweb.org/) is an open source framework which includes a com-

plete IDE with modeling support and serves as a middleware layer for aspect com-
ponents.

30 The authors provide no information on the UML version. The extended UML meta-
model in [53], however, suggests that a UML version prior to version 2.0 is used,
since the metamodel contains the meta-class ”Link” which is discarded as of UML
version 2.0

used to represent aspects (C.A) (cf. Observer in Figure 7). While a weaving
mechanism is not available at modeling level but deferred to runtime (C.W),
conflict resolution (C.CR) is not addressed at all. In the JAC design notation
there are five stereotypes derived from the UML meta-class Operation (cf. Adap-
tationKind) which specify adaptations. The specification of adaptation effects
is partly considered by the stereotype ¿replaceÀ which provides for either a
replacement or a deletion. All other stereotypes are considered to enhance the
base (C.AE).
AdaptationSubject. A join point model is implicitly defined in [53] (S.JpM)
and join points are limited to method calls, only (S.BJp), (S.SJp). The addi-
tional concept of pointcut relation corresponds to the adaptation rule concept
defined in our reference architecture (cf. Section 3). It is an association stereo-
typed with ¿pointcutÀ. The association has a name and an optional tag to
allow for adding extra semantics (cf. stateChanged in Figure 7). The adaptation
rule (i.e., the pointcut relation) connects the actual join point selection defin-
ition with the adaptation, i.e., the association ends contain information about
the join point selection definition and the adaptation, respectively. Join point
selections are defined using a proprietary, textual language based on regular
expressions and/or keywords (S.JpS), (S.SM), e.g., !BookCopy.MODIFIERS in
Figure 7 selects as join points all method invocations (’ !’) of methods from class
BookCopy that modify the object state (S.SJpS). Thus, the notation provides
a low level of abstraction (S.A). The provided join point selection mechanism
also allows composing simple join point selections using operators, e.g., AND,
OR, etc (S.CJpS). Concerning the relative position, this is specified for behav-
ioral adaptations, only, by three out of the five stereotypes for adaptations, i.e.,
¿beforeÀ, ¿afterÀ, and ¿aroundÀ (S.RP).
Furthermore, the approach introduces the group concept supporting the design
of distributed applications. ¿groupÀ is depicted as a stereotyped class but is
derived from UML meta-class ModelElement and subsumes arbitrary and prob-
ably distributed base types that might need the same set of adaptations. It is,
thus, part of the join point selection mechanism. For example in the observer
aspect, subjects, i.e., arbitrary base types that have to be observed, might be
distributed and can be abstracted within a ¿groupÀ named Subject. In the
library management system such subjects might represent other resources than
books such as journals, CDs, etc.
AdaptationKind. Both behavioral and structural adaptations are represented
as methods of aspect classes. The kind of adaptation is indicated by the stereo-
type of the adaptation operation (e.g., ¿afterÀ update() in Figure 7). The
stereotypes ¿beforeÀ, ¿afterÀ, ¿aroundÀ, and ¿replaceÀ indicate behav-
ioral adaptations (K.BA), whereas ¿roleÀ, i.e., the fifth stereotype for adapta-
tions, represents a structural one (K.SA). In the JAC design notation, structural
adaptations which are implemented by ¿roleÀ methods31 are not really added
to the structure of the base but can be invoked on the objects that are extended
by the aspect, e.g.,¿roleÀ addObserver(BookManager) can be invoked on Book-

31 Role methods are similar to the introduction concept of AspectJ.

Copy (cf. Figure 7). Moreover, they can access the extended class attributes and
the attributes of the aspect. The notation of Pawlak et al. is predominantly a low
level modeling approach, also with respect to adaptation, i.e., it shows aspect
internals (K.A).
Maturity. The JAC design notation has already been well described (M.T),
(M.I) and has been applied to several well-known aspects like caching, authenti-
cation, tracing, and session. These examples generally do not greatly differ from
each other and follow the same simple principals but show the applicability of
the notation to any aspect in general (M.E). It has been tested in real industrial
projects like an online courses intranet site, an incident reporting web site, and
a business management intranet tool (M.A).
Tool Support. The JAC Framework includes a complete IDE with modeling
support. The provided modeling tools allow for designing base and aspect classes
as well as their relations using the proposed UML notation (T.M). The IDE also
supports code generation (i.e., Java) for the JAC framework (T.G). Weaving is
supported at runtime (T.W) but not at design time.

5.6 The Aspect-Oriented Design Model of Stein et al.

Language. The Aspect-Oriented Design Model (AODM) approach of Stein et
al. [67], [68], [66] is a general-purpose, i.e., domain- and aspect-independent
(L.DG), (L.AG), design notation for AspectJ (L.I). For this approach, both As-
pectJ and UML have been studied in order to first, find corresponding parts for
AspectJ’s concepts in UML, second, extend UML to support AspectJ’s concepts
if necessary, and third, identify where UML’s concepts used in AODM are more
expressive than actually necessary, e.g., the destruction of an instance is not
part of AspectJ’s join point model [66]. AODM is basically specified using the
UML 1.x light-weight extension mechanism (L.L), (L.E), though extensions of
the metamodel have also been necessary, e.g., ¿crosscutÀ relationship. Struc-
tural and behavioral modeling is done using class diagrams, collaborations, and
sequence diagrams. In addition, sequence diagrams are used for visualizing join
points, e.g., messages, while use case diagrams and collaborations realize As-
pectJ’s weaving mechanism (L.D). The AODM approach does not outline a
design process or provide guidelines (L.DP).
ConcernComposition. AODM represents a notation designed for AspectJ and
consequently follows the asymmetric school of thought (C.ES), (C.CS), (C.RS).
An aspect in AODM is represented by a stereotype ¿aspectÀ (cf. SubjectO-
bserverProtcolImpl in Figure 832), which is derived from the UML meta-class
Class. In addition, several attributes capture the peculiarities of AspectJ’s as-
pects, e.g., the instantiation clause (C.A). The weaving mechanism in AODM
is specified in terms of UML use case diagrams and collaborations (C.W) (see
[66]). A graphical conflict resolution mechanism, which determines the weaving
order for aspects, is provided in terms of a stereotyped dependency relationship

32 Please note that, in AspectJ the Observer functionality is realized using interfaces
instead of abstract classes.

«aspect»

SubjectObserverProtocol

{instantiation=perJVM}

{base=undefined}

{privileged=true}

«pointcut» pointcut stateChanges(Subject s)

«pointcut» pointcut startObserver(Observer o, Subject s)

«pointcut» pointcut stopObserver(Observer o, Subject s)

«advice» avice_id01

after(Subject s) {base stateChanges(s)}

«advice» avice_id02

after(Observer o, Subject s) {base startObserver(o, s)}

«advice» avice_id03

after(Observer o, Subject s) {base stopObserver(o, s)}

«introduction»

Subject

«containsWeavingInstructions»

BaseType {base=Subject}

«introduction»

Observer

«containsWeavingInstructions»

BaseType {base=Observer}

«crosscut»

«crosscut»

«aspect»

SubjectObserverProtocolImpl

«pointcut» pointcut stateChanges(Subject s)

{base = target(s) && (

call(void BookCopy.returnCopy()) ||

call(void BookCopy.borrowCopy()));}

«pointcut» pointcut startObserver(Observer o, Subject s)

{base = target(o) && args(s) &&

call(void BookManager.buyBook(BookCopy));}

«introduction»

BookCopy

«containsWeavingInstructions»

BaseType {base=BookCopy}

«introduction»

BookManager

«containsWeavingInstructions»

BaseType {base=BookManager}

«crosscut»

«crosscut»

«pointcut» pointcut stopObserver(Observer o, Subject s)

{base = target(o) && args(s) &&

call(void BookManager.discardBook(BookCopy));}

BookCopy

+id

+available

+getId()

+setId()

+getAvailability()

+borrowCopy()

+returnCopy()

BookManager

+addBook(Book)

+removeBook(Book)

+searchBook(Book)

+buyBook(BookCopy)

+discardBook(BookCopy)

«interface»

Subject

«interface»

Observer

Fig. 8. The Observer Aspect modeled using the AODM Notation for AspectJ.

between aspects, i.e., ¿dominatesÀ (C.CR) (see [67]). A means for explicitly
specifying adaptation effects in models, however, is not addressed in AODM
(C.AE).
AdaptationSubject. Though AODM has been specifically designed as a mod-
eling language for AspectJ, Stein et al. [68] extend their notion of a join point
model (S.JpM): UML Classifiers are identified as structural-static adaptation
hooks (S.SJp), besides, UML Links represent behavioral-dynamic join points
(S.BJp). Behavioral dynamic join points are depicted by highlighted messages
in sequence diagrams (see [66]). For those join points where no such messages
exist (e.g. field reference, field assignment, initialization, execution) pseudo op-
erations and special stereotypes have been provided. Using a ¿crosscutÀ de-
pendency relationship, the subjects of structural adaptation are specified at a
high level of abstraction (S.A). The join point selection in AODM is similar to
AspectJ’s pointcuts. Selections of behavioral-dynamic join points are represented
by ¿pointcutÀ stereotyped UML Operations that are implemented by special
¿ContainsWeavingInstructionsÀ stereotyped Methods. An attribute base intro-
duced for this ¿ContainsWeavingInstructionsÀ stereotype then holds the join
point selection in the form of AspectJ code (S.JpS), (S.SM), thus allowing first,
the specification of composite join point selections (S.SJpS), (S.CJpS), and sec-
ond, the specification of the subjects of adaptation at a low level of abstraction
(S.A). In addition, a stereotype ¿ContainsWeavingInstructionsÀ derived from
the UML meta-class TemplateParameter33 is used to specify the join point selec-
tions for structural adaptations (e.g., ¿introductionÀ Subject). The attribute
base introduced for this ¿ContainsWeavingInstructionsÀ stereotype then spec-
ifies the join point selection in the form of AspectJ’s type patterns. AspectJ’s -
and consequently AODM’s - means for join point selection is following a specific
conceptual model. Recently, the authors haven been working on a more expres-
sive join point selection mechanism supporting different conceptual models [69],
which is independent from the AODM approach, however (cf. below).
Concerning the declaration of a relative position, AODM supports the relative
positions before, after, and around for behavioral-dynamic join points, only, and
depicts them as a keyword in the signature of behavioral adaptations (S.RP).
AdaptationKind. Adaptations in AODM are modeled at a low level of abstrac-
tion (K.A). Behavioral adaptations in AODM are represented by stereotyped
UML operations, i.e. ¿adviceÀ. These are implemented by special ¿Contains-
WeavingInstructionsÀ Methods, which contain the actual adaptation in the
method’s body attribute and reference a join point selection (i.e., a pointcut
declaration) in the introduced base attribute. In a class diagram, behavioral
adaptations are depicted in the operation compartment of a class consisting
of the operation’s signature and a base tag containing the join point selec-
tion (K.BA). Additionally, behavioral adaptations are specified in terms of se-
quence diagrams. Structural adaptations are realized as parameterized collabo-
ration templates with stereotype ¿introductionÀ. The parameters are of type
¿ContainsWeavingInstructionsÀ, which specify the subjects of adaptation in

33 Stein et al. apparently have used the same name for two different stereotypes.

the form of AspectJ’s type patterns (K.SA). The details of the collaboration
templates are shown in Figure 9. Composite adaptations, since not a concept
available in AspectJ, are not addressed by AODM (K.CA).

«interface»

Subject

BaseType

+getState()

«realize»

«introduction»

BookCopy

BaseType

getState()

String

«interface»

Observer

BaseType

+update(Subject)

«realize»

«introduction»

BookManager

BaseType

update(Subject)

String

«interface»

Subject

getState()

String

«containsWeavingInstructions»

BaseType {base=BookCopy}

«containsWeavingInstructions»

BaseType {base=BookManager}

Fig. 9. Structural Adaptations in Stein et al.

Maturity. AODM has been described in several publications (M.I). While the
approach has not been tested in a real-world application, several modeling exam-
ples have been provided, e.g., timing and billing aspects for a system in the area
of telecommunication [73] and the realization of the observer pattern (M.E).
Today, the authors have moved on and specifically focus on research towards
a graphical way to select join points in UML . For this they have introduced
Join point designation diagrams (JPDD) [69], which basically are UML dia-
gram (i.e., class and object diagrams, as well as, state charts, sequence, and
activity diagrams) enriched with e.g., name and signature patterns, and wild-
cards. They represent an independent join point selection mechanism that can
be applied to any UML-based AOM language, allow to select all kinds of join
points (i.e., structural-static, structural-dynamic, behavioral-static, behavioral-
dynamic) and support composite join point selections (M.T).
Tool Support. The approach claims rapid modeling support by a wide variety
of CASE tools [67], which is due to using UML’s light-weight extension mech-
anism. This is, however, questionable, since the authors also extended UML’s
metamodel (T.M). Both weaving support and code generation support are cur-
rently not considered (T.W), (T.C).

5.7 The AOSD Profile of Aldawud et al.

Language. The AOSD Profile (L.E) of Aldawud et al. [3], [20] is based on UML
version 1.x (L.L) and is aimed at being independent of any particular AOP
language (L.I). The influence of AspectJ in earlier work [2], [79] has to be men-
tioned, however. The approach is not restricted to a specific domain (L.DG) or
aspect (L.AG). While class diagrams are used to express the structural depen-
dencies, state charts model the behavioral dependencies of base and aspects.
Furthermore, state charts also implicitly express the weaving mechanism (L.D).
The approach also offers a set of guidelines for using the concepts provided by
the AOSD Profile (L.DP).

«aspect»

Subject
{synchronous}

- observers

+ add(Observer)

+remove(Observer)

+notify()

+getState()

+Preactivation()

+Postactivantion()

Library

«aspect»

Observer
{synchronous}

+start(Subject)

+stop(Subject)

+update(Subject)

+Preactivation()

+Postactivantion()

«crosscut»

«crosscut»

BookCopy

+id

+available

+getId()

+setId()

+getAvailability()

+borrowCopy()

+returnCopy()

BookManager

+addBook(Book)

+removeBook(Book)

+searchBook(Book)

+buyBook(BookCopy)

+discardBook(BookCopy)

Fig. 10. The Observer Aspect modeled using the AOSD Profile.

ConcernComposition. Aspects are represented by the stereotype ¿aspectÀ
(C.A), (C.ES), which is derived from the UML meta-class Class (cf. Figure 10).
In addition, the approach allows to tag aspects and thus distinguish between
synchronous aspects, i.e., aspects that impact and control the functionality of
the base such as the observer aspect, and asynchronous aspects which have no
impact on the base, e.g., a logging aspect. If synchronous, then he profile requires
that the aspect must define the Preactivation and Postactivation operations
in order to synchronize the aspect’s behavior with the base’s behavior. The
synchronize tag, thus, allows to specify possible conflicts and mechanisms to
resolve them (C.RS). Although, it is allowed to relate aspects to other aspects,
each aspect has to be woven into at least one base class and, hence, this actually
constitutes an asymmetric view of composing concerns (C.CS). An integrated
model view where aspects would already be woven into the base classes is not
provided (C.W). The approach, however, uses an event mechanism (C.RS) to
indicate the flow of crosscutting behavior in state charts (cf. Figure 11). Since
the state charts allow for specifying the temporal sequence in the control flow

of crosscutting behavior, i.e., an ordering of aspects, further conflict resolution
is implicitly available (C.CR). The effect of adaptations, however, can not be
modeled.
AdaptationSubject. The approach of Aldawud et al. neither provides a join
point model (S.JpM), nor a representation of join points in the profile (S.Jp).
Join point selections are represented by stereotyped associations between aspects
as well as aspects and concerns (S.JpS). This ¿crosscutÀ stereotype (cf. Fig-
ure 10) indicates where the aspect crosscuts a concern in the approach34 (S.SM),
thus, supporting structural-static join points, only (S.SJp), (S.BJp). The absence
of a join point model and a more fine grained join point selection mechanism
(S.SJpS), (S.CJpS) is traced back to the fact that the approach of Aldawud et al.
aims at describing the concerns at a high level of abstraction (S.A) and avoids
using properties which might re-contextualize the ones defined in specific AOP
languages. The relative position concept is not part of the profile but has been re-
garded in an earlier work [79] (S.RP). The relative positions of adaptations could
be retrieved from the state charts, however, where the flow of (non-)crosscutting
behavior implicitly depicts the relative position of new crosscutting behavior.

observingBookManager

observed

managingBookCopies

returnCopy()/

s.notify()

borrowCopy()/

s.notify()

notify()

removeObserver(o:Observer)

[hasMoreObservers==false]

addObserver(o:Observer)

addObserver(o:Observer)

removeObserver(o:Observer)

[hasMoreObservers==false]

observednot observed

not available

available

/do [for all observers o]

o.update(s:Subject)

notifying

observing

update(s:Subject)/

s.getState()

start(s:Subject)/

s.addObserver(this)

stop(s:Subject)/

s.removeObserver(this)

IDLE

startObservingSubject

updating

stopObservingSubject

managingBooks

buyBook(b:BookCopy)/

start(s:Subject)

discardBook(b:BookCopy)/

stop(s:Subject)

buying

discarding

IDLE

observedBookCopy

Fig. 11. The Observer’s Crosscutting Behavior in the Approach of Aldawud et al.

AdaptationKind. While an aspect’s methods supposedly can be used to specify
adaptations in the class diagram, no information on how this is archived has been
34 Please note, that the reading direction of the ¿crosscutÀ dependencies is different

to the other approaches, e.g., BookCopy is crosscut by the aspect Subject.

given on this account in any of the examples. Still, behavioral adaptations are
implicitly indicated in the state charts (K.BA) The examples, however suggest,
that the aspects’ attributes can be introduced as new features to the base, thus
allowing structural adaptations (K.SA). The approach provides no means for
indicating complex adaptations, however (K.CA). With respect to abstraction,
the AOSD profile allows modeling adaptations at a low level of abstraction (K.A).
Maturity. Although the approach is described in several publications (M.I),
(M.T), it is illustrated using a single example, the bounded buffer system, only.
Still, it covers many different aspects, namely, synchronization, scheduling, and
error handling (M.E). The example shows the structural and behavioral relation-
ship between base and aspect classes and also indicates possibilities of extending
the model with additional aspects. A real-world application of the approach,
however, is not available (M.A).
Tool Support. Due to using the UML profile extension mechanism, model-
ing support within the approach is guaranteed through existing UML modeling
tools. In addition, Zakaria et al. [79] partly realized the profile as an add-in to
Rational Rose35 (T.M). Code generation using this approach was proven to be
successful by using Rhapsody36 (T.G). Weaving support, however, has not yet
been addressed (T.W).

5.8 The Theme/UML Approach of Clarke et al.

Language. The Theme approach of Clarke et al. [11], [14], [13] provides means
for AOSD in the analysis phase with Theme/Doc37, and in the design phase with
Theme/UML. We focus on Theme/UML which is used in producing separate de-
sign models for each theme, i.e., an encapsulation of a concern, which represents
some kind of functionality in a system [11]. Theme/UML is based on an exten-
sion of the UML meta-model version 1.3 (L.L), and represents a general-purpose
AOM language with respect to both domain generality and aspect generality
(L.DG), (L.AG). It is designed as a platform-independent AOM approach, which
originated from SOP [12], and evolved from the composition patterns approach
of Clarke [10], and provides mappings to AspectJ and Hyper/J (L.I). Basically,
Theme/UML poses no restrictions on what UML diagrams might be used for
modeling [11]. Nevertheless, particularly package and class diagrams are used
for modeling structure and sequence diagrams are used for visualizing where be-
havioral adaptations have to be inserted (L.D). In addition, the authors outline
a design process for their modeling approach (L.DP).
ConcernComposition. Theme/UML represents a symmetric approach38 (C.ES),
(C.CS), (C.RS). Concerns in Theme/UML are encapsulated in UML packages
denoted with a stereotype ¿themeÀ (cf. Observer and Library in Figure 12).

35 http://www.ibm.com/software/rational
36 http://www.ilogix.com/
37 Theme/Doc assists in identifying crosscutting concerns in requirements documents

[11].
38 For a detailed discussion see [11].

«theme»

Observer

Subject

+add(Observer)

+remove(Observer)

+notify()

+getState()

+aStateChange(..)

-_aStateChange(..)

Observer

+start(Subject)

-_start(..,Subject,..)

+stop(Subject)

-_stop(..,Subject,..)

+update(Subject)

observers

**

<Subject, _aStateChange(..)>

<Observer, _start(..,Subject,..), _stop(..,Subject,..)>

:Subject :Observer

aStateChange(..)
_aStateChange(..)

notify()
update(Subject)

Collab_ObserverPattern_StateChange

«theme»

Library Bind[<BookCopy, {borrow(), return()}>,

<BookManager, buyBook(BookCopy),

discardBook(BookCopy)>]

getState()

action: BookCopy::notify()

post all observers in :BookCopy.obervers are sent update() event

Fig. 12. The Observer Aspect depicted using Theme/UML.

While base themes are modeled using standard UML notation, crosscutting
themes, i.e., aspects, are realized using UML’s modified template mechanism,
which allows instantiating template parameters more than once (C.A), i.e., the
binding of a template is allowed more than once. Weaving is catered for through
three different composition relationships (specialization from UML meta-class
Relationship), namely merge and override (i.e., base-base composition), and
bind (i.e., aspect-base composition), which is a specialization of merge (C.W).
A woven representation of the Observer and Library themes is shown in Figure
13. Special attachments or tags to the composition relationships represent the
conflict resolution mechanism. First, the prec tags define an ordering for theme
precedence, with 1 indicating the highest precedence. Second, in case of a con-
flict the resolve tag allows specifying default values for elements of a certain
type (e.g., visibility of attributes is private). And third, for a specific conflict the
resolve tag allows defining explicit weaving output values. Theme/UML wants
developers to first compose all base themes and then weave crosscutting themes
one after the other into the woven base model, thus forcing the developer to con-
sider the ordering of crosscutting themes (C.CR). The approach, however, does
not provide modeling means for specifying the effects of adaptations (C.AE).
AdaptationSubject. The join point model comprises all subclasses of the new
meta-class ComposableElements [10], i.e., the UML meta-classes Attribute, Op-
eration, Association, Classifier, Collaboration, Interaction, and Package (S.JpM),
(S.SJp), (S.BJp). An explicit representation for join points does not exist, how-

«theme»

ObserverLibrary

Book

Location

+roomNumber

+shelfNumber

+addBook(BookCopy)

+removeBook(BookCopy)

Author

+name

+getName()

+setName()

books
*

1..*1..*

1

1..*

BookCopy

+id

+available

+getId()

+setId()

+getAvailability()

+add(BookManager)

+remove(BookManager)

+notify()

+getState()

+borrowCopy()

-Library_borrowCopy()

+returnCopy()

-Library_returnCopy()

BookManager

+addBook(Book)

+removeBook(Book)

+searchBook(Book)

+buyBook(BookCopy)

-Library_buyBook(BookCopy)

+discardBook (BookCopy)

-Library_discardBook(BookCopy)

+update(BookCopy)1

1..*

+title

+isbn

+getTitle()

+getISBN()

+addCopy(BookCopy)

+removeCopy(BookCopy)

:Subject :Observer

returnCopy()
Library_ returnCopy()

notify()
update(Subject)

Collab_ObserverPattern_StateChange – returnCopy()

getState()

action: BookCopy::notify()

post all observers in :BookCopy.obervers are sent update() event

observers

**

Fig. 13. The Woven Model Using the Notation of Clarke et al.

ever. The join point selection mechanism in Theme/UML turns out to be more
complex (S.SJp): First, the sequence diagram templates39 in a theme (cf. Ob-
serverPattern StateChange in Figure 12) provide a graphical means for selecting
behavioral-dynamic join points, such as within the control flow of other oper-
ations. Additionally, the parameter specification of the signature of operations
is used for selection. At the same time, the sequence diagram templates model
what behavioral adaptation has to be inserted and thus, implicitly define the
relative position with respect to the selected join point, only (S.RP). Second,
the template parameters (i.e., classes, operations, and attributes) in a dotted
box placed on the theme package template represent sort of the aspect’s abstract
join point selection interface. Thus, crosscutting themes, i.e., the package tem-
plate can be seen as abstract aspects in the sense of AspectJ. Third, the concrete
join point selections are specified by bind relationships between the crosscutting
theme and other themes, which binds the template parameters to actual classes,
operations, and attributes possibly using wildcards (S.SJpS). Composite join
point selections, however, are not supported by Theme/UML (S.CJpS). Thus
concerning the subjects of adaptation, Theme/UML models provide informa-
tion at a detailed level. If omitting the bind tag the subjects of adaptation are
identified at a high level of abstraction, i.e. at theme level40 (S.A).

AdaptationKind. In a crosscutting theme, class diagrams are used to model
the aspect’s structure. Classes, attributes, operations, interfaces, and associa-
tions that are no templates represent structural adaptations to base themes
(K.SA). Behavioral adaptations are defined within sequence diagram templates
(K.BA). There are neither explicit modeling concepts for behavioral adaptations
nor for composite adaptations (K.CA). Adaptations in Theme can be modeled
at a high level of abstraction by using packages and composition relationships,
only. The adaptations can then be refined by several structural and behavioral
UML diagrams (K.A).

Maturity. The Theme/UML approach represents one of the most mature and
well-engineered approaches to AOM (M.I), (M.T). It comes with a plethora of
literature, modeling examples such as the synchronization and observer aspects
in the digital library example [14], the logging aspect in the expression evaluation
system example (M.E), and several other aspects in the crystal game example
application [11] (M.A). In [11], two case studies (i.e. phone features and usage
licensing) are presented.

Tool Support. Information on a tool for Theme/UML has not been provided
(T.M), (T.W), (T.C).

39 Please note, that templates for Observer.start() and Observer.stop()
have been omitted. The complete modeling example can be found at
http://wit.tuwien.ac.at/schauerhuber/aomSurvey/ .

40 Note that Theme/Doc, which is not our focus, also allows identifying the subjects
of adaptation at a high level of abstraction.

5.9 Aspect-Oriented Architecture Models of France et al.

Language. The Aspect-Oriented Architecture Models (AAM) approach of France
et al. [24] is based on UML 2.0 (L.L) and recently, has been further developed
[59] with respect to its composition mechanism. The language is designed as a
platform-independent approach (L.I) and represents a general-purpose approach
regarding both, domain generality (L.DG) and aspect generality (L.AG), al-
though the authors particulary address dependability concerns such as security
and fault-tolerance. Similar to the Theme/UML approach of Clarke et al., as-
pect models are modeled using template diagrams, i.e., class diagram templates
and communication diagram templates describing the aspects’ structural and
behavioral features, respectively (L.D). For readability purposes, however, the
authors prefer to provide a notation different to standard UML templates. It
is unclear if and how the authors have extended the UML. A design process is
briefly outlined in terms of guidelines (L.DP).

«classtemplate»

|Subject

+add(o:|Observer)

+remove(o:|Observer)

+notify()

+getState():{Object}

+|stateChange()

«classtemplate»

|Observer

+start(s:|Subject)

+stop(s:|Subject)

+update(s:|Subject)

+|doStart(s:|Subject)

+|doStart(s:|Subject)

|observers

**

o:|Observer

|n: |stateChange()

|n.1: |notify()

|n.1.1: *[for all observers o]:

o.update(s:|Subject)

|n.1.1.1: s.getState()

|m: |doStart(s:|Subect)

|m.1: |start(s:|Subject)

s:|Subject

o:|Observer

|m: |doStop(s:|Subect)

|m.1: |stop(s:|Subject)

o:|Observer

(b)

(c) (d)

(a)

Fig. 14. The Observer Aspect Model using the Notation of France et al.

ConcernComposition. France et al. distinguish between aspect models and
base models (i.e., primary models) (C.ES). Aspect models are modeled using
template diagrams, which are described by parameterized packages (C.A) (cf.
Figure 14). A textual binding to a certain application instantiates context-specific
aspect models (cf. Figure 15) from the UML templates (C.RS). The following
binding instantiates the aspect model for the observer pattern shown in Figure
14:

(|Subject,BookCopy); (|Observer, BookManager);
(|stateChange(),borrowCopy()); (|doStart(s:|Subject),buyBook());

(|stateChange(),returnCopy()); (|doStop(s:|Subject),discardBook());
(|observer, bookManagers);

The context-specific aspect models are finally used for composition with the base
model (C.CS). In [59], the authors introduce a signature-based41 weaving mech-
anism42 supported by composition directives of currently structural diagrams,
only (C.W). This weaving mechanism is defined in terms of a composition meta-
model, which is implemented in KerMeta43. Since KerMeta allows specifying
operations with its action language, dynamic weaving of models is subject to
future work. The composition directives, at the same time, serve as a conflict
resolution mechanism. On the one hand element composition directives amongst
others allow to add, remove, and override model elements. On the other hand,
the model composition directives precedes and follows, depicted as stereotypes
¿precedesÀ and ¿followsÀ derived from UML meta-class Dependency, allow
to specify the weaving order of aspects into the base model (D.CR). The ap-
proach does not describe ways to specify adaptation effects (C.AE).
AdaptationSubject. The join point model is defined with AAM’s composition
metamodel and comprises all subclasses of the meta-class Mergeable [59] amongst
them the (UML) meta-classes Operation, Classifier, and Model (S.JpM). Join
points, i.e., template parameters for classes, operations and their parameters
as well as attributes, in aspect models are denoted using ’|’ (cf. e.g., |Subject
and +|aStateChange() in Figure 14 (a)) instead of using UML’s notation, i.e., a
dashed box. While template parameters in class diagrams represent structural-
static join points (S.SJp), template parameters in communication diagrams rep-
resent behavioral join points, i.e., both static and dynamic ones (S.BJp). Thus,
template diagrams represent a (simple) join point selection mechanism in AAM
(S.JpS), (S.SJpS), (S.CJpS). At the same time, they model what adaptations
have to be inserted into the base model. While the class diagram templates
model what structural adaptations have to be inserted (cf. Figure 14 (a)), the
communication diagram templates model what behavioral adaptations have to
be inserted and implicitly define the relative position to the selected join point
(cf. Figure 14 (b)-(c)) (S.RP). Thus, concerning the subjects of adaptation as-
pect models provide information at a detailed level (S.A).
AdaptationKind. There are no explicit modeling concepts for adaptations in
general (K.CA). In AAM class diagram templates, however, are used to model

41 A model element’s signature is defined in terms of its syntactic properties, where a
syntactic property is either an attribute or an association end defined in the element’s
UML metamodel class [59].

42 Please note that, the woven model is not shown due to space limitations. The wo-
ven model is different to the context-specific aspect model in Figure 15, however,
in that it adds the classes, operations, and associations of the base model cur-
rently no present in the aspect-specific model. The woven model can be found at
http://wit.tuwien.ac.at/schauerhuber/aomSurvey/ .

43 The KerMeta metamodeling language (http://www.kermeta.org) extends the Es-
sential Meta-Object Facility (EMOF 2.0) with an action language that allows to
describe the behavior of operations in a metamodel.

«Subject»

BookCopy

+add(o:BookManager)

+remove(o:BookManager)

+notify()

+getState():{Object}

+borrowCopy()

+returnCopy()

«Observer»

BookManager

+start(s:BookCopy)

+stop(s:BookCopy)

+update(s:BookCopy)

+buyBook(s:BookCopy)

+discardBook(s:BookCopy)

bookManagers

**

o:BookManager

1: borrowCopy()

1.1: |notify()

1.1.1: *[for all bookManagers o]:

o.update(s:BookCopy)

1.1.1.1: s.getState()

1: buyBook(s:BookCopy)

1.1: |start(s:BookCopy)

s:BookCopy

o:BookManager

1: discardBook(s:BookCopy)

1.1: |stop(s:BookCopy)

o:BookManager

(b)

(c) (d)

(a)

Fig. 15. The Context-Specific Aspect Model using the Notation of France et al.

the aspects structure. All structural elements, e.g., classes, attributes, and asso-
ciations, that do not represent template parameters are structural adaptations
to the base model (K.SA). Behavioral adaptations, i.e., elements that do not
represent template parameters, are defined within communication diagram tem-
plates (K.BA). Adaptations in AAM are modeled at a low level of abstraction,
only (K.A).

Maturity. The approach of France et al. is among the most mature AOM lan-
guages and has been elaborated on in numerous publications (M.I) providing
examples including the authorization aspect, the replicated repository aspect,
and the redundant controller aspect applied to a simple banking system, and
the buffer aspect which decouples output producers from the writing device in a
system (M.E) Currently, it is further developed with respect to its composition
mechanism and tool support thereof (M.T), yet, the approach has not yet been
applied in a real-world project (M.A).

Tool Support. Currently, a prototype implementation of an integrated toolset
provides modeling support (T.M), i.e., for modeling aspect model diagram tem-
plates (built on top of the Eclipse Modeling Framework44 and for instantiating
context-specific aspect models from these templates (built on top of Rational
Rose) as well as weaving support (T.W), i.e., for composing base and context-
specific aspect models (built on top of KerMeta). A tool for code generation
currently is not planned (T.C) [57].

44 http://www.eclipse.org/emf/

6 Lessons Learned

The results of our evaluation have revealed interesting peculiarities of current
AOM approaches. We sum up our findings in the following.

6.1 Language

Omnipresence of UML. Currently, we know of only two approaches [71], [78]
that did not base their aspect-oriented modeling proposal on UML. Furthermore,
the majority of the evaluated approaches base their work on UML versions prior
to the new UML 2.0 specification. For extending UML with aspect-oriented
concepts, UML’s inherent extension mechanism, i.e., profiles, is popular.
Popularity of General-Purpose Languages. The evaluation has shown that
aspect-oriented modeling approaches usually are general with respect to both
the application domain and the modeled aspects. While there already exist some
domain specific modeling approaches (Ortiz et al., [80]), we know of one approach
offering modeling means for one specific aspect, only (Conejero et al.).
Predominance of Structural Diagrams. While all approaches make exten-
sive use of structural diagrams (e.g., class diagrams and package diagrams), only
few make use of behavioral diagrams in order to demonstrate behavioral features
of aspects or to specify when crosscutting behavior should occur relative to the
base behavior.
Missing Guidance in the Design Process. Since aspect-oriented modeling
is still in its infancy, it is not surprising that only two approaches (France et al.
and Aldawud et al.) provide at least some guidance in designing aspect-oriented
models in terms of guidelines. Only one approach (Clarke et al.) provides a
complete design process description.

6.2 ConcernComposition

Symmetry of Elements, Composition and Relationship Adopted from
AOP Languages. Since aspect-oriented software development has clearly been
driven by the emergence of aspect-oriented languages such as AspectJ, most
AOM approaches rely on the asymmetric paradigm. While those AOM proposals
that have emerged out of a symmetric programming paradigm such as SOP and
MDSoC naturally tend to follow a symmetric paradigm at the modeling level.
Adaptation Effect Not Considered. Modeling the effect of aspects’ adap-
tations is not considered at all. Only the JAC design notation of Pawlak et al.
provides a stereotype ¿replaceÀ for adaptations which - possibly not intended
- indicates an adaptation effect, i.e., either a replacement or a deletion.
Almost No Weaving at Modeling Level. Weaving at modeling level is only
supported by few approaches (Stein et al., Clarke et al., and France et al.), only.
The majority defers weaving to the programming level.
Graphical Conflict Resolution Preferred. A conflict resolution is provided
by half of the approaches with most of the proposed mechanisms being graphical
ones. Only one approach’s weaving mechanism (France et al.) allows to detect

conflicts and some provide guidelines to avoid conflicts. The conflict resolution
mechanisms in most cases comprise means for specifying an ordering of aspects,
some provide further means, e.g., to resolve naming conflicts.

6.3 AdaptationSubject

Missing Formal Definition of Join Point Models. While half of the ap-
proaches provide an explicit join point model and most of them in terms of a
natural language description, only, the other half only implicitly provides a join
point model, which is defined via the join point selection mechanism.
No Support for Structural-Dynamic Join Points. While almost all ap-
proaches support structural-static join points and almost all approaches consider
either behavioral-static or behavioral-dynamic join points or both, structural-
dynamic join points are not supported by any of the approaches.
Graphical, Standards-Based Join Point Selection Mechanism Preferred.
The majority of the approaches uses a graphical join point selection mecha-
nism based either on UML associations or the binding of UML templates. While
Pawlak et al. proposes the only proprietary join point selection mechanism based
on regular expressions and/or keywords, Stein et al. reuse AspectJ’s pointcut
language.
Rare Support of Composite Join Point Selection. While Ortiz et al. pro-
pose the only graphical join point selection mechanism supporting composite
join point selections to a limited extend, two further approaches supporting
composite join point selections (Pawlak et al. and Stein et al.) provide textual
mechanisms that allow composing simple join points using logical operators.
No Imperative Join Point Selection. The approaches exclusively allow to
select join points declaratively and/or by enumeration.
Good Support of Relative Position. Half of the approaches explicitly pro-
vide modeling concepts for specifying where, i.e., relative to the selected join
points, adaptations have to be introduced. The majority of the others implic-
itly define the relative position of adaptations in the control flow modeled via
behavioral diagrams (e.g., Clark et al., France et al., and Aldawud et al.).
Modeling Adaptation Subjects at a High & Low Level of Abstraction.
All approaches allow to relate aspects to bases at a high level of abstraction but
the majority of approaches also allows modeling the subjects of adaptation at
an even lower level of abstraction. For the applicability of AOM, a high level
of abstraction is beneficial, whereas for an automated execution of the model a
detailed specification at a low level of abstraction is necessary.

6.4 AdaptationKind

Composite Adaptations Not Considered. While most approaches pro-
vide modeling means for both behavioral and structural adaptations, composing
adaptations to form more complex ones and to foster reuse is not considered by
any of the approaches.

Modeling Adaptation Kinds at a High & Low Level of Abstraction.
While those approaches that support modeling at a low level of abstraction
also support modeling at a high level of abstraction simply by omitting the
adaptation details, the approach of Conejero et al. allows modeling at a high
level of abstraction, only.

6.5 Maturity

Rarely Application in Real-World Projects. The applicability of aspect-
oriented modeling languages has rarely been tested in real-world projects but
is demonstrated using rather simple modeling examples, only. It is, thus, not
possible to obtain reasonable evaluation results on issues such as traceability,
usability, etc.

6.6 Tool Support

Missing Tool Support for Weaving and Code Generation. While model-
ing support in many approaches is implicitly available due to the use of UML’s
profile mechanism, support for code generation is rare and support for weaving
is provided by only one approach (France et al.).

7 Conclusion and Outlook

Since the research field of aspect-oriented modeling is quite young and a common
understanding of concepts has not yet been established, we identified prior to
our survey the important concepts of aspect-oriented modeling in the form of a
common reference architecture for aspect-oriented modeling. In a second step, on
the basis of the common reference architecture we established a set of criteria,
which have been specifically derived from the reference architecture in order to
evaluate the important concepts identified before in each aspect-oriented model-
ing approach. The actual evaluation of eight aspect-oriented modeling approaches
according to our evaluation framework is furthermore supported by a running
example, which has proven to be very helpful on one hand, to explore the ap-
plicability of each individual approach and on the other hand, to allow for a
direct comparison of the approaches.

To establish an elaborate overview on the AOM field, we are extending our
survey and include further aspect-oriented modeling approaches. Besides, future
work heads into two different directions:
One crucial activity we are currently focusing on is to further justify the ap-
propriateness of our reference architecture in terms of its unification ability. For
this, despite having already defined implicit mappings via our evaluation frame-
work to eight AOM approaches, we intend to specify direct mappings to existing
AOM and AOP approaches. Such mappings could be, e.g., defined on basis of
OMG’s QVT [30] proposal. On the basis of such mapping definitions our refer-
ence architecture could also act as a pivot model translating between different

aspect-oriented languages.
With respect to application domains for AOM, we concentrate on ubiquitous
web applications (UWA), similar to [6]. Modeling of customization in UWAs,
i.e., the adaptation of their services according to the context of use, is a complex
task, which we have already tackled in several projects [27], [37], [65]. Since cus-
tomization modeling affects all levels of a UWA, i.e., the content, the hypertext,
and the presentation, customization represents a crosscutting concern. We pro-
pose to use aspect-orientation as driving paradigm for capturing customization
of UWAs at the modeling level [62]. In particular, we plan the extension of an
existing Web modeling language, i.e., a refined version of the WebML metamodel
[64], with concepts from the aspect-orientation paradigm.

8 Acknowledgements

We would like to thank the authors of the surveyed approaches for providing
valuable feedback for the survey.

References

1. Mehmet Akşit, Lodewijk Bergmans, and Sinan Vural. An Object-Oriented
Language-Database Integration Model: The Composition-Filters Approach.
In Proc. of the 6th European Conference on Object-Oriented Programming
(ECOOP’92), Utrecht, The Netherlands, LNCS 615, pages 372–395. Springer-
Verlag, June/July 1992.

2. Omar Aldawud, Tzilla Elrad, and Atef Bader. A UML profile for aspect oriented
modeling. In Proc. of Workshop on Advanced Separation of Concerns in Object-
Oriented Systems (OOPSLA’01), Tampa, Florida, October 2001.

3. Omar Aldawud, Tzilla Elrad, and Atef Bader. UML Profile for Aspect-Oriented
Software Development. In Proc. of the 3rd International Workshop on Aspect
Oriented Modeling, Boston, Massachusetts, March 2003.

4. Elisa Baniassad and Siobhán Clarke. Finding Aspects in Requirements with
Theme/Doc. In Proc. of Early Aspects: Aspect-Oriented Requirements Engineering
and Architecture Design, Lancaster, England, pages 15–22, March 2004.

5. Eduardo Barra, Gonzalo Génova, and Juan Llorens. An approach to Aspect
Modelling with UML 2.0. In Proc. of 5th Aspect-Oriented Modeling Workshop
(UML’04), Lisbon, Portugal, October 2004.

6. Hubert Baumeister, Alexander Knapp, Nora Koch, and Gefei Zhang. Modelling
Adaptivity with Aspects. In Proc. of the 5th International Conference on Web
Engineering (ICWE’05), Sydney, Australia, LNCS 3579, pages 406–416. Springer-
Verlag, July 2005.

7. Jean Bézivin. On the Unification Power of Models. Journal on Software and
Systems Modeling, 4(2):171–188, May 2005.

8. Gordon S. Blair, Lynne Blair, Awais Rashid, Ana Moreira, Jo ao Araújo, and
Ruzanna Chitchyan. Engineering Aspect-Oriented Systems. In R.E. Filman, T. El-
rad, S. Clarke, and M. Akşit, editors, Aspect-Oriented Software Development, pages
379–406. Addison-Wesley, Boston, 2005.

9. Ruzanna Chitchyan, Awais Rashid, Pete Sawyer, Alessandro Garcia, Mónica Pinto
Alarcon, Jethro Bakker, Bedir Tekinerdoğan, Siobhán Clarke, and Andrew Jack-
son. Survey of Aspect-Oriented Analysis and Design Approaches. Technical Report
AOSD-Europe-ULANC-9, AOSD-Europe, May 2005.

10. Siobhán Clarke. Extending standard UML with model composition semantics.
Science of Computer Programming, 44(1):71–100, July 2002.

11. Siobhán Clarke and Elisa Banaissad. Aspect-Oriented Analysis and Design The
Theme Approach. Addison-Wesley, Upper Saddle River, March 2005.

12. Siobhán Clarke, William Harrison, Harold Ossher, and Peri Tarr. Subject-Oriented
Design: Towards Improved Alignment of Requirements, Design and Code. In Proc.
of the 14th Conference on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA’99), Denver, Colorado, pages 325–339, November 1999.

13. Siobhán Clarke and Robert Walker. Towards a Standard Design Language for
AOSD. In Proc. of the 1st International Conference on Aspect-Oriented Software
Development (AOSD’02), Enschede, The Netherlands, pages 113–119. ACM Press,
April 2002.

14. Siobhán Clarke and Robert J. Walker. Generic Aspect-Oriented Design with
Theme/UML. In R.E. Filman, T. Elrad, S. Clarke, and M. Akşit, editors, Aspect-
Oriented Software Development, pages 425–458. Addison-Wesley, Boston, 2005.

15. Adrian Colyer. AspectJ. In R.E. Filman, T. Elrad, S. Clarke, and M. Akşit,
editors, Aspect-Oriented Software Development, pages 123–143. Addison-Wesley,
Boston, 2005.

16. José Conejero, Juan Hernández, and Roberto Rodŕıguez. UML Profile Definition
for Dealing with the Notification Aspect in Distributed Environments. In Proc. of
the 6th International Workshop on Aspect-Oriented Modeling (AOSD’05), Chicago,
Illinois, March 2005.

17. Thomas Cottenier, Aswin Van Den Berg, and Tzilla Elrad. Modeling Aspect-
Oriented Compositions. In Proc. of the 7th International Workshop on Aspect-
Oriented Modeling (MODELS’05), Montego Bay, Jamaica, October 2005.

18. Steven Op de beeck, Eddy Truyen, Nelis Boucké, Frans Sanen, Maarten Bynens,
and Wouter Joosen. A Study of Aspect-Oriented Design Approaches. Technical
Report CW435, Department of Computer Science, Katholieke Universiteit Leuven,
2006.

19. Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs,
New Jersey, 1976.

20. Tzilla Elrad, Omar Aldawud, and Atef Bader. Expressing Aspects Using UML
Behavioral and Structural Diagrams. In R.E. Filman, T. Elrad, S. Clarke, and
M. Akşit, editors, Aspect-Oriented Software Development, pages 459–478. Addison-
Wesley, Boston, 2005.

21. Peter Fettke and Peter Loos. Referenzmodellierungsforschung. Wirtschaftsinfor-
matik, 46(5):331–340, August 2004.

22. Robert E. Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet Akşit, editors.
Aspect-Oriented Software Development. Addison-Wesley, Boston, 2005.

23. Robert E. Filman and Daniel P. Friedman. Aspect-Oriented Programming Is
Quantification and Obliviousness. In R.E. Filman, T. Elrad, S. Clarke, and
M. Akşit, editors, Aspect-Oriented Software Development, pages 21–35. Addison-
Wesley, Boston, 2005.

24. Robert France, Indrakshi Ray, Geri Georg, and Sudipto Ghosh. Aspect-oriented
approach to early design modelling. IEE Proceedings Software, 151(4):173– 185,
August 2004.

25. Lidia Fuentes and Pablo Sánchez. Elaborating UML 2.0 Profiles for AO Design. In
Proc. of the 8th International Workshop on Aspect-Oriented Modeling (AOSD’06),
Bonn, Germany, March 2006.

26. Erich Gamma, Richard Helm, Ralph Hohnson, and John Vlissides. Design Patterns
- Elements of Reusable Object-Oriented Software. Addison-Wesely, 2004.

27. Franca Garzotto, Paolo Paolini, Marco Speroni, Birgit Pröll, Werner Retschitzeg-
ger, and Wieland Schwinger. Ubiquitous Access to Cultural Tourism Portals. In
Proc. of the 3rd International Workshop on Presenting and Exploring Heritage on
the Web (DEXA’04), Aug./Sep. 2006.

28. Iris Groher, Stephan Bleicher, and Christa Schwanninger. Model-Driven Develop-
ment for Pluggable Collaborations. In Proc. of the 7th International Workshop on
Aspect-Oriented Modeling (MODELS’05), Montego Bay, Jamaica, October 2005.

29. Iris Groher and Stefan Schulze. Generating aspect code from UML models. In
Proc. of the 4th Aspect-Oriented Modeling Workshop with UML, San Francisco,
California, October 2003.

30. QVT-Merge Group. Revised Submission for MOF 2.0. OMG
Query/Views/Transformations RFP(ad/2002-04-10), Version 2.0, ad/2005-03-02,
March 2005.

31. Stefan Hanenberg. Design Dimensions of Aspect-Oriented Systems. PhD thesis,
University Duisburg-Essen, October 2005.

32. William H. Harrison and Harold L. Ossher. Subject-Oriented Programming - A
Critique of Pure Objects. In Proc. of the 8th Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA’93), pages 411–428,
September 1993.

33. William H. Harrison, Harold L. Ossher, and Peri L. Tarr. Asymmetrically vs.
Symmetrically Organized Paradigms for Software Composition. Technical report,
IBM Research Division, Thomas J. Watson Research Center, December 2002.

34. William H. Harrison, Peri L. Tarr, and Harold L. Ossher. A Position On Consider-
ations In UML Design of Aspects. In Proc. of the 1st Workshop on Aspect-Oriented
Modeling with UML (AOSD’02), Enschede, The Netherlands, March 2002.

35. Stephan Herrmann. Composable Designs with UFA. In Proc. of the 1st Workshop
on Aspect-Oriented Modeling with UML (AOSD’02), Enschede, The Netherlands,
March 2002.

36. Ivar Jacobson and Pan-Wei Ng. Aspect-Oriented Software Development with Use
Cases. Addison-Wesley, 2005.

37. Gerti Kappel, Birgit Pröll, Werner Retschitzegger, and Wieland Schwinger. Cus-
tomisation for Ubiquitous Web Applications - A Comparison of Approaches. Int.
Journal of Web Engineering and Technology, 1(1), 2003.

38. Mika Katara and Shmuel Katz. Architectural Views of Aspects. In Proc. of the 2nd
International Conference on Aspect-Oriented Software Development (AOSD’03),
Boston, Massachusetts. ACM Press, March 2003.

39. Mik Kersten. AOP tools comparison (Part 1 & 2). http://www-
128.ibm.com/developerworks/java/library/j-aopwork1/, March 2005.

40. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In Proc. of
the 11th Europeen Conference on Object-Oriented Programming, LNCS 1241, pages
220–242. Springer-Verlag, 1997.

41. Jörg Kienzle, Yang Yu, and Jie Xiong. On Composition and Reuse of Aspects.
In Proc. of FOAL: Foundations of Aspect-Oriented Languages, Boston, Massa-
chusetts, March 2003.

42. Ivan Krechetov, Bedir Tekinerdoğan, Alessandro Garcia, Christina Chavez, and
Uirá Kulesza. Towards an Integrated Aspect-Oriented Modeling Approach for
Software Architecture Design. In Proc. of the 8th International Workshop on
Aspect-Oriented Modeling (AOSD’06), Bonn, Germany, March 2006.

43. Karl J. Lieberherr. Adaptive Object-Oriented Software: the Demeter Method with
Propagation Patterns. PWS Publishing Company, Boston, 1996.

44. Ana Moreira, Jo ao Araújo, and Awais Rashid. A Concern-Oriented Requirements
Engineering Models. In Proc. of the 17th International Conference on Advanced
Information Systems Engineering (CAISE’05), June 2005.

45. Object Management Group (OMG). MDA Guide Version 1.0.1.
http://www.omg.org/docs/omg/03-06-01.pdf, June 2003.

46. Object Management Group (OMG). Meta Object Facility (MOF) 2.0 Core Speci-
fication Version 2.0. http://www.omg.org/docs/ptc/04-10-15.pdf, October 2004.

47. Object Management Group (OMG). UML Specification: Superstructure Version
2.0. http://www.omg.org/docs/formal/05-07-04.pdf, August 2005.

48. Guadalupe Ortiz, Juan Hernández, Pedro J. Clemente, and Pablo A. Amaya. How
to Model Aspect-Oriented Web Services. In Proc. of Workshop on Model-driven
Web Engineering (ICWE’05), Sydney, Australia, July 2005.

49. Harold L. Ossher and Peri L. Tarr. Multi-dimensional Separation of Concerns in
Hyperspace. In Proc. of International Workshop on Aspect-Oriented Programming
(ECOOP’99), Lisbon, Portugal, June 1999.

50. Harold L. Ossher and Peri L. Tarr. Multi-Dimensional Separation of Concerns
using Hyperspaces. Technical Report 21452, IBM Research Report, April 1999.

51. David L. Parnas. On the Criteria To Be Used in Decomposing Systems into Mod-
ules. Comm. ACM, 15(12):1053–1058, December 1972.

52. Renaud Pawlak, Laurence Duchien, Gerard Florin, Fabrice Legond-Aubry, Lionel
Seinturier, and Laurent Martelli. A UML Notation for Aspect-Oriented Software
Design. In Proc. of the 1st Workshop on Aspect-Oriented Modeling with UML
(AOSD’02), Enschede, The Netherlands, March 2002.

53. Renaud Pawlak, Lionel Seinturier, Laurence Duchien, Laurent Martelli, Fabrice
Legond-Aubry, and Gérard Florin. Aspect-Oriented Software Development with
Java Aspect Components. In R.E. Filman, T. Elrad, S. Clarke, and M. Akşit,
editors, Aspect-Oriented Software Development, pages 343–369. Addison-Wesley,
Boston, 2005.

54. Eduardo Kessler Piveta and Luiz Carlos Zancanella. Observer Pattern using
Aspect-Oriented Programming. In Proc. of the 3rd Latin American Conference
on Pattern Languages of Programming, August 2003.

55. Roger S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-
Hill, New York, 2005.

56. Andreas Rausch, Bernhard Rumpe, and Lucien Hoogendoorn. Aspect-Oriented
Framework Modeling. In Proc. of the 4th Aspect-Oriented Modeling Workshop
with UML, San Francisco, California, October 2003.

57. Raghu Reddy, Robert France, and Geri Georg. An Aspect Oriented Approach to
Analyzing Dependability Features. In Proc. of the 6th International Workshop on
Aspect-Oriented Modeling (AOSD’05), Chicago, Illinois, March 2005.

58. Raghu Reddy, Robert France, Sudipto Ghosh, Franck Fleurey, and Benoit Baudry.
Model Composition - A Signature-Based Approach. In Proc. of the 7th Inter-
national Workshop on Aspect-Oriented Modeling (MODELS’05), Montego Bay,
Jamaica, October 2005.

59. Raghu Reddy, Sudipto Ghosh, Robert B. Rance, Greg Straw, James M. Bieman,
Eunjee Song, and Geri Georg. Directives for Composing Aspect-Oriented Design
Class Models. In Transactions on Aspect-Oriented Software Development I, LNCS
3880, pages 75 – 105. Springer-Verlag, 2006.

60. Antonia M. Reina, Jesus Torres, and Miguel Toro. Separating Concerns by Means
of UML-profiles and Metamodels in PIMs. In Proc. of the 5th Aspect-Oriented
Modeling Workshop (UML’04), Lisbon, Portugal, October 2004.

61. James Rumbaugh, Ivar Jacobson, and Grady Booch, editors. The Unified Modeling
Language Reference Guide. Addison-Wesley, Boston, 2005.

62. Andrea Schauerhuber. PhD Proposal. aspectUWA: Applying Aspect-
Orientation to the Model-Driven Development of Ubiquitous Web Applications.
http://www.wit.at/people/schauerhuber/AOSD06 SpringSchool Schauerhuber-
0302.pdf, March 2006.

63. Andrea Schauerhuber, Wieland Schwinger, Elisabeth Kapsammer, Werner
Retschitzegger, and Manuel Wimmer. Towards a Common Reference Architec-
ture for Aspect-Oriented Modeling. In Proc. of the 8th International Workshop on
Aspect-Oriented Modeling (AOSD’06), Bonn, Germany, March 2006.

64. Andrea Schauerhuber, Manuel Wimmer, and Elisabeth Kapsammer. Bridging ex-
isting Web Modeling Languages to Model-Driven Engineering: A Metamodel for
WebML. In Proc. of Workshop on Model-Driven Web Engineering (ICWE’06),
Standford Linear Accelerator Center, Palo Alto, California, July 2006.

65. Wieland Schwinger, Christoph Grün, Birgit Pröll, Werner Retschitzegger, and
Hannes Werthner. Pinpointing Tourism Information onto Mobile Maps A Light-
Weight Approach. In Proc. of ENTER 2006 - International Conference on Infor-
mation Technology and Travel & Tourism. Springer-Verlag, January 2006.

66. Dominik Stein, Stefan Hanenberg, and Rainer Unland. An UML-based Aspect-
Oriented Design Notation. In Proc. of the 1st International Conference on Aspect-
Oriented Software Development (AOSD’02), Enschede, The Netherlands, pages
106–112. ACM Press, April 2002.

67. Dominik Stein, Stefan Hanenberg, and Rainer Unland. Designing Aspect-Oriented
Crosscutting in UML. In Proc. of the 1st Workshop on Aspect-Oriented Modeling
with UML (AOSD’02), Enschede, The Netherlands, March 2002.

68. Dominik Stein, Stefan Hanenberg, and Rainer Unland. On Representing Join
Points in the UML. In Proc. of the 2nd International Workshop on Aspect-Oriented
Modeling with UML (UML’02), September 2002.

69. Dominik Stein, Stefan Hanenberg, and Rainer Unland. Expressing Different Con-
ceptual Models of Join Point Selections in Aspect-Oriented Design. In Proc.
of the 5th International Conference on Aspect-Oriented Software Development
(AOSD’06), Bonn, Germany, pages 15–26. ACM Press, March 2006.

70. Dominik Stein, Jörg Kienzle, and Mohamed Kandé. Report of the 5th Interna-
tional Workshop on Aspect-Oriented Modeling. In UML Modeling Languages and
Applications: 2004 Satellite Activities, Lisbon, Portugal, LNCS 2397, pages 13–22.
Springer-Verlag, October 2004.

71. Stanley M. Sutton, Jr. and Isabelle Rouvellou. Concern Modeling for Aspect-
Oriented Software Development. In R.E. Filman, T. Elrad, S. Clarke, and M. Akşit,
editors, Aspect-Oriented Software Development, pages 479–505. Addison-Wesley,
Boston, 2005.

72. Peri L. Tarr, Harold L. Ossher, William H. Harrison, and Stanley M. Sutton, Jr. N
Degrees of Separation: Multi-Dimensional Separation of Concerns. In Proc. of the
21st International Conference on Software Engineering (ICSE’99), Los Angeles,
California, pages 107–119. IEEE Computer Society Press, May 1999.

73. The AspectJ Team. The AspectJ (TM) Programming Guide.
http://eclipse.org/aspectj/doc/released/progguide/index.html, October 2005.

74. Maria Tkatchenko and Gregor Kiczales. Uniform Support for Modeling Crosscut-
ting Structure. In Proc. of the 6th International Workshop on Aspect-Oriented
Modeling (AOSD’05), Chicago, Illinois, March 2005.

75. Klaas van den Berg, José M. Conejero, and Ruzanna Chitchyan. AOSD Ontology
1.0 - Public Ontology of Aspect-Orientation. Technical Report AOSD-Europe-UT-
01, AOSD-Europe, May 2005.

76. Christina von Flach Garcia Chavez and Carlos J. P. de Lucena. A Theory of
Aspects for Aspect-Oriented Software Development. In Proc. of the 7th Brazilian
Symposium on Software Engineering (SBES’2003), 2003.

77. Christina von Flach Garcia Chavez, Alessandro Garcia, Uriá Kulesza, Cláudio
San’anna, and Carlos Lucena. Taming Heterogeneous Aspects with Crosscut-
ting Interfaces. In Proc. of the 9th Brazilian Symposium on Software Engineering
(SBES’2005), October 2005.

78. Dennis Wagelaar. A Concept-Based Approach for Early Aspect Modelling. In Proc.
of Early Aspects 2003: Aspect-Oriented Requirements Engineering and Architecture
Design, Boston, Massachusetts, March 2003.

79. Aida A. Zakaria, Hoda Hosny, and Amir Zeid. A UML Extension for Modeling
Aspect-Oriented Systems. In Proc. of the 2nd International Workshop on Aspect-
Oriented Modeling with UML (UML’02), September 2002.

80. Gefei Zhang, Hubert Baumeister, Nora Koch, and Alexander Knapp. Aspect-
Oriented Modeling of Access Control in Web Applications. In Proc. of the 6th
International Workshop on Aspect-Oriented Modeling (AOSD’05), Chicago, Illi-
nois, March 2005.

Appendix

In the following, we make the findings of our evaluation available at a glance.
Table 1 to 6 summarize the evaluation results according to the six categories of
criteria from our evaluation framework presented in Section 4.

Table 1. Language

Table 2. ConcernComposition

Table 3. AdaptationSubject

Table 4. AdaptationKind

Table 5. Maturity

Table 6. Tool Support

