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Abstract

The integration of Web services is a recent outgrowth of the Business Process integration field that will require powerful meta-schema
matching mechanisms supported by higher level abstractions, such as UML meta-models. Currently, there are many XML-based workflow
process specification languages (e.g. XPDL, BPEL) which can be used to define business processes in the Web services and Grid Computing
world. However, with limited capability to describe the relationships (schemas or ontologies) between process objects, the dominant use of XML
as a meta-data markup language makes the semantics of the processes ambiguous. OWL-S (Ontology Web Language for Services) exploits the
semantic description power of OWL to build an ontology language for services. It therefore becomes a candidate for an inter lingua. In this paper,
we propose an integration framework for business processes, which is applied to Web services defined in OWL-S.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The Web services paradigm is poised to become the
dominant form of distributed computing within this decade
and beyond. An EDS global consultancy found that 75% of
companies ranging from less than $50 million to more than
$1 billion in revenues and across 20 vertical industries have
already deployed one or more Web services [1]. Web services
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involve a family of XML-based protocols to describe, deliver,
and interact with services. WSDL is the most important one
in our context. WSDL files include a set of standard elements.
These elements describe interfaces and usage of a particular
Web service [2]. Workflow management systems have become
promising solutions for organisations that need to automate
their business processes [3]. Applying workflow to a business
process brings the details of that process into focus and adds the
required business rules and business logic to the process.

Typical XML-based workflow process definition and
execution languages include BPEL4WS (Business Process
Execution Language for Web services, BPEL in short) [4],
XPDL (XML Process Description Language) [5], ebXML,
etc. that can be used to describe workflow systems and
business processes in the Web services world. Integration of
these languages requires comprehensive and complex mappings
between them [6]. Intuitively, UML meta models may meet
these requirements to some extent, especially in providing
visual forms for models of classes and respective associations.
In this paper, we describe a set of business process integration
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options and a set of additional modelling constructs, especially
for the synchronisation of activities and states within a process
not easily described with full semantics. We have developed a
transformation tool, BPEL2UML-AD [7], to transform BPEL
specifications to UML activity diagrams [8] (referred to as
UML-AD for short in the rest of the paper). The advantage of
UML-AD is that they provide an effective visual notation and
facilitate the analysis of workflow compositions.

As part of our analysis of workflow composition, we have
identified a set of integration options which can be applied
to Web services by mapping backwards from UML-AD to
BPEL. This work started out from an attempt to support the
decision between different integration options. A possible basis
is the different semantic relationships between process objects.
However the description of these relationships cannot be
carried over directly to BPEL because BPEL documents solely
represent descriptions of activity execution without describing
the semantics of involved objects. Therefore we propose to use
a mapping from BPEL to OWL-S (Ontology Web Language
for services, formerly DAML-S). OWL-S, jointly developed by
a consortium including industry and research institutions, is an
attempt to provide an ontology for describing Web services [9–
11]. In this paper, we introduce an approach (BPEL2OWL-S)
which supports the mapping of business processes defined in
BPEL onto an OWL-S-based process ontology [12].

The paper is organised as follows. Section 2 discusses some
typical workflow and Web service specification languages.
In Section 3 we analyse integration options on the basis of
workflows. In the following section we deal with the mapping
of BPEL to OWL-S. Section 5 discusses our findings and
related work. The last section concludes our work.

2. The current state of workflow and Web service
description languages

The current state of the art in workflow description
languages in a Web service environment is based on two
separate standards, WSFL (Web Service Flow Language) and
XLANG. WSFL (xml.coverpages.org/wsfl.html), from IBM,
addresses workflow on two levels: (1) it takes a directed-graph
model approach to defining and executing business processes;
and (2) it defines a public interface that allows business
processes to advertise as Web services. XLANG (http:xml.
coverpages.org/xlang.html), from Microsoft, plays the role of
notation for Web services based business process automation.
As the basis of automated protocol engines, it supports the
exchange of messages among various Web services, tracks the
state of process instances, and detects errors in message flows
to some extent.

BPEL4WS (Business Process Language for Workflow
Systems, or BPEL for short) was developed as an attempt to
unify XLANG and WSFL and supersedes both these efforts. It
allows businesses to describe sophisticated business processes
that can both consume and provide Web services. The language
is intended to support the modelling of both executable and
abstract processes. An abstract process is a business protocol
that specifies the message exchange behaviour between
different parties without revealing their internal behaviour. An
executable process specifies the execution order between a
number of activities that constitute the process, the partners
involved in the process, the messages exchanged between
these partners, and the fault and exception handling that
specify the behaviour to adopt in the cases of errors and
exceptions [4]. A BPEL process is a flow-chart, where each
element in the process is called an activity. An activity can
be either primitive or structured. The set of primitive activities
contains: 〈invoke〉, 〈receive〉, 〈reply〉, 〈wait〉, 〈assign〉, 〈throw〉

and 〈empty〉. Several structured activities are defined to enable
the presentation of complex structures. These are 〈sequence〉,
〈switch〉, 〈pick〉, 〈flow〉, 〈compensate〉, 〈scope〉 and 〈while〉.
A BPEL process definition provides and/or uses one or more
WSDL services, and provides the description of the behaviour
and interactions of a process instance relative to its partners and
resources through Web service interfaces.

BPEL supports the implementation of any kind of business
process in a very natural manner and has gradually become
the basis of a standard for Web service description and
composition. However, it has several shortcomings that limit
the ability to provide a foundation for seamless interoperability.
The semantics of BPEL are not always clearly defined, thus
complicating the adoption of the language. Major limitations of
the BPEL specification have been listed in [10,13]. At the heart
of the problem is BPEL’s reliance on describing services using
pure XML and XML Schema.

Outside the pure Web services domain, the Workflow
Management Coalition (WfMC) has been an active driving
force in defining standard references to facilitate a process
definition language, the interchange of process definitions and
the interpretation of process definitions by different workflow
management engines, and interoperability across different
workflow management systems. The work conducted by WfMC
allows developing composite workflow applications across
different workflow management systems and organisations
which work together as a single logical entity. For this
endeavor, WfMC has published XPDL and interoperability
specification Wf-XML [5]. XPDL belongs to the family of
graph-structured process definition languages. There are also
some other specific XML-based languages like e-Business
XML (ebXML) and XML Routing Languages, which we have
discussed elsewhere [14].

The authors in [15] have analysed workflow patterns
to compare the expressiveness of existing business process
languages and have examined the properties of BPEL in [16].

3. Analysis of workflow composition

In order to integrate different Web service based business
process specification languages, we need to analyse constructs
of process models at higher abstraction level. We used diagram
notations, especially Activity Diagrams (UML-AD) of the
Unified Modeling Language (UML) [8], because traditional
techniques of structured analysis and design are being
increasingly replaced by object-oriented modelling approaches
in the development of business information systems. Another
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reason was that in conjunction with UML, the Model Driven
Architecture (MDA) was proposed by the OMG [17]. The
main idea of MDA is to separate the platform specific
modelling (PSM) and the platform independent modelling
(PIM). Transformation tools help to refine a PIM into a PSM. A
business process fits well into this concept because it describes
the behaviour of a system on a high level and is independent
from the implementation like the PIM.

We mapped BPEL to UML-AD [7] and analysed
correspondences between business process elements of two
separate UML-AD models in case of composition and
association where we deal with part-of relationships and
domain dependency relationships [18]. A main business
process consists of subprocesses which may again have
subprocesses of their own. The integration task is to build
an integrated hierarchy of such processes and coordinate
the control and data flow between them. Some studies
addressed the composition of internal and external services and
verification of consistency criteria [19]. Others pointed out that
the actual coordination of processes is still a missing aspect in
current integration research and suggested solutions like event-
based coordination [20]. In [21] we used a similar integration
approach for creating a generalisation model out of two input
business processes. Here, we apply the approach to composite
business processes.

For analysing composite business processes we used the
life cycle of a composition which consists of the three phases,
(a) construction, (b) coordination, and (c) destruction.
In the construction phase a composite business process is
created out of the separated component business processes,
e.g., the business processes “building a car” consists of the
business process “building tyres” and “building car body”.
A “component business process” is a business process which
belongs to a component. In the following phase the composite
business process must be coordinated with its components
depending on the activities and states of the participating
objects, e.g., a car accident happened and the composite
business process “checking the car” coordinates the component
business processes “checking tyres” and “checking car body”.
The destruction of the composition, e.g., “dismantling the car”,
terminates the life cycle.

Our integration approach is based on semantic relationships
between business process elements. In the following section we
apply this approach to the elements of Web services and link
integration options to these elements which are described in
Section 3.2.

3.1. Semantic relationships of composite Web services

Diagram notations used for conceptual behaviour modelling
are based on two complementary notational primitives, states
and activities. UML behaviour representation notations either
emphasise states (in the case of state machine diagrams) or
activities (in the case of activity diagrams) and attempt to
minimise the use of the respective opposite primitives. While
these representations are useful for particular facets of the
software development process they typically cannot be used
in pure form without overly restricting the modeller, resulting
in the introduction of different kinds of “pseudostates” (really,
particular types of transitions) in Statechart modelling and
different types of “locations” (really, intermediate states) in
Activity Diagrams. Instead, we use a symmetric notation that
permits both states and activities to occur explicitly in the same
diagram. Activities represent a situation of a business process
where actions are executed which cannot be interrupted. We
assume that an activity needs time and the duration of execution
is unknown. In contrast, states represent a situation where the
business process remains in a waiting position to receive an
event which invokes an activity.

In [18] we identified semantic relationships between
activities and states of business processes during the lifetime of
composition. Here, we are going to apply this approach to Web
services and demonstrate it on the example of a composite Web
service T called “Travel service” which plans and coordinates
travels to a specific destination D by invoking the following
other Web services:

• “Flight booking service” (F) books flights to D.
• “Hotel booking” (H ) books a hotel in D.
• “Limousine booking service” (L) books a limousine for

picking up a person from the airport in D.
• “Restaurant booking service” (R) books a dinner in a

restaurant in D.

For each Web service, there exists a compensatory Web
service which cancels the specific booking, i.e., F , cancels a
flight, H , cancels a room reservation, etc. F , H , D, R, and their
respective compensation services are either atomic processes or
composite processes.

Construction: The task of T in the construction phase is to
identify (1) inter dependencies of services and (2) which is the
optimal configuration of them. F and H depend on each other;
e.g., if there is no flight available on a day it is not necessary
to book a hotel for that day. We define this dependency
as component commit relationship cn commit(F, H). It holds
if F and H need to be executed successfully or none of
them. L depends on the date and time of the flight booked
by F . However L does not play an important role in the
schedule because the person can be picked up by a taxi as an
alternative. A cn commit(F, L) relationship is not necessary.
Instead we define that F must be invoked before L by setting
the component history relationship cn history(F, L). Finally,
we can construct a relationship where one activity is actually
defined as a subactivity of the other, a relation we refer to as
activity decomposition: subact(T, F) holds if Web service F is
executed as part of the execution of T , e.g., a hotel reservation
as part of an overall trip reservation.

Coordination: During the coordination phase a composite Web
service might need to coordinate other Web services because of
incoming messages, e.g., the whole trip will be cancelled after
T has booked the flight, the hotel, and the limousine. In this
case all involved Web services F , H , and L , need to be invoked.
These relationships are often based on subact relationships as
described above.
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In [18] interprocess dependencies are discussed which deal
with state conditions of business processes. In BPEL states
are determined by the value of variables which are replaced
by message types in OWL-S. Interprocess dependencies are
split into three categories: (1) Composite state dependencies
hold if a component Web service (e.g., the atomic process
“receive credit details” A in F) can only be executed if the
respective composite Web service is in the respective composite
state, e.g., T in “credit card details are available”. We denote
such a dependency by cs ipd(A, S) where S is a specific state
in T . (2) Component state dependencies are similar to the
previous example but here a component Web service must be in
a specific state before a composite Web service can be executed,
e.g., cn ipd(C, F, S) holds if the atomic process “invoke flight
cancel service” C in T can only be executed if F is in the
state “Flight booked successfully” S. (3) State component state
condition defines the influence of a component Web service
state on the state of its respective composite Web service, e.g.,
the state S “booking cancelled” of F has a relationship to the
state U “flight is not valid” in T . Due to technical problems
the flight was cancelled and hence the travel plan is not valid
anymore. We define this relationship as st cn ipd(U, F, S)

where S represents the state of the component and U the state
of composite Web service.

Destruction: The last phase of the composition life cycle forms
the dissolution of the composition. In the example of T it
means either that the booked services were used by the client or
cancelled before. In this phase we identified the same semantic
relationships as in the construction phase, i.e., component
commit, component history, and subact.

In the next section we discuss integration options which are
later linked to the previously defined semantic relationships.

3.2. Analysis of integration options

In [18] we elaborated the differences between synchronisa-
tion and constraints, where the semantics of the element activity
and state are crucial. However, in Web service execution seman-
tics, states do not exist explicitly, whereas in BPEL a state is
implicitly determined by the values of variables. In Section 3.4
variables are mapped to OWL-S process ontology as message
types. Therefore the following analysis of integration options
which is based on synchronisation and constraints is applicable
to Web services if we consider states as received messages and
activities as atomic processes.

We have identified three scenarios where integration is re-
quired: (1) synchronisation of activities, (2) synchronisation
constraints between activities and states, and (3) constraints
between states. Synchronisation deals with the coupling of two
Web services, e.g., through message exchange and constraints
defined conditions under which an atomic process can be exe-
cuted, e.g., if a specific message was received previously.

To explain this, we use the same example as in the previous
section, the composite Web service T which consists of the
atomic processes T1, . . . , Tm and the component Web service
F holding the atomic processes F1, . . . , Fn .
Synchronisation of activities: In the case of activity
synchronisation we observe both the control flow and the
orthogonality of the relationship between T and F . We identify
two simple integration options which integrate two activities:
(1) blocking and (2) non blocking. In the case where several
activities need to be integrated we propose a further four
complex integration options: (3) future synchronisation, (4)
ordering, (5) execute if available, and (6) cancel if unsuccessful.
They may apply a combination of simple integration options as
defined below.

(1) Blocking (block): A blocking synchronisation holds if T
sends a message M to F and waits for an incoming message
from F as an answer to M . The integration option block
is defined as block(Tx , Fy) where Tx is the atomic process
which sends M and Fy the atomic process which receives
M .

(2) Non blocking (nblock): A non blocking synchronisation
between T and F exists if T sends a message M to F and
does not wait for an incoming message from F . The option
non blocking is defined as nblock(Tx , Fy) where Tx sends
M and Fy receives it.

(3) Future synchronisation (future): The future synchronisa-
tion offers the opportunity to synchronise the control flow
of two composite processes at a later point in time, e.g., T1
sends a message to F1 and T continues execution to a syn-
chronisation point, e.g., Tm and waits for an incoming mes-
sage from F .

This integration option is defined as future(S, E)

where S is a pair of atomic processes which start the
synchronisation defined as S = {T1, F1} and realised
through nblock(T1, F1). The second pair of activities E =

{Fn, Tm} ends the synchronisation and is realised through
nblock(Fn, Tm). Two constraints must be satisfied during
runtime: (1) during the execution the instance of T must
pass Tm after T1, and (2) the instance of F must enter Fn
after F1.

(4) Ordering (order): If T has to exchange several messages
with other services it might be necessary to order the
communication with them, e.g., T might have to finish
booking the hotel and flight first before booking the
limousine. The integration option is defined as order act(I )
where I is a set of integration options in a specific order. If
A is the set of all integration options identified within a Web
service then I ⊆ A × A.

(5) Execute if available (avail): This option ensures atomicity
of activity execution. Atomicity might be necessary
between the invocation of atomic processes by T , e.g., the
atomic processes in F and H “confirm booking”. In [18]
we use a control flow template which first checks the
availability of a successful execution of an activity and then
executes it. The option avail is defined as avail(E) where
E is a set of activities that need to be executed successfully,
e.g., E = {F1, H1}.

(6) Cancel if unsuccessful (cancel): An alternative solution to
avail is proposed by cancel. The difference is that instead
of checking the availability of all activities in E they are
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executed first and if one of them fails all other activities are
cancelled, similar to a rollback. It is defined as cancel(E).

Synchronisation and constraints between activities and
states: The integration of activities and states of two Web
services is divided into (1) synchronisation and (2) constraints.

(1) Synchronisation: In this case an activity sets another Web
service into a specific state. As mentioned before the state
of a Web Service is determined by a message it sends. So for
setting a Web service W into a specific state S, a message
including S must be sent which must then be answered by
W with S, e.g., the atomic process “cancel flight” in F
sends a message “flight is not valid anymore” to T . As a
result the travel schedule of T is not valid anymore and
T sends back a confirmation F . This integration option
is defined as setInState(Fy, T, M) where Fy is an atomic
process in a Web service which sets another Web service T
into a state defined by M .

(2) Constraints: There are two types of constraints depending
on whether an activity may start or must start. The first is
defined as isAbleToStart(Tx , F, S) where Tx is an atomic
process in a Web service, F is the Web service which
must be in a specific state S, e.g., Tx is “change flight”,
F is the flight booking service and S is “flight was booked
successfully”. In this example it is only possible to change a
flight after a previous booking was successful and a booking
exists already. T has to send a message to F to ask for the
state before executing Tx if S was not received beforehand.

The second is defined as mustStart(Tx , F, S) where Tx is
an atomic process which must start if Web service F enters
a specific state S, e.g., if a flight is cancelled by F then T
must inform the owner of the ticket about it. Tx is the atomic
process which informs the owner and S the state “flight is
cancelled”.

Constraints between states: The last scenario deals with the
relationship between states. A state of a component object may
change the state of composite object, e.g., the state “tyre is flat”
changes the state of car to “car is not ready to drive”. This
constraint is similar to the constraint defined by mustStart()
but in this case there is no activity involved. We define this
constraint as isInState(S, D) where S and D represent two
different states. An object O must be in state S if there is an
object in D which depends on O .

We linked each integration option as a preferred or
alternative way of integration to the semantic relationships
defined in Section 3.1. A table of all possible connections
between semantic relationships and integration options can be
found in [18]. The advantage of this approach is that the user
need only to deal with Web service relationships and the choice
of the preferred integration option (if the situation is such that
alternative options exist). However, the user (developer) does
not need to deal with the technical integration of Web services.

3.3. Integration of Web services described in OWL-S

For applying this business process integration approach on
Web services we need to map the relationships and integration
options to a language which supports the description of
semantics and can be interpreted by computer systems. We
decided to use OWL-S as a suitable language used for Web
services for the reasons mentioned in Section 1.

An ontology defines a common vocabulary for individuals,
organisations, and applications that need to share information
in a domain. Having an ontology in the domain will reduce
the number of combinations in the integration mapping, as we
only need to map the business processes defined in any of the
languages to the ontology which can then be mapped back
easily to other languages, for example, which are mentioned
at the end of Section 2 (also refer to [14]). Many researchers
had made efforts to establish a unified resource model for Web
entities [22]. Based on that, a Knowledge Grid environment has
been set up beyond a peer-to-peer platform, where a semantic
overlay layer plays a critical role in offering better scalability
and performance for query of semantic objects [23]. Recently,
an ontology-oriented Web service modelling framework was
proposed in [24], and a special Web service modelling
ontology working group (www.wsmo.org) has been formed. A
comparison between WSMO and OWL-S can be found in [25].

NIST (National Institute of Standards and Technology)
has proposed one specific process-oriented ontology language,
namely Process Specification Language (PSL), which is based
on the Knowledge Interchange Format (KIF) the predates OWL
and OWL-S [26]. Like PSL, OWL-S is an attempt to provide an
ontology for Web services, in this case within the context of the
OWL language.

According to OWL-S, service descriptions are divided into
three parts, which are characterised by the kind of knowledge
provided about a service [9]. The service profile describes
what the service requires from users or agents and what it
provides to them. The service model describes the service’s
process model (the control flow and data-flow involved in using
the service). Specifically, the OWL-S service model defines
three types of processes (atomic, simple and composite). It
is designed to enable automated composition and execution
of services and of the three parts is the one most closely
related to the BPEL process model. The service grounding
connects the process model description to communication
level protocols and message descriptions in WSDL. These
components are annotated with classes of well-defined types
that make the service descriptions machine-readable and
unambiguous. Additionally, the ontological structure of types
allows type definitions to draw properties from the hierarchical
inheritance and relationships to other types.

We have chosen OWL-S as a candidate for describing
business processes and their relations in a semantic context. As
an immediate application scenario of such mapping, we have an
in-house peer-to-peer decentralised workflow-based e-service
system, SwinDeW-B, which was based on SwinDeW [27,
28]. Without OWL-S semantics’ support, neither XPDL nor
BPEL could organise well-formed negotiation and coordination
between peers, who enacted real tasks and activities. Thus,
the integration of BPEL and OWL-S introduced in this paper
becomes more essential for peers to play complementary
roles in semantic Web service contexts [29]. In the following
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we address the mapping from BPEL to OWL-S and the
implementation of it.

3.4. Mapping from BPEL to OWL-S

We will concentrate on the OWL-S service model (also
known as process model—process ontology). The top level
class of the OWL-S process ontology is process. A process
can have any number of inputs and outputs, preconditions,
effects and participants. There are three disjoint subclasses
of the process class. Atomic processes can be directly
invoked, have no sub-processes and execute in a single step
(from the perspective of the service requester). Composite
processes can be decomposed into other (atomic or composite)
processes, which are linked by control constructs such as
sequence or if-then-else. In contrast to atomic processes, they
cannot be directly invoked. And simple processes cannot
be directly invoked, but, like atomic processes, they are
viewed as having single-step executions. The features that
distinguish and differentiate BPEL from OWL-S in terms
of expressiveness, semantics, automated composition and
execution, fault handling and querying mechanisms were
identified in [12], and some difference between BPEL and
DAML-S, the predecessor of OWL-S, have been compared
in [13]. The mapping of necessary WSDL elements to the
OWL-S process model is used and extended in our mapping
tool BPEL2OWL-S, an extension of initial implementation
work described in [11].

Workflow and e-service languages like XPDL and BPEL
share commonalities in basic structures and elements, and
OWL-S acts as a direct successor of DAML-S and PSL.
Therefore, without losing generality, the following sub-sections
will describe the detailed mapping from BPEL elements and
semantics to OWL-S process ontology.

Processes and business partners
A BPEL executable process does not represent any abstract

view of the process and can be directly invoked. Hence
it will be mapped onto an OWL-S atomic or composite
process, depending on the internal activity of the executable
process. OWL-S atomic processes can be directly invoked
and composite processes can be made explicitly invocable by
setting the invocable property of the composite process to true,
thus making this type of mapping valid. A BPEL process can
have only one main activity in it. Thus, the selection of the
OWL-S process (atomic or composite) for the mapping will
depend on this activity.

On the other hand, a BPEL abstract process cannot be
directly invoked and also represents the abstract view of
the process and hence will be mapped onto OWL-S simple
processes. An OWL-S simple process can be thought of as
a view on either an atomic or composite process [9]. Simple
processes provide a means of characterising other processes at
various levels of granularity, for the purpose of planning and
reasoning. They give additional characterisation of how they
work, in terms of other processes (atomic or composite) and
are not directly invocable (abstract process).
Variables and data flow
In WSDL2DAML-S [11], only the mapping of port types

and operations to their corresponding DAML-S atomics
processes is presented. It does not reflect the mapping of WSDL
messages in DMAL-S process ontology. We have extended
the mapping of WSDL2DAML-S by including the WSDL
messages in our OWL-S-based workflow process ontology.

WSDL messages are used to represent the abstract definition
of the data being transmitted in and out of the processes [2].
WSDL messages consist of one or more logical parts. Each
part is associated with a type from some type system (data
type defined or built-in XML Schema: XSD). Since we know
the data types of parts of the messages by the type attribute
of the part element, all the messages will be represented as
OWL classes. The type of the class will not be restricted to any
particular data type but will use the OWL object (i.e. Thing)
as the data type. Part of each message will be mapped onto the
properties of their corresponding OWL class and the data type
of the property will be based on the type specified for that part.
Variables in BPEL provide the means for holding messages that
constitute the state of a business process. The messages held
are often those that have been received from the partners or are
to be sent to the partners via primitive activities. The type of
each variable may be a WSDL message type, an XML schema
simple type or an XML schema element. The messageType,
type or element attributes are used to specify the type of
a variable. Variables that are defined by the messageType
attribute represent a WSDL message, and thus share the same
data type of the WSDL message it to. Hence, such types of
variables are mapped onto the data types in the OWL-S process
ontology (same as WSDL messages mapped). Variables defined
by the messageType attribute (representing a WSDL message
type) in a BPEL process will be mapped in the same way as the
WSDL messages mapped onto the data types in OWL-S process
ontology using the OWL class.

A Data Flow OWL file will be produced as one of the
outputs for this whole mapping process. Data Flow OWL
contains the process annotations for Process OWL which will
relate various process parameters to each other as defined in
Process OWL, which defines the concrete activities in the
process model. Therefore the data flow is separated from
the process definition. The inputs and outputs of the atomic
processes derived from 〈receive〉, 〈reply〉 and 〈invoke〉 activities
are described accordingly in Data Flow OWL. The OWL-S
valueOf class is used to refer to their respective super class
atomic process’s inputs and outputs. When composing atomic
processes into composite processes (i.e. when a composite
process has atomic sub-processes in it), it is crucial that the
inputs and outputs of the sub-processes are related to each
other. This is addressed using the OWL-S valueOf class (which
represents that the two parameters used for referencing are
equal), used similarly as above for referencing the inputs and
outputs of the derived atomic processes from primitive activities
to their corresponding super class atomic process’s inputs and
outputs. Furthermore, we represent the referencing of the inputs
and outputs of the derived composite processes from structured
activities in Data Flow OWL using the OWL-S valueOf class.
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Fig. 1. An example of BPEL flow.
Thus, the complete data flow for both atomic processes and
composite processes can be derived from BPEL primitive and
structured activities respectively.

Activities
BPEL primitive activities are simple activities with single

step executions. These activities are commonly used as
request-response operations, for assignments and for throwing
exceptions in the process. OWL-S atomic processes share the
same concept. They are the basic units of implementation, a
black-box representation which does not describe how such
processes work. They are normally used together with other
types of processes (simple or composite) to represent the
workflow and business logic in the process. All primitive
activities can be mapped onto atomic processes.

BPEL structured activities describe how a business process
is created by composing the primitive and structured activities.
They prescribe the order in which a collection of activities (both
primitive and structured) takes place and express the control
patterns, data flow, handling of faults and external events.
The structured activities include: ordinary sequential control
between activities which are provided by 〈sequence〉, 〈switch〉

and 〈while〉; nondeterministic choice based on external events
which are provided by 〈pick〉; concurrency and synchronisation
between activities which are provided by 〈flow〉.

OWL-S composite processes are composed of sub-processes
(atomic or composite) and share the same concept of BPEL
structured activities. Thus, the structured activities in BPEL
will be recursively mapped onto OWL-S composite processes.
Every composite process has a control construct associated with
it. The control constructs (sequence, choice, repeat-while, etc.)
are closely related to BPEL structured activities. The mapping
of the structured activity will be based on the type of the activity
which will be used to determine the type of the control construct
for the derived composite process. The inputs and outputs of
composite processes are derived from the corresponding inputs
and outputs of atomic sub-processes and will be computed
normally. OWL-S has not specified the function and use of
the condition class so far. Our current practice is to merely
carry over the condition content from BPEL into the OWL-
S condition for reference purposes, without any changes in
surface syntax.

In the following section we apply these mapping mecha-
nisms on a case study.

4. Case study

In this section we will present a case of mapping from BPEL
to OWL-S through an example [12]. Fig. 1 shows an example
BPEL flow which we will use for mapping illustration. Note
that there are two 〈terminate〉s in the figure. Because OWL-S
has not specified how to terminate a process yet, we temporarily
ignore the 〈terminate〉 activity. That is why in the final OWL-
S process there is not atomic process named terminate as a
counterpart of the one in the BPEL process.

Simple processes are used to abstract other processes
(atomic or composite). The level of abstraction again depends
on the main activity of the BPEL abstract process and will
be based on the detailed mapping of the activities. A simple
process that abstracts an atomic process is realised by that
process which is done by using the realizedBy property of
the simple process and the realizes property of the underlying
atomic process. A simple process that is abstracted to a
composite process is expanded to that process which is done
by using the expandTo property of the simple process and the
collapsesTo property of the underlying composite process [9].
Using the top level attribute (i.e., abstractProcess) of the
process definition, we can identify whether the BPEL process
is an abstract or executable process, thus allowing us to map the
process onto an appropriate OWL-S process.
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Business partners’ definitions are optional and need not
cover all partner relationships/links defined using partners
and partnerLinks elements in the process definition. All the
partners, if defined in the BPEL process, will be represented
as the participants of the main OWL-S process by using the
participant property of the OWL-S process. A participant of an
OWL-S process can be any kind of OWL object (i.e. Thing).
However, the participant property can be specialised by
restricting it to agents, objects, entities, etc. [9].

4.1. Primitive activities

The 〈receive〉, 〈reply〉 and 〈invoke〉 activities of BPEL use
the portType and operations defined in the WSDL document to
send and receive messages and invoke operations in the process.
As the portType and operations in WSDL are mapped onto
the OWL-S atomic processes together with their corresponding
inputs and outputs, we will also map these three activities
onto the atomic processes. We make these processes as the
sub-types of those defined atomic processes in Process OWL,
representing corresponding portType and operations in these
activities.

The 〈receive〉 activity allows the business process to do a
blocking and waits for a matching message to arrive. Assume
that portType and operations from the related WSDL are
mapped onto the corresponding OWL-S atomic processes;
the 〈receive〉 activity will be mapped onto an atomic process
which will be the sub-class of an atomic process derived
from the WSDL. The super class, an atomic process, will be
identified by using the portType and operation attributes of the
〈receive〉 activity. This will allow us to map the activity onto
the accurate atomic process and sub-type process. Since the
〈receive〉 activity only receives the message, such a message
will be mapped as an input of the atomic process derived
from the 〈receive〉 activity with no outputs for the process. The
type of this input will be based on the variable attribute of
the 〈receive〉 activity which specifies the name of the variable
defined in the BPEL process. As we use variables defined
in the BPEL process as data types in Process OWL, we can
identify the data type (in Process OWL) of the input of the
atomic process derived from the 〈receive〉 activity using the
variable name. Thus, this input of the atomic process will then
be the same as one of the inputs for the super class, atomic
process. The 〈reply〉 activity allows a business process to send
a message only and hence will be mapped onto an OWL-S
atomic process with outputs only. The mapping of the 〈invoke〉
activity combines the mapping of both 〈receive〉 and 〈reply〉

activities as discussed above. The derived atomic process will
have both the inputs and outputs based on the inputVariable and
outputVariable attributes of the 〈invoke〉 activity respectively.
The examples can be found in [12].

The 〈throw〉 activity generates a fault from within the
business process [4]. The type of the fault generated is
associated with the faultVariable attribute of the 〈throw〉

activity. The faultVariable attribute specifies the variable name
which is represented as a data type in Process OWL. The
〈throw〉 activity will be mapped onto an OWL-S atomic process
with one output of the same data type as of the fault variable
specified in the 〈throw〉 activity. There will be no inputs for the
atomic process derived as this activity is used to generate faults
and send fault messages. The derived atomic process will be
of its own type and will not inherit from any atomic processes
derived from WSDL as the 〈throw〉 activity does not specify the
port type and operation for communication.

4.2. Structured activities

4.2.1. Sequence, switch, while, pick
The 〈sequence〉 activity contains one or more primitive

or structured activities that are performed sequentially based
on the order listed within the 〈sequence〉 activity. The
〈sequence〉 activity completes when the final activity listed in
the 〈sequence〉 activity is completed. An OWL-S composite
process with control construct of type Sequence will be used
for this mapping. It will list the sub-processes (atomic or
composite) which will be performed in the order in which they
are listed. The type of the sub-processes will be based on the
internal activities of 〈sequence〉 in BPEL. The components of
the derived composite process can be either atomic processes
or composite processes depending upon the internal activities
in 〈sequence〉. All the sub-processes of the derived composite
process are recursively declared depending on the type of the
process in the process.

The 〈switch〉 activity supports the conditional behaviour in
the pattern that occurs quite often. The activity consists of an
ordered list of one or more conditional branches defined by
the case elements, followed optionally by an otherwise branch.
The activity of the branch whose condition holds is performed
and the 〈switch〉 activity gets completed. If no branch condition
holds then the activity of the otherwise branch is performed.
An OWL-S composite process with control construct of type
Choice will be used for this mapping. An OWL-S Choice
control construct allows the selection of a process from the list
of its sub-processes.

The 〈while〉 activity supports the repeated performance of a
specified iterative activity in the business process. The iterative
activity is performed until the given condition no longer holds.
An OWL-S composite process with control construct of type
Repeat-While will be used for this mapping. Repeat-While
allows a sub-process to iterate until the whileCondition is true.
The iterative activity of the 〈while〉 activity will be mapped onto
the sub-process in the Repeat-While control construct based
on the type of the activity and the condition in the 〈while〉
activity will be mapped onto whileCondition of the Repeat-
While control construct.

The form of the 〈pick〉 activity is a set of branches of the
form event/activity, and exactly one of the branches will be
selected based on the occurrence of the event associated with
it before any others. After the 〈pick〉 activity has accepted the
event, the activity of the appropriate branch is performed and
no more events are accepted by the 〈pick〉 activity after this.
Thus, only one activity is performed from the set of activities in
〈pick〉. The 〈pick〉 activity has one or more onMessage events,
that contain one activity each and zero or more onAlarm events



J. Shen et al. / Future Generation Computer Systems 23 (2007) 283–294 291
which also contain one activity each [4]. The mapping of this
activity is done in the same way as for the 〈switch〉 activity. An
OWL-S composite process with the Choice control construct
will be used for this mapping.

4.2.2. Flow

The 〈flow〉 activity provides concurrency and synchronisa-
tion. The standard attributes and elements for the activities
nested within a 〈flow〉 activity are especially significant be-
cause they exist to provide flow-related semantics. The most
fundamental semantic effect of grouping a set of activities in
a 〈flow〉 is to enable concurrency. A 〈flow〉 activity completes
when all the activities in the 〈flow〉 have completed. More
generally, a 〈flow〉 activity creates a set of concurrent activi-
ties directly nested within it. It further enables the expression of
synchronisation dependencies between activities that are nested
directly or indirectly within it. The link construct is used to ex-
press these synchronisation dependencies [4]. Furthermore, the
standard elements (source and target) are used to link the ac-
tivities within the 〈flow〉 activity.

An OWL-S composite process with the Concurrent-Sync
control construct will be used for this mapping. An OWL-S
Concurrent-Sync control construct is a sub-class of the Split-
Join control construct which allows concurrent execution of a
set of sub-processes, with barrier synchronisation. A complete
execution of all the sub-processes in the Concurrent-Sync is
required to complete the process the same as the 〈flow〉 activity
in BPEL. Here is an example: the 〈flow〉 activity appears in
BPEL (refer to Flow 1 in Fig. 1):

<flow name="Main_Flow">
<sequence name="CREATION_SEQUENCE">
...

</sequence>
<while name="SEARCH_CYCLE" condition="0=0">
...

</while>
<sequence name="TERMINATION_SEQUENCE">
...

</sequence>
</flow>

It is mapped to the following OWL-S expression:
4.3. Implementation

The transformation from BPEL to OWL-S has been
implemented in the BPEL2OWL-S tool [12]. It maps
specifications from BPEL to OWL-S and uses the same BPEL
and/or WSDL inputs and produces the outputs as Process OWL
and Data Flow OWL files. The latest version of this tool is at
http://bpel4ws2owls.sourceforge.net/.

Some of the distinct features of the BPEL2OWL-S tool are
described there. Object Explorers are used to represent the
object view of the input (BPEL and WSDL) and the output
(Process OWL) files. The tool allows easy navigation and
representation of the hierarchical inheritance and relationships
between the objects and their properties using a tree structure.
A Project Validator is used to associate a correct service
WSDL description for a given BPEL process in mapping. The
tool provides help with brief descriptions for the important
functionalities of the tool and how to interact with the
tool. Users can also simultaneously view the tree structure
representing the object view of the source files (inputs and
outputs) in the tool interface as well as other Web browsers.
The tool supports multiple WSDL files which are along with
a BPEL file. WSDL files are distinguished in terms of slave
WSDL and master WSDL. The master WSDL file is the main
one that all slave WSDL files refer to. WSDL serves as the
foundation of this mapping process. It describes all the data that
are used in a business process.

5. Discussion and related work

While OWL-S offers more powerful description capabilities
for business processes than UML, by now condition is still
a “place-holder” which awaits further work from the OWL-
S community (namely surface syntax). However condition is
a key part for some important logical control constructs like
If-Then-Else, Repeat-While and Repeat-Until. This directly
leads to the incomplete mapping of some activities like 〈switch〉

and 〈while〉. Concurrency is another unfinished issue which
is vital for managing a large scale business system. Because
of the great traffic there are surely some concurrent processes
and the ability to deal with them is an important criterion to
measure the quality of the whole system. Compared to BPEL,
a complete workflow language, OWL-S needs time and efforts
to get mature. Therefore some functions and activities in BPEL,
like fault handling, value assignment, correlation sets and so on,
are far beyond the current OWL-S capability.

Furthermore, while mapping the 〈flow〉 activity to the OWL-
S Concurrent-Sync composite process, we cannot represent
the synchronisation of and links between the sub-processes in
the derived composite process due to the lack of waiting and
synchronisation features in the current version of OWL-S. All
the above findings can potentially contribute to the ongoing
development of both BPEL and OWL-S. Tools developed in
a Web service and Semantic Web context are making the
integration easier, but are still far from practical applicability.
Current work on the OWL-S process ontology [24,30] still
lacks crucial concepts required for the composition of complex

http://bpel4ws2owls.sourceforge.net/
http://bpel4ws2owls.sourceforge.net/
http://bpel4ws2owls.sourceforge.net/
http://bpel4ws2owls.sourceforge.net/
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Web services and business processes. These restrictions also
hampered the work of [10,11] who tried to adapt BPEL and
WSDL for Semantic Web or OWL-S-based applications. They
map WSDL service descriptions to an OWL-S service profile,
which only deals with inputs, outputs, preconditions and effects
(IOPE) of related processes.

Ultimately, these restrictions need to be overcome in order
to represent the complete workflow and business logic of BPEL
in OWL-S process ontology, as has been aimed at in [10].
Moreover, to build modern Semantic and Knowledge Grid
applications [31,32], a translatable workflow ontology is an
essential foundation. Therefore, we need to consider enhancing
our tool in the near future, in order to improve the efficiency
and flexibility in the mapping. The list below identifies the
issues of crucial BPEL language constructs that need to be
considered in future mappings to achieve the accuracy and
reliability in mapping of the BPEL specification to OWL-S-
based workflow process ontology: (1) effective use of variables
and assignment statements for mapping of the 〈assign〉 activity;
(2) ability to explicitly terminate a business process; (3)
allowing effective synchronisation and blocking in the business
processes; (4) describing the relationships between the various
partners of the process; and (5) support for fault and error
handling.

Nevertheless, the derived mapping specifications and
implemented tools in this paper are based on and strictly
conform to the language specifications and standards. Our
work has significantly extended the work reported in [11].
And BPEL2OWL-S tool has been released for world-wide
researchers’ reference and testing. To date it has attracted
many responses and we believe it will contribute to the
evolution of process ontology models, i.e. OWL-S, which has
recently reached a new beta version [9]. For example, there
are arguments about at which abstract level, class or instance,
we should map processes onto OWL-S descriptions. These
discussions are beyond the scope of this paper and can be
found in [14], where foundations of RDF(S) are revisited. We
are also implementing mapping from XPDL to newer versions
of OWL-S.

6. Conclusion

In this paper, with the analysis of business process
integration options, we have examined the impact of ontology-
based models on process integration. The lessons come
from the earlier but unsatisfactory partial transformation tool,
BPEL2UML-AD, which maps BPEL to the traditional UML-
based meta-modelling framework. We realise that OWL-S
enables definitions of the Web services content vocabulary
in terms of objects and complex relationships between
them including classes, sub-classes, cardinality restrictions,
hierarchical inheritance. It also provides a shared set of
terms describing the application domain with a common
understanding for sharing information and knowledge and with
well-defined semantics. Using OWL-S as the ontology in our
project overcomes not only the limitations and weaknesses of
BPEL but also some of the limitations of XML, and solves data
integration and interoperability problems and issues faced today
in the Web Service world.

We have demonstrated the mapping from the BPEL
specification to an OWL-S-based workflow process ontology
by extending the work done in previous WSDL-to-OWL-
S mappings, and by developing a GUI-based BPEL2OWL-
S tool to support this mapping. By integrating the separate
efforts on BPEL and OWL-S, deployment and enactment of
Web services environments in the workflow style will become
more practical. By improving our mapping specification from
BPEL to OWL-S, we believe that we can achieve the accuracy,
efficiency and reliability in our mapping. We will be able to
represent the complete and accurate business logic of a BPEL
process in OWL-S-based workflow process ontology. These
efforts further enable our integration framework of business
process definitions and their application in new environments
like Grid and peer-to-peer based e-services deployment and
coordination.

Both language specifications, BPEL and OWL-S, are new,
work-in-progress and evolving and perceptible languages. This
will allow us to track the changes in the specifications of
these languages in order to extend our mapping between
these standards and specifications. In the near future, we
will enrich service semantics in the peer-to-peer context
and enhance the SwinDeW-B prototype with more advanced
features.
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