
Aspect-Oriented Modeling of Ubiquitous Web Applications:
The aspectWebML Approach

A. Schauerhuber* W. Schwinger E. Kapsammer
W. Retschitzegger

M. Wimmer

Women’s Postgraduate
College for Internet

Technologies
Vienna University of
Technology, Austria

andrea@wit.tuwien.ac.at

Department of
Telecooperation

University of Linz,
Austria

wieland@schwinger.at

Information Systems Group
University of Linz,

Austria
{ek,werner}@ifs.uni-linz.ac.at

Business Informatics
Group

Vienna University of
Technology, Austria

wimmer@big.tuwien.ac.at

ABSTRACT
Ubiquitous web applications (UWA) are required to be
customizable, meaning that their services need to be adaptable
towards the context in which they are used, indicated by, e.g.,
user, location, time, and device. Considering UWA’s from a
software engineering point of view, a systematic development on
basis of models is crucial. Current web modeling languages,
however, often disregard the crosscutting nature of customization
potentially affecting all parts of a web application, i.e., its content,
hypertext and presentation levels, and often tangle customization
functionality and other, non-ubiquitous core services of a web
application. This leads to inefficient development processes, high
maintenance overheads and a low potential for reuse.
To cope with this, we regard customization as a crosscutting
concern in the sense of the aspect-oriented paradigm. As a proof
of concept, we extend the prominent web modeling language
WebML on basis of our reference architecture for aspect-oriented
modeling. This allows for customization mechanisms to influence
all parts of a web application, maintaining at the same time a clear
separation between the core services and customization
functionality, and – as a spin-off – demonstrates how to bridge
existing (domain-specific) modeling languages with aspect-
oriented concepts.

Categories and Subject Descriptors
D.2.2 Design Tools and Techniques

General Terms
Design, Standardization, Languages, Theory

Keywords
Aspect-oriented modeling, domain-specific language, web
application modeling, adaptation, context-awareness

1. INTRODUCTION*
With the emergence of mobile devices as new access channels to
the Internet, we are now facing a new generation of web
applications, called ubiquitous web applications. UWAs are
characterized by the anytime/anywhere/anymedia paradigm,
taking into account that services are not exclusively accessed
through traditional desktop PCs but through mobile devices with
different capabilities, by users with various interests at anytime
from anyplace around the globe. Services provided by UWAs are
adapted to the actual context of use in order to preserve or even
enhance their semantic value for users. Thus, knowing the
context, e.g., user, location, time, and device, and providing
adaptation operations for web pages and their different kinds of
contents, e.g., text, images, and links, are the main prerequisites
for customization of web applications towards ubiquity.
Customization then denotes the mapping of the required
adaptation of an application’s services with respect to its context
[6].
Considering UWA’s from a software engineering point of view, a
systematic development on basis of models is crucial. There are
already some approaches dealing with the ubiquitous nature of
web applications and the model-driven development thereof, the
most prominent examples being WebML [3], UWE [7], and OO-
H [5]1. Concerning customization modeling, however, they are
still in their early stages due to the following reasons. First, the
provided customization mechanisms frequently do not allow to
deal with all different parts of a web application in terms of its
content, hypertext and presentation levels and their structural and
behavioral features (cf. Figure 1), thus, disregarding the
crosscutting nature of customization. Second, customization is
often tangled with the core web application, thus, neither a
context model nor adaptation operations enter web application
models in an explicit, self-contained and extensible way. This
leads to inefficient development processes, high maintenance
overheads and a low potential for reuse.

* This work has been partly funded by the Austrian Federal

Ministry for Education, Science, and Culture, and the
European Social Fund (ESF) under grant 31.963/46-
VII/9/2002.

1 For an overview of methods and tools for web application
development we refer to [17].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’XX, Month X–X, XXXX, City, State, Country.
Copyright XXXX ACM X-XXXXX-XXX-X/XX/XXXX…$0.00.

To cope with these problems, we propose aspectWebML using
aspect-orientation as driving paradigm to incorporate
customization in ubiquitous web applications at the modeling
level [13] (cf. Figure 1). As a proof of concept, we use our
reference architecture for aspect-oriented modeling (cf. [14] and
[15]), which describes the necessary concepts of aspect-oriented
modeling (AOM), as a blueprint for extending the MOF-based [9]
metamodel of WebML [16], a prominent domain-specific
language for modeling data-intensive web applications.

fun
ctio

n1

Web-Application

Features

Behavior
Structure

Content Hypertext Presentation

Customization
(as aspect)

fun
ctio

n2

fun
ctio

n3

fun
ctio

n4

fun
ctio

nN...

Personalization

Location-Awarness

...

Multi-Delivery

Functional
Decomposition

Behavior
Structure

Figure 1: Customization as an Aspect

The benefits of this approach are fourfold. First, it takes into
account the crosscutting nature of customization, allowing to
influence all parts of a web application. Second, despite this
omnipresence, a clear separation between the core services and
customization functionality can be maintained. The core services
of the web application remain oblivious to the need for
customization, allowing even to make existing, non-ubiquitous
web applications context-aware. Third, while our motivation for
extending WebML has been driven by the need to separately
capture customization, the extensions made also allow modeling
of other aspects than the customization aspect. Finally, as a spin-
off, it demonstrates how to bridge existing (domain-specific)
modeling languages with aspect-oriented concepts.
The remainder of this paper is organized as follows. In Section 2
we outline our contributions with respect to related work and
briefly introduce the WebML language using as a running
example a Museum web application in Section 3. In Section 4, we
report on how to bridge WebML to AOM according to the AOM
reference architecture and present the specific AOM extensions to
the WebML metamodel in terms of aspectWebML. In Section 5,
we compare the original modeling approach of WebML with
aspectWebML by extending a Museum web application with
customization functionality and report on our prototype modeling
editor. Finally, we conclude with an outlook on future work in
Section 5.

2. RELATED WORK
Currently, the majority of AOM approaches is first, based on
UML and second, designed as general-purpose languages with
respect to the application domain [15]. We currently know of
three UML-based approaches specific to a certain domain. In [4]
and [12] two UML profiles have been proposed, the first one for
modeling the notification aspect in CORBA applications and the
second one for AOM in the web service domain. A third approach
applies AOM in the domain of web application modeling [1],
[20]. More precisely, while in [20], the UML-based web modeling
language UWE has been extended with aspect-oriented concepts

to model the access control aspect in web applications, the
approach presented in [1] is closely related to our work in that it
identifies adaptivity as a crosscutting concern in web applications.
In particular, an extension of UWE’s metamodel with aspect-
oriented modeling techniques has been proposed and allows
making navigation in web applications adaptive. Our approach,
however, differs in three ways. First, we are building on a lean
MOF-based metamodel of WebML, which has been established
during our previous work [16], thus avoiding the unnecessary
overhead of the huge UML metamodel. Second, modeling
customization in UWE [1] currently is limited to the hypertext
level of web applications and does neither support the content
level nor the presentation level. Third, the aspect-oriented
extensions applied to UWE are tailored to a specific aspect, only,
being the access control aspect 0 and the navigation adaptivity
aspect [1], respectively. In contrast to that, our approach is to use
the AOM reference architecture as a blueprint to extend the
WebML metamodel with AOM concepts, thus, allowing to model
different aspects with one coherent set of concepts.

3. A WebML PRIMER
WebML is one of the most prominent modeling languages in the
web modeling field due to existing tool support including a model
editor, a code generation facility, and a runtime environment in
form of the commercial WebRatio tool2 and applications in real
world projects. Following, we give a brief introduction into its
modeling concepts using a Museum web application as a running
example. The Museum web application is based on [2] and will be
extended with customization functionality in Section 5.

RoomArea
name
number
description
dimensions

RoomArea
name
number
description
dimensions

Room
name
number
description

Room
name
number
description

ArtMovement
name

ArtMovement
name

Artwork
title
date
description
photo

Artwork
title
date
description
photo

Artist
name
surname
birthday
dayOfDeath
description
photo

Artist
name
surname
birthday
dayOfDeath
description
photo

1..*1 0..1 *

*

*

*

1

1..*

1

Figure 2: Museum Content Model3

The content level of the Museum web application is represented
by the content model, which – in WebML – is based on the
Entity-Relationship model (cf. Figure 2). The museum possesses
a collection of Artworks, some of them being exhibited in certain
RoomAreas of one of the museum’s Rooms. A specific piece of
Artwork belongs to a certain ArtMovement and has been created
by a certain Artist.
The hypertext model of the Museum web application is based on
the content model. Figure 3 shows eight web Pages, the majority
of them containing so called ContentUnits, which allow to query
the content model and to display the result on the Page. The Home
Page links four Pages. The RoomList, ArtworkList, and ArtistList
pages each contain one ContentUnit, a so called IndexUnit, which
presents multiple instances of an entity type from the content
model as a list. From these IndexUnits, a user then can navigate to
the RoomDetails, ArtworkDetails, and ArtistDetails Pages,
presenting further information according to a single instance of a

2 http://www.webratio.org and http://www.webml.org
3 For readability purposes the UML notation for multiplicities is

used in this paper.

Room, an Artwork, or an Artist. For example, the RoomDetails
Page contains information about the Room itself, which is derived
from the content model using a so called DataUnit named Room,
i.e., a ContentUnit. ContentUnits select the information from the
content model using a Selector, e.g., Room for DataUnit Room,
and optionally several SelectorConditions depicted in square
brackets. Additionally, the Page contains two IndexUnits listing
Artists and Artworks exhibited in the specific Room. WebML also
provides the container concept Area, which allows grouping
Pages that deal with some related topic [3].

HomeHome

ArtworkAreaArtworkArea

RoomDetailsRoomDetails ArtworkDetailsArtworkDetails ArtistDetailsArtistDetails

MapOf
Museum
MapOf

Museum
RoomListRoomList

RoomList

Room

RoomList

Room

ArtworkListArtworkList

ArtworkList

Artwork

ArtworkList

Artwork

ArtistListArtistList

ArtistList

Artist

ArtistList

Artist

ArtistList
OfRoom

Artist
[Room2Artist]

ArtistList
OfRoom

Artist
[Room2Artist]

ArtworkList
OfRoom

Artist
[Room2Artwork]

ArtworkList
OfRoom

Artist
[Room2Artwork]

Room
Details

Room

Room
Details

Room

Artwork
Details

Artwork

Artwork
Details

Artwork

Artist
Details

Artist
[Artwork2Artist]

Artist
Details

Artist
[Artwork2Artist]

Artist
Details

Artist

Artist
Details

Artist

Room
Details

Room
[Artwork2Area]
[Area2Room]

Room
Details

Room
[Artwork2Area]
[Area2Room]

ArtMov
Details

ArtMovement
[Artwork2ArtMovement]

ArtMov
Details

ArtMovement
[Artwork2ArtMovement]

ArtworkList
OfArtist

Artwork
[Artist2Artwork]

ArtworkList
OfArtist

Artwork
[Artist2Artwork]

Page

Area

Index
Unit

Selector
Selector

Condition

Content
Unit

Figure 3: Museum Hypertext Model4

4. BRIDING WebML TO ASPECT-
ORIENTED MODELING
In this work, we make a step towards bridging WebML to AOM
using as a basis our AOM reference architecture. Subsequently,
we briefly introduce the WebML metamodel in Section 4.1 and
our AOM reference architecture in Section 4.2. In Section 4.3, we
provide detailed information on how we applied the AOM
reference architecture to the WebML language.

4.1 The WebML Metamodel
A prerequisite for bridging WebML to AOM is the existence of a
proper metamodel of the web modeling language, which allows to
seamlessly hook up the aspect-oriented concepts. Similar to most
web modeling languages, WebML – originally focusing on
notational aspects – has been designed without using expressive
object-oriented meta-modeling techniques, employing DTD’s,
only [19]. To further complicate things, recent WebML language
concepts – most notably its customization mechanisms [2] – have
not been introduced into the WebML DTD but rather hard-coded
directly within the WebML modeling tool. To cope with these
problems, in previous work [16], we semi-automatically
constructed a MOF-based metamodel draft for WebML on basis

4 Please note, that the clouds in the Figure 3 represent comments

and are not part of the hypertext model.

of the WebML DTD. For our purpose of modeling UWA’s, we
manually extended this metamodel by introducing also WebML’s
concepts for customization (cf. Section 5.1)5.

4.2 The AOM Reference Architecture
Our primary goal in designing the AOM reference architecture
[14], [15] was to establish a common understanding in the field of
AOM. The reference architecture has been defined in terms of a
UML class diagram [11] and identifies the basic ingredients of
aspect-orientation, abstracted from specific modeling languages.
In this respect, it captures the important AOM concepts, their
interrelationships and even more importantly their relationships to
an arbitrary modeling language, e.g., a general-purpose modeling
language such as UML or any other domain-specific modeling
language such as WebML. The AOM reference architecture,
however, does not represent a language specification in terms of a
metamodel itself, but rather can be used as a blueprint for
designing new AOM languages or for extending existing
(domain-specific) modeling languages with concepts of the
aspect-oriented paradigm.
The AOM reference architecture comprises four major building
blocks, each subsuming related concepts (cf. Figure 4). In the
following we point out the most important concepts and refer the
interested reader to [14], [15].

Concern
Composition

Adaptation
Subject

Adaptation
Kind

Language
Element

RelativePositon

JoinPoint
JoinPointSelection

Concern

Aspect

Base Weaving
Simple- &
Composite-
Adaptation

Figure 4: AOM Reference Architecture

The ConcernComposition package deals first, with the separation
of a system's Concerns into appropriate units of modularization,
i.e., Base and Aspect, and second, with their interrelationships,
i.e., their composition by means of a Weaving specification. In the
AdaptationSubject, we summarize concepts for identifying where
to introduce an aspect’s adaptation including JoinPoint,
JoinPointSelection, and RelativePosition6. The AdaptationKind
package subsumes concepts to describe how an aspect adapts a
concern, i.e. Adaptation. Finally, the Language package
represents the language including its modeling Elements to be
extended with aspect-oriented concepts.

4.3 The aspectWebML Metamodel
For designing aspectWebML we used our AOM reference
architecture as a basis, meaning that its concepts and their
interrelationships have not been adopted one-to-one. This is due
to reasons concerning syntax on the one hand and reasons
concerning design goals on the other hand. First, the AOM

5 The WebML’s metamodel versions and a change log are

published at http://big.tuwien.ac.at/projects/aspectwebml/.
6 A relative position denotes where to insert an aspect’s

adaptation relative to a join point, e.g., before, after, and
around.

reference architecture has been defined in terms of a UML class
diagram, while the WebML metamodel is MOF-based. Thus, we
had to capture concepts available in UML, only, differently in the
MOF-based aspectWebML metamodel. For example, we had to
resolve association classes and replace aggregation associations
with either composition associations or references. Second, in
order to keep the language simple for the time being, we made
some design decisions resulting in a more restrictive AOM
language compared with our AOM reference architecture. For
example, we currently allow aspects to be woven into bases but
not into aspects (cf. Figure 5).

4.3.1 The WebML Package
The AOM reference architecture assumes the modeling language
to have a root element from which every modeling concept of the
language inherits. This is necessary, since first, both Base and
Aspect including its Adaptations are formalized by any set of
modeling elements of the modeling language (cf. Figure 5:
containment references from Concern to ModelElement and from
Aspect to Adaptation), and second, JoinPoints, i.e., the locations
where an aspect introduces its adaptations, are representations of
elements of the modeling language. Since WebML originally did
not provide such a root element, we reorganized the metamodel
by introducing the abstract meta class ModelElement7, having an
attribute isAdaptable of type Boolean. This attribute – if set to
true – allows to define the join point model of the AOM language,
i.e. the meta classes of the modeling language that are allowed to
serve as join points for aspects. Currently, we are still
investigating what kinds of adaptations in terms of aspect are
meaningful within the realms of aspectWebML. Thus, we did not
yet restrict the join point model to a subset of WebML’s modeling
concepts, meaning that every modeling concept can be subject of
adaptations in aspectWebML models. This decision also reflects
the ongoing discussion about join point models and adaptation
effects in AOM.

4.3.2 The ConcernComposition Package
A model in aspectWebML consists of Concerns, which are either
an instance of Base or of Aspect. An Aspect can be woven in to a
Base by means of a Weaving specification. More specifically, the
Weaving has AdaptationRules, which determine where (cf.
Section 4.3.3) the Aspect’s Adaptations have to be introduced in
the Base and what kind of effect (cf. AdaptationEffectKind in
Figure 5) these Adaptations imply.

4.3.3 The AdaptationSubject Package
The adaptation hooks of a Base are represented by JoinPoints,
which are identified by a SimpleJoinPointSelection9. In addition,
an AdaptationRule optionally may specify a RelativePosition
where to insert Adaptations with respect to the selected join
points. For reuse purposes, we allow SimpleJoinPointSelections to
be composed to CompositeJoinPointSelections by means of AND
and OR operators. Currently, our mechanism to select join points

7 While this represents an elegant solution, it required a change of

WebML’s metamodel. This could be avoided by simply
duplicating all necessary references, e.g., from JoinPoint to the
required modeling element of the language.

9 A join point selection corresponds to the concept of a pointcut.

is limited to a manual identification of each single join point.
Thus, for defining an instance of SimpleJoinPointSelection at
modeling level, the user will instantiate join points from
JoinPoint and link them to instances of ModelElement. The
investigation of more elaborated join point selection mechanisms,
such as OCL [10] or Join Point Designation Diagrams (JPDD) [1],
and their applicability in aspectWebML is subject to future work.

AdaptationSubject AdaptationKind

WebML

ConcernComposition

weavingTarget
Base Weaving

name:String
Weaving

name:String

«enumeration»
RelativePositionKind
before
around
after

«enumeration»
RelativePositionKind
before
around
after

Adaptation

Simple
Adaptation

ModelElement

0..1

1

1
1

*

Simple
JoinPoint
Selection

JoinPointSelection

*

relPos:RelativePositionKind
RelativePosition

relPos:RelativePositionKind
RelativePosition

representedElement

*

owner

Composite
JoinPoint
Selection

2
children

Composite
Adaptation

JoinPoint

1..*
children

0..1

selectedJP

1..*

1
1

AdaptationRule
name:String
eff:AdaptationEffectKind

«enumeration»
AdaptationEffectKind
enhancement
replacement
deletion

1 *

*

0..1

11

1..*

1

«enumeration»
OperatorKind

AND
OR

«enumeration»
OperatorKind

AND
OR

Concern
name:String

op:OperatorKind

superaspect

su
ba

sp
ec

t **

1

1

1

*

1

name:String
name:String

isAdaptable:Boolean

Aspect

Figure 5: The aspectWebML Metamodel

4.3.4 The AdaptationKind Package
Adaptations consist of WebML ModelElements. For reuse
purposes we distinguish between SimpleAdaptations and
CompositeAdaptations, the latter allowing to combine existing
Adaptations to form more complex ones.

5. MODELING CUSTOMIZATION
In this section, we show how customization of the Museum web
application (cf. Section 3) currently can be modeled with the
original WebML language and point out the specific problems of
the approach in Section 5.1. In Section 5.2, we present how to
model the same application using aspectWebML and report on the
prototype implementation of a model editor for aspectWebML10.

5.1 Modeling Customization in WebML
In [2], WebML has recently been extended with concepts for
modeling context-awareness, illustrated in a Museum web
application example for which also a demo implementation has
been provided11. Following, we explain the necessary extensions

10 The aspectWebML model editor and the Museum web

application example can be downloaded from
http://big.tuwien.ac.at/projects/aspectwebml/.

11 http://dblambs.elet.polimi.it/Demos/indexen.htm

to the original application (cf. Section 3) in order to model
location-awareness, i.e., customization according to the location
context. In particular, we want to model the following situation: If
the visitor requests the ArtworkDetails Page, the specific Artwork
of the RoomArea the visitor is currently in, shall be displayed. If,
however, no Artwork is exhibited in the visitor’s RoomArea, the
visitor is redirected to the RoomDetails Page, which presents
information about the room the visitor is currently in. In addition,
the same set of adaptations shall be applied, if the visitor requests
the RoomDetails Page.
It is assumed that an RFID-based location-sensing mechanism is
available in the museum, that each visitor – or rather the mobile
device s/he is using – has a unique RFID tag, and that the
location-sensing infrastructure will continuously update the
content model with the visitor’s current location information.

5.1.1 Customization in the Content Model
In WebML, the required context information is simply added to
the ContentModel in terms of new Entity types, their Attributes,
and their Relationships. In the Museum web application, we need
to know the user’s location, i.e., the RoomArea. Thus, a User
Entity type is introduced having a Relationship with RoomArea.

RoomArea
name
number
description
dimensions

RoomArea
name
number
description
dimensions

Room
name
number
description

Room
name
number
description

ArtMovement
name

ArtMovement
name

Artwork
title
date
description
photo

Artwork
title
date
description
photo

Artist
name
surname
birthday
dayOfDeath
description
photo

Artist
name
surname
birthday
dayOfDeath
description
photo

1..*1 0..1 *

*

*

*

1

1..*

1

User
personalRFID

User
personalRFID

0..1

*

Figure 6: Location-Aware Museum Content Model

5.1.2 Customization in the Hypertext Model
In the HypertextModel, we use three of WebML’s new concepts
for modeling location-awareness: First, ArtworkArea,
RoomDetails, and ArtworkDetails, are marked as context-aware
Areas and Pages, each having a so called ContextUnit. The
semantics of ContextUnits is that they encapsulate context-aware
behavior – also called context clouds – of Areas and Pages, which
is executed before the actual Page computation, i.e., the
computation of ContentUnits. When a context-aware Page is
requested, then the context clouds of its containers from the
outermost to the innermost are evaluated before the Page’s
context cloud. Second, GetArea and GetArtwork, so called
GetDataUnits, allow querying the ContentModel, without
displaying the content like other ContentUnits but providing it for
further computation to the context cloud. Third, the IFUnit
represents a control structure, which allows evaluating conditions
and thus, may trigger different behavior in the context cloud.
Following, we describe the necessary additions to the
HypertextModel of Figure 3 in order to model location-awareness
(cf.).
1. We add a ContextUnit to ArtworkArea, which now retrieves

the users’s location via GetArea every time either the
RoomDetails or the ArtworkDetails Pages are requested.

13 This default SelectorCondition is not shown in WebML

models.

The currentUser represents a global parameter in the model,
which can be retrieved by GetUser, a GetUnit.

2. We add a ContextUnit to ArtworkDetails, which retrieves
the specific Artwork of the RoomArea the visitor is
currently in, using the GetArtwork GetDataUnit. If,
however, no Artwork is exhibited in the visitor’s RoomArea,
the visitor is redirected to the RoomDetails Page using an
IFUnit.

3. We replace the default SelectorCondition13 of DataUnit
RoomDetails, which always uses the ID for retrieving an
Entity instance of Room, with a SelectorCondition
[RoomArea2Room], since the RoomDetails Page now has to
present information about the visitor’ current room.

4. The same set of adaptations shall be applied for the
RoomDetails Page. Thus, we only need to add a
ContextUnit to the RoomDetails Page which then links to
the previously added GetArtwork GetDataUnit.

ArtworkArea

RoomDetailsRoomDetails ArtworkDetailsArtworkDetails

Room
Details

Room
[RoomArea2Room]

Room
Details

Room
[RoomArea2Room]

Artwork
Details

Artwork

Artwork
Details

Artwork

Room
Details

Room
[Artwork2Area]
[Area2Room]

Room
Details

Room
[Artwork2Area]
[Area2Room]

C C
C

GetUser

CurrentUser

GetUser

CurrentUser

GetArea

RoomArea
[User2RoomArea]

GetArea

RoomArea
[User2RoomArea]

RoomArea.OID

Get
Artwork

Artwork
[RoomArea2Artwork]

Get
Artwork

Artwork
[RoomArea2Artwork]

IF

Artwork.OID!=NULL

IF

Artwork.OID!=NULL

Artwork.OID
RoomArea.OID

[result=false] [result=true]

RoomArea.OID Artwork.OID

RoomArea.OIDRoomArea.OID

Context
Unit

GetData
Unit

IFUnit

1

4 2

3

Figure 7: Location-Aware Museum Hypertext Model14

5.1.3 Deficiencies of the WebML approach
Currently, if customization functionality is introduced to a web
application model in WebML by enhancing, replacing, or deleting
modeling elements, developers face the following problems: First
the original web application model is lost. Second, it is not clear
what modeling elements make up customization functionality.
And third, customization functionality, that is scattered across
WebML models, hampers their readability.

5.2 Modeling Customization in aspectWebML
Unlike WebML, aspectWebML allows introducing new
functionality into all parts of a web application model but – at the
same time – maintains a clear separation between the original
model and the new functionality in terms of Aspects as is
exemplified in Figure 8. For want of a concrete syntax for
aspectWebML, we currently present aspectWebML models in

14 For readability reasons, we omitted several parts of the

original hypertext model (cf. Figure 3).

3

4

2

1

terms of UML object models and trees, i.e., our model editor’s
view (cf. Section 5.2.3).
In Figure 8 (b), we present an overview of the Museum web
application model defined in aspectWebML. This specific
aspectWebML model consists of the Museum Base, i.e., the
original Museum web application consisting of a ContentModel, a
HypertextModel, and a PresentationModel (cf. Section 3), the
Location Aspect, and the Weaving specifying the connections
between the Museum Base and the Location Aspect. In Figure 8
(a), the same information is presented in form of the
aspectWebML model editor’s view.

(b)(a)

:Model

location2museum:Weaving

location:Aspect

museum:Base :WebMLModel

:PresentationModel

:HypertextModel

:ContentModel

:Model

location2museum:Weaving

location:Aspect

museum:Base :WebMLModel

:PresentationModel

:HypertextModel

:ContentModel

Figure 8: The Location-Aware Museum Model

In the following, we present details of both the Location Aspect
and the specific Weaving with respect to necessary adaptations in
the content model on the one hand (cf. Section 5.1.1) and in the
hypertext model on the other hand (cf. Section 5.1.2).

5.2.1 Customization in the Content Model
As in the WebML approach (cf. Section 5.1.1), the ContentModel
needs to be extended with a User Entity, having an Attribute
named personalRFID and a Relationship with the RoomArea
Entity. This is realized using two AdpatationRules (cf. Figure 9):

Figure 9: The Location-Aware Content Model

a. Content_AR1 uses SimpleAdaptation Content_SA1 of the
Aspect Location to introduce the User Entity, its
personalRFID Attribute, and the uni-directional
Relationship user2roomArea using the ContentModel as
JoinPoint and thus, having an enhancement effect.

b. Content_AR2 uses SimpleAdaptation Content_SA2 of the
Aspect Location to introduce uni-directional Relationship
roomArea2user using the Entity RoomArea as JoinPoint and
thus, having an enhancement effect on the Base.

The reason for modeling two AdaptationRules instead of one is as
follows: In WebML, every modeling concept is contained by
another one, e.g., ContentModel contains Entity, which contains
Relationship and Attribute. However, bi-directional Relationships
are realized as a combination of two uni-directional Relationships
in WebML, each being part of a different Entity, except for

reflexive Relationships. Thus, while the User Entity and its
contained parts, i.e., personalRFID and user2roomArea, shall be
contained by the ContentModel, the roomArea2user Relationship
shall be contained by the RoomArea Entity, thus resulting in two
SimpleAdaptations for two different JoinPoints.

5.2.2 Customization in the Hypertext Model
As in the WebML approach (cf. Section 5.1.2), we now define the
necessary AdaptationRules for applying the four necessary
modifications of the HypertextModel (cf. Figure 10).

Figure 10: The Location-Aware Hypertext Model

5. Hypertext_AR1 uses SimpleAdaptation Hypertext_SA1 to
add as an enhancement a ContextUnit, which contains a
GetUnit GetUser and a GetDataUnit GetArea to retrieve the
users’s location every time either the RoomDetails or the
ArtworkDetails Pages are requested, to ArtworkArea as
JoinPoint. The AdaptationRule, thus, realizes modification
1 (cf. Section 5.1.2).

6. Hypertext_AR2 applies SimpleAdaptation Hypertext_SA2 to
two JoinPoints, namely the RoomDetails and
ArtworkDetails Pages. Thus, the rule realizes modification 2
and 4 (cf. Section 5.1.2). In particular, the enhancement
consists of a ContextUnit, which contains a GetDataUnit
GetArtwork, to retrieve the specific Artwork of the
RoomArea the visitor is currently in. Furthermore the
ContextUnit contains an IFUnit ArtworkAvailable, which
evaluates a Condition to check whether a piece of Artwork
is exhibited in the RoomArea and depending on the result
activates one of the OKLinks to either the RoomDetails
DataUnit or the ArtworkDetail DataUnit.

7. Hypertext_AR3 applies SimpleAdaptation Hypertext_SA3 to
replace the default SelectorCondition of DataUnit
RoomDetails, with a SelectorCondition [RoomArea2Room],
thus, solving modification 3 (cf. Section 5.1.2).

5.2.3 The aspectWebML Model Editor
For the implementation of aspectWebML’s metamodel, we were
using Ecore, a MOF implementation in Java, which is provided
by the Eclipse Modeling Framework (EMF)15. The reason for
employing Ecore was mainly the wide-spread utilization of EMF

15 http://www.eclipse.org/emf

Content_AR1:AdaptationRule

location:Aspect

Effect:AdaptationEffectKind = “enhancement”

Content_SA1:SimpleAdaptation
Adaptation

ContentModel:SimpleJoinPointSelection

Content_AR1:AdaptationRule

location:Aspect

Effect:AdaptationEffectKind = “enhancement”

Content_SA1:SimpleAdaptation
Adaptation

ContentModel:SimpleJoinPointSelection

3

1

2

and that currently no standardized implementation of MOF 2.0 is
available. Another benefit was that having an Ecore-based
metamodel, we have been able to generate a tree-based model
editor for aspectWebML using EMF’s code generation facilities.

6. CONCLUSIONS AND OUTLOOK
In this work, we proposed to use aspect-orientation as driving
paradigm for capturing customization of ubiquitous web
applications at the modeling level. We extended WebML, a
domain-specific language designed for the model-driven
development of data-intensive web applications, with concepts
from the aspect-oriented modeling field according to our
reference architecture for aspect-oriented modeling. Furthermore,
we compared the original modeling approach of WebML with our
aspectWebML approach by extending a Museum web application
with customization functionality and report on our prototype
modeling editor.
Future work includes, first the investigation of more elaborated
join point selection mechanisms, such as OCL or Join Point
Designation Diagrams, and their applicability in aspectWebML,
second, the definition of a weaving mechanism for Aspect and
Base Models in aspectWebML. In the long run, we intend to
design a concrete syntax for aspectWebML and provide elaborate
tool support including code generation facilities.

REFERENCES
[1] H. Baumeister, A. Knapp, N. Koch, and G. Zhang.

Modelling Adaptivity with Aspects. In Proc. 5th Int. Conf.
on Web Engineering, LNCS 3579, 406-416, July 2005.

[2] S. Ceri, F. Daniel, M. Matera, F. Facca. Model-driven
Development of Context-Aware Web Applications. To
appear in ACM Transactions on Internet Technology (ACM
TOIT), 7(2), May 2007.

[3] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai,
M. Matera. Designing Data-Intensive Web Applications.
Morgan-Kaufmann, 2003.

[4] J. Conejero, J. Hernández, and R. Rodríguez. UML Profile
Definition for Dealing with the Notification Aspect in
Distributed Environments. In Proc. 6th Int. Workshop on
Aspect-Oriented Modeling, AOSD'05, Chicago, Illinois,
March 2005.

[5] I. Garrigós, S. Casteleyn, J. Gómez. A Structured
Approach to Personalize Websites using the OO-H
Personalization Framework in Web Technologies Research
and Development. In Proc. 7th Asia-Pacific Web
Conference (APWeb 2005), Shangai, China, March-April
2005.

[6] G. Kappel, B. Pröll, W. Retschitzegger, and W. Schwinger.
Customisation for Ubiquitous Web Applications - A
Comparison of Approaches. Int. Journal of Web
Engineering and Technology, 1(1), Inderscience Publishers
2003.

[7] Nora Koch. Transformations Techniques in the Model-
Driven Development Process of UWE. In Proc. 2nd
Model-Driven Web Engineering Workshop, ICWE’06,
Stanford Linear Accelerator Center, Palo Alto, CA, July
2006.

[8] N. Moreno, P. Fraternalli, and A. Vallecillo. A UML 2.0
Profile for WebML Modeling. In Proc. 2nd Model-Driven
Web Engineering Workshop, ICWE’06, Stanford Linear
Accelerator Center, Palo Alto, CA, July 2006.

[9] Object Management Group (OMG). Meta Object Facility
(MOF) 2.0 Core Specification Version 2.0.
http://www.omg.org/docs/ptc/04-10-15.pdf, Oct. 2004.

[10] Object Management Group (OMG), OCL Specification
Version 2.0, http://www.omg.org/docs/ptc/05-06-06.pdf,
June 2005.

[11] Object Management Group (OMG). UML Specification:
Superstructure Version 2.0. http://www.omg.org/docs
/formal/05-07-04.pdf, Aug. 2005.

[12] G. Ortiz, Juan Hernández, P. Clemente, and P. A. Amaya.
How to Model Aspect-Oriented Web Services. In Proc. 1st
Model-driven Web Engineering Workshop, ICWE'05,
Sydney, Australia, July 2005.

[13] A. Schauerhuber, aspectUWA: Applying Aspect-
Orientation to the Model-Driven Development of
Ubiquitous web Applications, Student Extravaganza:
Spring School, AOSD'06, Bonn, Germany, Available at:
http://wit.tuwien.ac.at/people/schauerhuber/, 2006.

[14] A. Schauerhuber, W. Schwinger, E. Kapsammer, W.
Retschitzegger, and M. Wimmer. Towards a Common
Reference Architecture for Aspect-Oriented Modeling. In
Proc. 8th Int. Workshop on Aspect-Oriented Modeling,
AOSD'06, Bonn, Germany, March 2006.

[15] A. Schauerhuber, W. Schwinger, E. Kapsammer, W.
Retschitzegger, M. Wimmer, and G. Kappel. A Survey on
Aspect-Oriented Modeling Approaches .To be submitted,
July 2006.

[16] A. Schauerhuber, M. Wimmer, and E. Kapsammer.
Bridging existing Web Modeling Languages to Model-
Driven Engineering: A Metamodel for WebML. In Proc.
2nd Model-Driven Web Engineering Workshop, ICWE’06,
Stanford Linear Accelerator Center, Palo Alto, CA, July
2006.

[17] W. Schwinger, N. Koch. Modeling web Applications. In G.
Kappel, B. Pröll, S. Reich, W. Retschitzegger (eds), Web
Engineering - Systematic Development of Web
Applications.Wiley, 2006.

[18] D. Stein, S. Hanenberg, and R. Unland. Expressing
Different Conceptual Models of Join Point Selections in
Aspect-Oriented Design. In Proc. 5th Int. Conf. on Aspect-
Oriented Software Development, Bonn, Germany, Marc
2006.

[19] World Wide Web Consortium (W3C). Extensible Markup
Language (XML) 1.1 Specification.
http://www.w3.org/TR/xml11/, April 2004.

[20] G. Zhang, H. Baumeister, N. Koch, A. Knapp. Aspect-
Oriented Modeling of Access Control in Web
Applications. In Proc. 6th Int. Workshop on Aspect
Oriented Modeling, AOSD’05, Chicago, USA, Mar. 2005.

