
AMOR – Towards Adaptable Model Versioning 

Kerstin Altmanninger1, Gerti Kappel2, Angelika Kusel1, Werner Retschitzegger1, 
Wieland Schwinger1, Martina Seidl2, Manuel Wimmer2 

 
1Johannes Kepler University Linz, Austria 

{kerstin.altmanninger | angelika.kusel | werner.retschitzegger | wieland.schwinger}@jku.at 
2 Vienna University of Technology, Austria 
{kappel | seidl | wimmer}@big.tuwien.ac.at 

Abstract. The development of complex software systems requires appropriate 
abstraction mechanisms in terms of model-driven engineering techniques 
(MDE) and proper support for allowing developers to work in parallel in terms 
of version control systems (VCSs). For realizing the vision of MDE, a bundle 
of standards has been made available recently, whereas the versioning of 
models has not gained the necessary attention yet, although being of paramount 
importance for the success of MDE in practice.  
In this paper, we propose a first vision of AMOR (Adaptable Model 
Versioning) to leverage version control in the area of MDE. The innovations of 
AMOR are threefold. Firstly, AMOR supports precise conflict detection, i.e., 
previously undetected as well as wrongly indicated conflicts shall be avoided. 
Secondly, AMOR focuses on intelligent conflict resolution by providing 
techniques for the representation of conflicting modifications as well as 
suggesting proper resolution strategies. Thirdly, AMOR targets an adaptable 
versioning framework, empowering modelers to flexibly balance between 
reasonable adaptation effort and proper versioning support while ensuring 
generic applicability to various domain-specific modeling languages and 
associated tools. 

Keywords: Model Versioning, Model Evolution, Model Comparison, VCS 

1   Introduction 

Versioning in MDE. The development of complex software systems requires 
appropriate abstraction mechanisms in terms of model-driven engineering techniques 
(MDE) and proper support for allowing developers to work in parallel in terms of 
version control systems (VCSs). Regarding the area of MDE, models are placed as 
first class artifacts throughout the software life-cycle, allowing step-wise code 
generation on the basis of systematic transformations [1]. For realizing the vision of 
MDE, a bundle of standards has been made available recently. Considering the field 
of VCSs, a multitude of solutions for code versioning has been proposed in the last 
four decades like CVS [2] or Subversion [3], supporting detection and resolution of 
conflicting modifications. Versioning of models, however, has not gained the 
necessary attention yet, although being of paramount importance for the success of 
MDE in practice. 



Problems with line-oriented Versioning. Simply taking code versioning techniques 
that are mostly line-oriented and applying them to XMI-serializations of models is not 
reasonable for optimistic versioning approaches which are indispensible in practice. In 
contrast to pessimistic approaches following the lock-modify-unlock paradigm, in 
optimistic versioning multiple modelers may check-out and modify the same artifact 
at the same time. This means that two versions of a model have to be compared, 
possible conflicts have to be detected and resolved, and finally a merge needs to be 
performed to obtain a consistent model which is again checked-in into a model 
repository. In line-oriented approaches, the graph-oriented nature of models and even 
more problematic, their rich semantics are totally neglected. 

Focus of this Paper. Not properly considering the nature of models implicates 
three problems identified in Section 2, which hamper effective model versioning. 
Since current approaches do not appropriately tackle all of the three problems, we 
propose the system AMOR, an adaptable versioning framework. We present the 
conceptual architecture behind AMOR, and finally, we outline ongoing work 
concerning implementation, evaluation, and customization. 

2   Problems in Model Versioning 

The negative impact of inappropriate versioning support for models in MDE is 
problematic in three different ways: 

(1) Erroneous Conflict Detection. Conflict detection, representing one of the core 
tasks during versioning, is error prone meaning that often either real conflicts are not 
detected or wrong conflicts are found. As a consequence of erroneous conflict 
detection, inconsistent and incomplete specifications occur, jeopardizing the correct 
modeling of the system under development. 

(2) Unsupportive Conflict Resolution. Conflict resolution, another core task of 
versioning, is currently insufficiently supported as it is mostly within the sole 
responsibility of the user to repetitively interpret the rationale behind modifications, 
to identify possible conflict resolution strategies, and finally, to decide for applying a 
selected strategy. The neglect to deal with such repetitive conflict resolution situations 
results in decreased productivity, increased error rates, and potentially neglected 
cooperate design principles. 

(3) Inflexible VCS. Existing VCSs are either generic, i.e., applicable to any 
modeling language, being characterized by poor versioning support, or they exhibit 
enhanced versioning support, tightly bound to a specific modeling language and often 
additionally to a specific modeling environment. This inflexibility is even worse 
because of the rapidly growing number of domain-specific modeling languages 
(DSMLs), entailing either the straightforward application of an existing generic 
system or requiring herculean efforts in developing a dedicated VCS from scratch. 

Summarizing, these three obstacles aggravate the versioning of models and 
without appropriate solutions, model VCSs will not gain widespread acceptance by 
modelers. An important tool for a successful development process will be missing. 



3 Related Work 

Most recently, numerous model versioning systems have been proposed. In the 
following, we discuss how current systems handle the aforementioned problems. 

Conflict Detection. In contrast to standard VCSs, where generic line-based 
differencing algorithms are used, differencing and conflict detection algorithms 
relying on the graph-based nature of models (e.g., [4,5,6]) are incorporated. They, 
however, usually do not take semantic information into account. Only Cicchetti et al. 
[7] present a method for providing semantic awareness for the conflict detection 
phase by leveraging conflict detection through the adoption of design-oriented 
descriptions, e.g., design patterns, endowed with custom conflict specifications. In the 
area of ontology engineering, SemVersion [8] performs semantic difference 
calculations on the basis of the semantics of RDF and in the field of software 
engineering, the systems MohadoRef [9] and the approach by Ekman and Asklund 
[10] use knowledge about the occurrence and the meaning of the refactorings.  

Conflict Resolution. In most systems user support is usually restricted to the bare 
visualization of the conflicts. For example, on model check-in, CoObRa [11] takes the 
most recent version of the model within the repository, and based on the change 
protocol, the new changes are stepwise incorporated and presented to the user. Oda 
and Saeki [12] propose a generator for modeling editors which directly include 
versioning capabilities. Odyssey-VCS [13] can show the differences either directly in 
the modeling tool or in a standalone client based on a tree like representation. Only 
MolhadoRef offers concrete resolution suggestions to users when conflicts have been 
detected. 

Adaption. Only the minority of VCSs provide adaptation mechanisms for the 
conflict detection and resolution phase. Odysee-VCS allows the configurability of the 
unit of versioning. In the approach of Cicchetti et al. flexibility can be achieved by the 
introduction of new and adaption of existing weaving models. The systems CoObRa 
and Odyssey-VCS provide explicit interfaces for the integration in arbitrary modeling 
environments.  

Summarizing, none of the VCSs covers all issues identified in Section 2 in order 
to realize appropriate model versioning. 

4   AMOR – Adaptable Model Versioning 

In this section, the vision of AMOR (Adaptable Model Versioning) is proposed for 
tackling the aforementioned issues and the conceptual architecture for realizing 
AMOR is presented. 

4.1 Goals of AMOR 

The main goal of AMOR is the support of mechanisms to leverage version control 
techniques in the area of MDE. AMOR pursues three goals, each of them leading to 
several research challenges, as described in the following. 



The first goal of AMOR is to achieve precise conflict detection, i.e., previously 
undetected conflicts and previously wrongly indicated conflicts should be avoided. To 
achieve this, AMOR considers knowledge about the type of modifications the models 
have undergone in the course of their evolution and knowledge about the semantics of 
the modeling concepts, leading to the following two main challenges: 

Semantic-based Conflict Detection. One of the challenges is to understand the 
semantics of a DSML in a way that the detection of additional conflicts and the 
elimination of wrongly reported conflicts are facilitated. Thereby, representations are 
necessary which (1) explicate the static as well as the behavioral semantics, i.e., 
mapping the concepts to a representation that is able to point out specific aspects like 
in case of behavioral semantics the flow of control [14,15], and which (2) also deals 
with semantically equivalent concepts, i.e., mapping equivalent concepts to a 
common subset eliminating syntactic sugar of modeling languages. 

Operation-based Conflict Detection. The second challenge includes the problem 
of exploiting the knowledge about the executed operations during model evolution. 
The knowledge, for example, that a modeler has applied some kind of refactoring 
pattern, which inherently indicates the modeler’s intention behind a modification, is 
more meaningful for the conflict detection phase than the knowledge that a modeler 
has applied some unrelated set of basic insert, update and delete operations.  
 
The second goal of AMOR is to provide means for intelligent conflict resolution 
support, specifically aiming at techniques for the representation of differences 
between model versions and relieving users from repetitive tasks by suggesting proper 
resolution strategies, thus enhancing productivity and consistency of versioning. This 
second goal leads to the following two main challenges: 

Graphical Visualization of Differences. The first basic challenge is to find an 
appropriate graphical representation of conflicting modifications in order to alleviate 
the perception thereof either in the form of (1) the models’ concrete syntax or, if not 
applicable, in the form of (2) the models’ abstract syntax.  

Suggestions for Conflict Resolutions. The second, and more demanding, challenge 
is to provide valuable suggestions in the conflict resolution phase stemming either 
from explicit cooperate design principles (i.e., static knowledge) or from implicit 
recurring application of best practices (i.e., dynamic knowledge), which can be made 
available by observing the user behavior in the conflict resolution phase. This 
comprises necessary solutions for (1) automatically discovering meaningful conflict 
resolution patterns with appropriate data mining techniques, (2) establishing similarity 
measures between resolution situations in order to match a current situation with a 
pattern stored in the repository, and finally, (3) developing a storage format capturing 
knowledge about the users’ resolution behavior and conflict resolution patterns. 
 
The third goal of AMOR is to provide an adaptable versioning framework allowing 
for proper versioning support while ensuring generic applicability for various 
DSMLs. That means the AMOR framework can be used in two different ways, either 
in a generic sense, i.e., out of the box, or by adapting the framework to DSMLs and 
their corresponding modeling tools on the basis of certain well-defined extension 
points. With this, the user is empowered to flexibly balance between reasonable 
adaptation efforts and the needed level for versioning support. The challenges 



associated with this research goal comprise several kinds of adaptations, partly based 
on the goals described above: 

Adaptation of Conflict Detection. The AMOR framework will be designed in 
order to allow incorporation of operation-based and semantic-based mechanisms as 
described above additionally to basic state-based versioning mechanisms requiring 
only the model versions. Furthermore, adaptation of the versioning granularity should 
be possible, regarding the semantics of the modeling concepts provided by the DSML 
(e.g., attributes, classes or whole packages). 

Adaptation of Conflict Resolution. The AMOR framework allows adaptation of 
the level of conflict resolution support, optionally incorporating static and/or dynamic 
conflict resolution knowledge. 

Adaptation of Tool Integration. Finally, the integration of the AMOR framework 
into the user’s modeling tool requires flexibility to allow for a tight coupling in terms 
of a plug-in mechanism or a loose integration requiring a separate versioning front-
end. For exploiting the full potential of AMOR’s capabilities, a tight integration is 
desirable which is unfortunately not possible with all modeling tools. 

4.2 Conceptual Architecture of AMOR 

In the following, we elaborate on the conceptual architecture of the AMOR 
framework for providing the above described model versioning support. As can be 
seen in Figure 1, the AMOR framework is divided into a front-end part (i.e., a client) 
and a back-end part (i.e., a repository with versioning functionalities) as known from 
existing VCSs. The front-end part consists of a so-called Versioning Assistant for 
allowing the modeler to interact with the back-end, which is either a generic stand-
alone application for all types of models based on OMG’s MOF standard or a 
specialized plug-in developed for a specific modeling tool (cf. left side of Figure 1). 
Both have to support the modeler at the check-in of models into the model repository. 
Thereby, the most challenging task for the modeler is the resolution of (potential) 
conflicts between model versions. 
The back-end part supports the overall versioning process with its subtasks model 
comparison, conflict detection, conflict resolution, and finally, model merging (cf. 
right side of Figure 1). For this, AMOR initially provides generic state-based 
versioning, which can be used out-of-the-box, independent of specific modeling 
languages or tools. However, for improving conflict detection and conflict resolution, 
AMOR comprises two dedicated subcomponents for the adaptation of the generic 
versioning capabilities (cf. Advanced Conflict Detector and Conflict Resolution 
Reasoner in the middle of Figure 1). First, the Advanced Conflict Detector may track 
editing operations from a modeling tool in order to utilize the model comparison and 
conflict detection phases for more precise conflict detection reports. Second, an 
AMOR administrator is able to explicitly define semantic issues for used DSMLs. In 
contrast to a conflict detection purely based on the structural comparison of models, 
this helps to detect additional, undetected conflicts and to avoid falsely indicated 
ones. Moreover, the Conflict Resolution Reasoner allows an AMOR administrator to 
define a set of initial conflict resolution patterns which may be applied by modelers in 
the conflict resolution phase using the Versioning Assistant. The Conflict Resolution 



Reasoner is not only adaptable by the AMOR administrator, but provides means for 
mining additional conflict resolution patterns by observing and analyzing resolution 
operations performed by the modelers.  

Figure 1: Conceptual Architecture of AMOR 

5   Prototypical Implementation 

Implementation of AMOR. For demonstrating the feasibility of our proposed 
approach, a prototypical model versioning system is being implemented based on 
Eclipse open source technologies. A fully generic Versioning Assistant is developed 
for visualizing conflicts between model versions and functionalities for their 
resolution. As a model repository, we use the Eclipse Modeling Framework (EMF) on 
which we base our generic model versioning framework. Subsequently, the Advanced 
Conflict Finder and the Conflict Resolution Reasoner subcomponents are placed on 
top of this generic framework. The Advanced Conflict Finder will provide a graphical 
editor for defining semantic views [15] – a promising approach for semantically 
enhancing versioning systems proposed in the course of our previous research. A first 
implementation of a VCS incorporating semantics for conflict detection by means of 
semantic view definitions called SMoVer [14,15] already exists. For defining 
operation-based conflicts, a rule-based textual DSML is necessary. The Conflict 
Resolution Reasoner will yield resolution observations that will be processed by the 
open source platform Pentaho (http://www.pentaho.com), which provides powerful 
analysis capabilities in the sense of data mining, thus building the basis for our pattern 
miner component. Found conflict resolution patterns, in turn, will be stored in a 

AMoRE

AMoRE

Front-End

Back-End
Process and ArtifactsComponents

Conflict 
Resolution

save

AMOR
Admin

Modeler

Conflict 
Detection

Operation
Conflict
Base

Conflict
Resolution

Pattern

Observer

adapt

Conflict Resolution 
Pattern Editor

customizes

Resolution
Operation
Storage

save

Editing Operation
Interpreter

Enterprise 
Architect

observe Pattern Miner
analyze

Change Report

State-based
(generic)

Operation-based
(optional)

Conflict Report 
Operation-based Report 

(optional)

State-based Report
(generic)

Semantic View Reports
(optional)

Resolution Decisions

[all conflicts resolved]

Operation Conflict
Rule Editor

Semantic View
Editor

Semantic
View
Base

Model

Editing Observer
(optional)

Versioning
Assistant

Metamodel

check-in

observe

use

UML
work with

Stand-alone
(generic)

Plug-In
(optional)

Possibilities: keep mine, 
use other, ignore, update

Generic Merge Algorithm

New Version

extends

Modeling Tools

Editing-Log

Conflict Resolution Reasoner

Advanced Conflict Detector

Semantic-based
(optional)

use

Comparison

Merge

Model Repository

AMOR

AMoRE

AMoRE

Front-End

Back-End
Process and ArtifactsComponents

Conflict 
Resolution

save

AMOR
Admin

Modeler

Conflict 
Detection

Operation
Conflict
Base

Conflict
Resolution

Pattern

Observer

adapt

Conflict Resolution 
Pattern Editor

customizes

Resolution
Operation
Storage

save

Editing Operation
Interpreter

Enterprise 
Architect

observe Pattern Miner
analyze

Change Report

State-based
(generic)

Operation-based
(optional)

Conflict Report 
Operation-based Report 

(optional)

State-based Report
(generic)

Semantic View Reports
(optional)

Resolution Decisions

[all conflicts resolved]

Operation Conflict
Rule Editor

Semantic View
Editor

Semantic
View
Base

Model

Editing Observer
(optional)

Versioning
Assistant

Metamodel

check-in

observe

use

UML
work with

Stand-alone
(generic)

Plug-In
(optional)

Possibilities: keep mine, 
use other, ignore, update

Generic Merge Algorithm

New Version

extends

Modeling Tools

Editing-Log

Conflict Resolution Reasoner

Advanced Conflict Detector

Semantic-based
(optional)

use

Comparison

Merge

Model Repository

AMOR



repository. Besides the automatic detection of patterns, also the manual definition 
thereof should be enabled. Therefore, a graphical Conflict Resolution Pattern Editor 
will be established. 

Evaluation of AMOR. The evaluation of AMOR will be achieved in three 
independent steps. First, the conflict detection enhancements will be quantitatively 
analyzed in the course of experiments. Second, the conflict resolution phase will be 
examined in empirical studies. And finally, the whole AMOR system will be adapted 
for the Enterprise Architect modeling tool which is done in cooperation with Sparx 
Systems (http://www.sparxsystems.com.au). 

Customization of AMOR for Enterprise Architect. In order to demonstrate the 
integration and adaptation of AMOR with respect to state-of-the-art modeling tools, a 
case study is planed in cooperation with Sparx Systems in which language-specific 
conflict detection and resolution for UML as well as dedicated versioning front-ends 
for Enterprise Architect are developed. 

References  

1. France, R., Rumpe, B.: Model-driven Development of Complex Software: A Research 
Roadmap. In: Proc. of the Int. Conference on Software Engineering. IEEE. (2007) 37-54 

2. Ximbiot: Concurrent Versions System. http://www.cvshome.org (2008) 
3. Tigris.org: Subversion. http://subversion.tigris.org (2008) 
4. Treude, C., Berlik, S., Wenzel, S., Kelter, U.: Difference Computation of Large Models. 

In: Proc. of European Software Engineering Conference. ACM. (2007) 295-304 
5. Alanen, M., Porres, I.: Difference and Union of Models. In: Proc. of UML 2003 – The 

Unified Modeling Languages. Springer, LNCS 2863. (2003) 2-17 
6. Rivera, J.E., Vallecillo, A.: Representing and Operating with Model Differences. In: Proc. 

Objects, Components, Models and Patterns: 46th Int. Conf. TOOLS EUROPE. Springer, 
PNBIP 11. (2008) 141-160 

7. Cicchetti, A., Rossini, A.: Weaving Models in Conflict Detection Specifications. In: Proc. 
of the ACM Symposium on Applied Computing. ACM Press (2007) 1035-1036 

8. Völkel, M.: D2.3.3.v2 SemVersion – Versioning RDF and Ontologies. 
http://knowledgeweb.semanticweb.org/semanticportal/deliverables/D2.3.3v2.pdf (2008) 

9. Dig, D., Nguyen, T., Manzoor, K., Johnson, R.: MolhadoRef: A Refactoring-aware 
Software Configuration Management Tool. In: Proc. of the Annual ACM Conf. on Object-
Oriented Programming, Systems, Languages, and Applications. (2006) 321-335 

10. Ekman, T., Asklund, U.: Refactoring-aware Versioning in Eclipse. Electronic Notes in 
Theoretical Computer Science 107, Elsevier. (2004) 57-69 

11. Schneider, C., Zündorf, A.: Experiences in using Optimistic Locking in Fujaba (Position 
Paper). In: Proc. of the Workshop on Comparison and Versioning of UML Models. (2007) 

12. Oda, T., Saeki, M.: Generative Technique of Version Control Systems for Software 
Diagrams. In: Proc. of the IEEE Int. Conference on Software Maintenance. (2005) 

13. Murta, L., Corrêa, C., Prudêncio, J.G., Werner, C.: Towards Odyssey-VCS 2: 
Improvements over a UML-based Version Control System. In: Proc. of the Int. Workshop 
on Comparison and Versioning of Software Models. ACM. (2008) 25-30 

14. Altmanninger, K.: Models in Conflict – Towards a Semantically Enhanced Version 
Control System for Models. In: Proc. of Models in Software Engineering. Springer, LNCS 
5002. (2008) 293-304 

15. Altmanninger, K., Bergmayr, A., Kotsis, G., Schwinger, W.: Semantically Enhanced 
Conflict Detection between Model Versions in SMoVer by Example. In: Proc. of the Int. 
Workshop on Semantic-Based Software Development. (2007) 


