Reviving QVT Relations: Model-based
Debugging using Colored Petri Nets*

M. Wimmer!, A. Kusel?, J. Schoenboeck!, G. Kappel®,
W. Retschitzegger?, and W. Schwinger?

! Vienna University of Technology, Austria
{wimmer | schoenboeck |kappel}@big.tuwien.ac.at
2 Johannes Kepler University Linz, Austria
kusel@bioinf. jku.at, wieland.schwinger@jku.ac.at
3 University of Vienna, Austria
werner.retschitzegger@univie.ac.at

Abstract. The standardized QVT Relations language, one cornerstone
of Model-Driven Architecture (MDA), has not yet gained widespread
use in practice, not least due to missing tool support in general and
inadequate debugging support in particular. Transformation engines in-
terpreting QVT Relations operate on a low level of abstraction, hide
the operational semantics of a transformation and scatter metamodels,
models, QVT code, and traces across different artifacts. We propose a
model-based debugger representing QVT Relations on bases of TROPIC,
a model transformation framework which utilizes a variant of Colored
Petri Nets (CPNs) providing an explicit runtime model and a homoge-
nous view on all artifacts of a transformation.

Key words: QVT Relations, Debugging, Model Transformations, CPN

1 Introduction

In the MDA paradigm, model transformation languages play a vital role, lead-
ing already to the standardization of the Query/View/Transformation (QVT)
language [1]. Especially for declarative transformation languages, such as QVT
Relations, appropriate debugging facilities are of outermost importance, as is
also the case for declarative languages in general, since the missing operational
semantics hampers observation, tracking and fixing of bugs [2]. Existing ap-
proaches for executing and debugging QVT Relations (e.g., mediniQVT*) are
still in its infancy [3] and often provide only low-level debugging information
such as logging messages or variable values, hide the execution order of transfor-
mation rules and scatter metamodels, models, rules and traces across different
artifacts.

We propose a model-based debugger [4] representing QVT Relations on bases
of TROPIC (Transformations on Petri Nets in Color) [5, 6], a model transforma-
tion framework based on Colored Petri Nets (CPNs) [7], adapted to the needs of

* This work has been partly funded by the Austrian Science Fund (FWF) under grant
P21374-N13.
4 http://projects.ikv.de/qvt

2 Wimmer et al.

transformation designers [8]. With this, firstly, an explicit runtime model is pro-
vided, which can be easily exploited for debugging purposes, e.g., by using OCL
queries, thus representing a white-box view on the transformation. Secondly, a
homogenous view on all transformation artifacts is ensured by representing them
in terms of the basic CPN concepts places, tokens and transitions.

The remainder of this paper is structured as follows. Section 2 introduces
the basics of QVT Relations and TROPIC as well as of the translation in be-
tween. Section 3 introduces an interactive debugging environment offering sev-
eral features for model-based debugging of transformations and finally, Section
4 provides an outlook on future work.

2 QVT Relations and TROPIC at a Glance

This section briefly illustrates the main language concepts of QVT Relations and
TROPIC for describing transformation logic, details their main differences on
the execution level and discusses the design rationale of the translation between
the language concepts.

QVT Relations. Using QVT Relations, transformation logic between two
different metamodels is specified as a set of relations that must hold for the
transformation to be successful. Relations contain a set of so-called DomainPat-
terns used to match for existing source model elements in order to instantiate
new target model elements or to modify existing ones. During execution of a
transformation by an engine (cf. left part of Fig. 1) trace information is avail-
able in order to verify the transformation result, only, leaving the full operational
semantics within in a black box.

QVT Relations TROPIC
k -MetamodelA Transformation Logic >|Metam0de| B| Metamodel A|| Transformation Logic > Metamodel B

0 0
f f ve |)

! conforms conforms ! derive 1conforms derive iconforms
H 1 :

Transformation :Transformation Specification

1
Model A executes | Model B | | Model A ‘ Model B
4\\ f 7\ l instantiate
\ ! \ / derive | | \ " derive
£\ - f I) p \
s\ .]
£ N mput Execution Engine - 1 l @/
\
E N lcreales . Trace)
N N {Source Places } { Target Places ¥
~ Trace Information) - ransitons) y S _A

Fig. 1. Model Transformations in QVT Relations and TROPIC

TROPIC. TROPIC uses Colored Petri Net concepts [7], being mainly places,
tokens and transitions, for the specification and execution of model transforma-
tions. In particular, places are derived from elements of metamodels, tokens from
elements of models and transitions from the actual transformation logic (shown
in the right part of Fig. 1). The existence of certain model elements allows tran-
sitions to fire and thus stream tokens to the target places representing instances
of the target metamodel to be created and thereby establishing trace informa-
tion in terms of tokens in additional places. TROPIC, thus, provides a white-box

Reviving QVT Relations 3

view on model transformation execution, i.e., the specification does not need to
be translated into some low-level executable artifact, but can be executed right
away. Therefore, no impedance mismatch between specification and execution
occurs, allowing for enhanced debuggability of model transformations.

Translation between QVT Relations and TROPIC. The translation
between the concepts of QVT Relations and TROPIC has been performed on
basis of their metamodels. We assume a syntactically correct QVT Relations
specification since only in this case we can guarantee a correct translation to
TROPIC and the propagation of changes in the transformation logic represented
by TROPIC back to QVT Relations. Whereas QVT Relations only references the
metamodel files, TROPIC explicitly represents each element of the metamod-
els as first class concept in terms of places. Regarding models, QVT Relations
provides no explicit representation mechanism, which is again in contrast to
TROPIC, where each model element is explicitly represented by tokens residing
in corresponding places. Finally, in the textual syntax of QVT Relations the
correspondences between source elements and target elements as well as the in-
terplay among different relations are hard to grasp. TROPIC on the other hand
visualizes these correspondences as well as the interplay among the relations
utilizing transitions consisting of a LHS representing the pre-conditions of a cer-
tain transformation, and a RHS depicting its post-condition by means of color
patterns. For further details on this translation it is referred to [9].

3 Debugging Environment for QVT Relations

Our debugging environment is based on Eclipse and includes two editors, one
that presents the QVT Relations in textual syntax (cf. Fig. 2a) and another one
that shows the graphical representation thereof in TROPIC (cf. Fig. 2b). The
TROPIC editor toolbar (cf. Fig. 2¢) provides common debugging functionali-
ties to figure out the operational semantics such as stepwise debugging by firing
transitions including an undo/redo mechanism. Furthermore, functionalities are
provided to save the generated target model, i.e., to switch from the token rep-
resentation to a model representation, or to load a new source model into the
debugging environment.

OCL for Debugging. The utilization of a dedicated runtime model allows
to employ OCL for two different debugging purposes. Firstly, OCL can be used
to define conditional breakpoints at different levels of granularity, e.g., if a cer-
tain token is streamed into a certain place, or if tokens occur in several different
places. Secondly, OCL can be used to tackle the well-known debugging problem
that programs execute forward in time whereas programmers must reason back-
wards in time to find the origin of a bug. For this, a dedicated debugging console
based on the Interactive OCL Console of Eclipse (cf. Fig. 2d) is supported,
providing several pre-defined debugging functions to explore and to understand
the history of a transformation by determining and tracking paths of produced
tokens (exemplarily shown in Table 1).

4 Wimmer et al.

Table 1. OCL operations for debugging

Context |[QCL Debugging Operation Description

Place getMatchingTokens:Set (Token) tokens that match a transition
getMismatchedTokens:Set(Token) |tokens not matching a transition

Token getCreator:Transition transition that created a token

Transition|getInputTokens (Token) : Set (Token) [source tokens of a transition

Debugging Phases. In the following a possible usage scenario of our debug-
ging environment is described according to the three debugging phases, observing
facts, tracking origins and fixing bugs (cf. Fig. 2).

Observing Facts. Observing facts during a certain transformation execution
can be done either by simulating the transformation and watch for unexpected
behavior or by debugging the transformation step-by-step. In order to detect
unexpected behavior automatically, the resulting target model can be compared
to an expected target model to identify wrong or missing target tokens. If such
faulty parts of the target model are detected, the owning target places as well
as the transitions that produce tokens in these places are highlighted to ease
finding the reasons for the errors (cf. indicated by exclamation marks in Fig. 2).

Interactive Debugger

QUT Relations

rdbms:SimpleRDBMS) {

top relation ClassToTable{

cn: String;

checkonly domain uml
c:Class{ name=cn,
Kkind="Persistent’};

enforce domain rdbms
‘t:Table{name=cn};

where

AttributeToColumn(c,t);
b

3
relation AttributeToColumn{
an, pn :String;
checkonly domain uml c:Class{
attribute=
azAttribute {
name=an,
type=
p:PrimitiveDataType{
name=pn}}};
enforce domain rdbms
t:Table{
column=
cl:zColumn {
name=an,
type=pn}};
where{
SuperAttributeToColumn(c,t);

¥

relation SuperAttributeToColumn{
checkonly domain uml c:Class{
generalOpposite=
sc:Class {}};
enforce domain rdbms
t:Table {};
where-
AttributeToColumn(sc, t);
b
3

transformation umlToRdbms(uml:SimpleUML,

@

TROPIC
Source
UMLModelElement

Target

RuodelElement

PackageToSchem:

Classifie

<00

lprimiveDatatyy

ClassToTable

Structiral feature mapping

mapping

i recursive call| |
—@Els—
i Gy |

- 9
Interactive Debugger Console
selectedElement()..getCreator()
result: Transition (d)

result.getinputTokens(selected
result: Sequence(Token) {t1, t:
result -> first().getCreator()
result: Transition (e)

Fig. 2. Debugging Environment showing parts of the UML2Relational Example [1]

Tracking Origins. The origin of an error has to be discovered by reason-
ing backwards in time, questioning, e.g., why certain tokens have been created.
The graphical representation in Fig. 2 shows that the tokens in question have

Reviving QVT Relations 5

been created by transition 4, the source tokens responsible for creating exactly
these tokens, however, are unknown. The paths of these produced tokens can be
tracked back by means of our predefined OCL functions.

Fizing Bugs. After finding the origins of a bug, it is possible to adapt the
transformation logic during debugging directly in TROPIC and propagate the
changes back to QVT Relations.

4 Further Work

Several issues for future work remain open. As stated in [10], the QVT standard
defines the operational semantics of QVT Relations twofold and only informally,
firstly in natural language and secondly by a translation to QVT Core, being
incompatible to each other. This situation led to different implementations of
the operational semantics in different tools. Currently, our translation is based
on the implementation of mediniQVT, but we are planning to investigate the
implementations of different tools. Additionally, as TROPIC is based on a variant
of CPNs we will explore if Petri Net properties such as persistence or liveness
can be used to check for potential shortcomings in QVT Relations specifications.

References

1. Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/-
Transformation Specification. www.omg.org/docs/ptc/07-07-07.pdf (2007)

2. Wadler, P.: Why no one uses functional languages. SIGPLAN Not. 33(8) (1998)
23-27

3. Kurtev, I.: State of the Art of QVT: A Model Transformation Language Standard.
Int. Workshop on Applications of Graph Transformation with Industrial Relevance

2007

4. %(usel), A., Schwinger, W., Wimmer, M., Retschitzegger, W.: Common Pitfalls of
Using QVT Relations - Graphical Debugging as Remedy. Int. Workshop on UML
and AADL @ ICECCS’09 (2009)

5. Reiter, T., Wimmer, M., Kargl, H.: Towards a runtime model based on colored
Petri nets for the execution of model transformations. In: 3rd Workshop on Models
and Aspects @ ECOOP’07, Berlin (2007)

6. Wimmer, M., Kusel, A., Reiter, T., Retschitzegger, W., Schwinger, W., Kappel,
G.: Lost in Translation? Transformation Nets to the Rescue! In: 8th Int. Conf.
on Information Systems Technology and its Applications (UNISCON’09), Sydney

2009

7. {(]ensezl7 K., Kristensen, L.M.: Coloured Petri Nets - Modeling and Validation of
Concurrent Systems. Springer (2009)

8. Wimmer, M., Kusel, A., Schoenboeck, J., Reiter, T., Retschitzegger, W.,
Schwinger, W.: Let’s Play the Token Game — Model Transformations Powered
by Transformation Nets. In: Proc. of Int. Workshop on Petri Nets and Software
Engineering, Paris (2009)

9. Wimmer, M., Kusel, A., Schoenboeck, J., Kappel, G., Retschitzegger, W.,
Schwinger, W.: A Petri Net based Debugging Environment for QVT Relations.
Technical report, Vienna University of Technology (2009)

10. Stevens, P.: A simple game-theoretic approach to checkonly QVT Relations. In:
Proc. of Int. Conf. on Model Transformations, ICMT’09. (June 2009)

