
A Petri Net based Debugging Environment for QVT Relations*

Manuel Wimmer∗, Gerti Kappel∗, Johannes Schoenboeck∗, Angelika Kusel†, Werner Retschitzegger‡ and Wieland Schwinger§
∗Vienna University of Technology, Business Informatics Group, Austria

Email: lastname@big.tuwien.ac.at
†Johannes Kepler University Linz, Institute of Bioinformatics, Austria

Email: angelika.kusel@bioinf.jku.at
‡University of Vienna, Department of Knowledge and Business Engineering, Austria

Email: werner.retschitzegger@univie.ac.at
§Johannes Kepler University Linz, Department of Telecooperation, Austria

Email: wieland.schwinger@jku.ac.at

Abstract—In the Model-Driven Architecture (MDA)
paradigm the Query/View/Transformation (QVT) standard
plays a vital role for model transformations. Especially the
high-level declarative QVT Relations language, however, has
not yet gained widespread use in practice. This is not least due
to missing tool support in general and inadequate debugging
support in particular. Transformation engines interpreting
QVT Relations operate on a low level of abstraction, hide
the operational semantics of a transformation and scatter
metamodels, models, QVT code, and trace information across
different artifacts.

We therefore propose a model-based debugger representing
QVT Relations on bases of TROPIC, a model transformation
language utilizing a variant of Colored Petri Nets (CPNs). As
a prerequisite for convenient debugging, TROPIC provides a
homogeneous view on all artifacts of a transformation on basis
of a single formalism. Besides that, this formalism also provides
a runtime model, thus making the afore hidden operational
semantics of the transformation explicit. Using an explicit
runtime model allows to employ model-based techniques for
debugging, e.g., using the Object Constraint Language (OCL)
for simply defining breakpoints and querying the execution
state of a transformation.

Keywords-QVT Relations; Debugging; Model Transforma-
tions; CPN

I. INTRODUCTION

For model transformations which are an essential con-
stituent in MDA [1], the QVT standard [2] proposed by
the OMG specifies three different transformation languages:
(i) the declarative high-level Relations language, (ii) the
declarative low-level Core language, and (iii) the impera-
tive Operational Mapping language. Although tool support
and especially debuggers are of utmost importance for
declarative languages as stated by Wadler [3], until now,
tool support in general and debugging support in particular
are still in its infancy [4], [5]. Especially regarding QVT
Relations, this seems to be one of the reasons for the lack

* This work has been funded by the Austrian Science Fund (FWF) under
grant P21374-N13.

of adoption in practice. Debugging support is hampered by
the following three problems:

(1) QVT Relations code basically consists of declara-
tive correspondence definitions between source and target
model elements known as relations, which are either directly
interpreted or first translated to the QVT Core language
and afterwards interpreted by a transformation engine. As
a consequence, debugging is limited to the information
provided by the interpreter or the transformation engine
only, most often consisting of variable values or logging
messages, but missing important information, e.g., why a
certain relation is executed or at when a certain target
element is actually created. Thus, only a snapshot of the
actual execution state is provided during debugging while
coherence between the specified relations is lost.

(2) As QVT Relations is declarative in nature, the order
of rule application needs not to be handled by the trans-
formation designer. Although this relieves transformation
designers from a burden when specifying a transformation,
the hidden operational semantics is counterproductive for
debugging.

(3) Finally, QVT Relations provides a limited view on
model transformations, since metamodels, models, QVT
code, and trace information are scattered across different
artifacts hampering the understanding of the transformation.

We therefore propose a model-based debugger for QVT
Relations [6] by employing TROPIC (TRansformations On
Petri nets In Color) [7], [8], [9]. TROPIC has been de-
veloped in the course of the ModelCVS project [10] aim-
ing at reusable horizontal model transformations between
modeling tools supporting different languages. By employ-
ing TROPIC for debugging, one gains several advantages.
Firstly, transformation designers are enabled to debug on a
high-level of abstraction as TROPIC is based on a variant
of CPNs, which also serve as an explicit runtime model.
This also allows to employ MDA standards for debugging
such as OCL [11] in order to define breakpoints and to
explore details of the execution state by using queries on

the runtime model. Secondly, the fact that TROPIC is based
on CPN concepts allows to represent QVT Relations in
terms of transitions which make the afore hidden operational
semantics explicit, thus allowing a white-box view on the
execution of model transformations. Finally, metamodels,
models, transformation logic, and trace information are
included in a single homogenous debugging view thus
providing the complete picture of the transformation.

The remainder of this paper is structured as follows. Sec-
tion II introduces the basics of QVT Relations and TROPIC
by example. In Section III, we show the translation between
the concepts of QVT Relations and TROPIC which is the
basis for our debugging approach. Section IV introduces an
interactive debugging environment offering several features
for model-based debugging of transformations. Related work
is discussed in Section V, and finally, Section VI provides
an outlook on future work.

II. QVT RELATIONS AND TROPIC AT A GLANCE

To introduce the main concepts of QVT Relations and
TROPIC we briefly discuss how transformation logic is
specified in these two languages and illustrate the main
differences, focusing on the execution of model transfor-
mations. Thereby we show how the explicit runtime model
of TROPIC can be used to represent QVT Relations code
as a pre-requisite for debugging on bases of an extract of
the UML2Relational example [2].

A. Specification and Execution of Model Transformations

QVT Relations. By using the declarative QVT Relations
language, transformation logic between two different meta-
models is specified as a set of relations that must hold
for the transformation to be successful. Relations contain
a set of patterns used to match for existing source model
elements in order to instantiate new target model elements
or to modify existing ones. Since declarative approaches
like QVT Relations allow for the specification of what
has to be computed but not necessarily how [12], the
operational semantics remains hidden. Although the QVT
standard claims that the operational semantics is specified by
a mapping to the low-level Core language [13], which is then
executed by a transformation engine, in fact only a black-
box view of the execution is provided to the transformation
designer as shown in the left part of Fig. 1. The only source
of information in order to verify the transformation result is
trace information, indicating which source element has been
transformed to which target element.

TROPIC. TROPIC uses Colored Petri Net [14] concepts,
being mainly places, tokens and transitions, for the specifi-
cation and execution of model transformations. In particular,
places are derived from elements of metamodels, tokens
from elements of models and transitions from the actual
transformation logic (shown in the right part of Fig. 1),
which are integrated in a homogenous view. The existence

TROPICQVT Relations TROPIC

Metamodel A Metamodel B

d i

QVT Relations

Metamodel A Metamodel BTransformation
Logic

m
at

io
n

ca
tio

n Transformation Logic

Model A Model B

conforms conformsderive derive

Model A Model B

conforms conforms

executesTr
an

sf
or

m
S

pe
ci

fic

derive derive
instantiate

Execution Enginetio
n

n

Source Places Target Places
Transitions

Execution EngineInput Output

Trace Information

creates

Tr
an

sf
or

m
at

E
xe

cu
tio

n

Trace
Information

TransitionsT

Figure 1. QVT Relations versus TROPIC

of certain model elements allows transitions to fire and thus
stream tokens to the target places representing instances of
the target metamodel to be created and thereby establishing
trace information in terms of tokens in additional places.
TROPIC, thus, provides a white-box view on model trans-
formation execution, i.e., the specification does not need to
be translated into some low-level executable artifact, but can
be executed right away. Therefore, no impedance mismatch
between specification and execution occurs, allowing for
enhanced debuggability of model transformations.

Supported model transformation scenarios. Since
transformations written in the QVT Relations language con-
sist of declarative relations between metamodels unidirec-
tional as well as bidirectional transformations are supported,
although the actual execution requires to specify a direc-
tion. Moreover QVT Relations supports check and enforce
semantics, differing in if required changes on the target side
are just reported or actually undertaken, thereby supporting
incremental updates which can theoretically be specified on
rule level. The semantics of check and enforce, especially
in combination with bidirectional model transformations
is not clearly defined as stated in [15]. Furthermore, the
QVT standard defines the operational semantics of QVT
Relations twofold, firstly in natural language and secondly
by a translation to QVT Core, being incompatible to each
other [16]. This situation led to different implementations
of the operational semantics in different tools, e.g. con-
cerning the realization of when and where clauses. To
circumvent these deficits of the QVT standard, the exam-
ple as well as the translation presented in the following
are based on the operational semantics of the mediniQVT
(http://projects.ikv.de/qvt) implementation.

Although TROPIC is able to deal with incremental up-
dates as well (cf. [17] for details) we focus on the typical
model transformation scenario which creates a new target
model out of an existing source model in this paper. In case
of bidirectional specifications we derive two different nets,
one for every execution direction. Thereby we assume that
all relations specify a checkonly semantics for source model
elements an enforce semantics for target model elements.

UML RDBMS

(M
2)

UMLModelElement
name : String

Package PackageElement

UML RDBMS

RelModelElement
name : StringAttribute

M
et

am
od

el
s Package PackageElement

Classifier

Class

element *

g

Schema Table
table

*

Attribute

PrimitiveDatatype

attribute*

*
*

general

generalOpposite

Column
type : String

*
l

namespace

schema

C1 : Class
kind = 'Persistent'
name = ‘Person‘

element

Class
kind : String

T1 : Table
name = ‘Person‘

table

PrimitiveDatatype
1 type

column

A1 : Attribute
name = ‘name‘

attribute

type
C1 : Column
name = ‘name‘

‘S i ‘

column

s
(M

1) C2 : Class
kind = 'Persistent'

elementP1 : Package
name = ‘University‘

S1 : Schema
name = ‘University‘

namespace

A2 : Attribute
name = ‘registrNo‘

general

generalOpposite

attribute

Pr1 : PrimitiveDatatype
name = ‘String‘

type
type = ‘String‘

C2 : Column
name = ‘name‘

column

schema

M
od

el
s

name = ‘Student‘

C3 : Classelement

name = University

T2 : Table
name = ‘Student‘table

namespace
namespace

name registrNo

A3 : Attribute

general

generalOpposite

attribute

Pr2 : PrimitiveDatatype
name = ‘Integer‘ type

type = ‘String‘

C3 : Column
name = ‘registrNo‘
type = ‘Integer‘column

schema

kind = 'NonPersistent'
name = ‘Tutor‘

3 tt bute
name = ‘lecture‘

type = Integercolumn

Figure 2. UML2Relational: Metamodels and Models.

B. QVT Relations to TROPIC by Example
To illustrate how TROPIC can be employed for de-

bugging we present in the following a small part of the
UML2Relational example (cf. Fig. 2), exemplifying the
translation of QVT Relations to TROPIC.

In the course of the UML2Relational example, naturally,
Packages of UML shall be transformed into relational
Schemata in a one-to-one fashion, whereas only persistent
Classes shall be transformed into Tables. The inheri-
tance hierarchy should be flattened, i.e., Attributes of
base classes should be transformed to Columns of the table
representing the inherited class. The assumed corresponding
source model comprises the classes Person, Student
(extending Person) and Tutor (extending Student)
contained in the package University. The target model
which shall be generated should contain the tables Person
and Student aggregating the columns created on basis of
the attributes of the base class as only these two classes were
marked as persistent.

Fig. 3(a) depicts the specification of the transformation in
QVT Relations, consisting of two relations for establishing
the one-to-one correspondences between the two metamod-
els UML and RDBMS. The relations PackageToSchema
and ClassToTable use an uml model as source model
(checkonly semantics) and a rdbms model as target
model (enforce semantics). The PackageToSchema
relation matches for packages and their names and pro-
duces equivalent schemata and names thereof. The relation
ClassToTable matches for persistent classes contained in
a package as well as their names and creates a table labeled

with the class name. The reference to the according schema
is set by calling the PackageToSchema relation in the
when-clause of the ClassToTable relation.

Even this simple example raises questions concerning
specification and execution of the transformation, e.g., are
there metamodel elements that will not be transformed, what
happens if there are no persistent classes in a schema or in
which order are the relations actually executed and the model
elements created? To answer these questions, first of all, the
QVT Relations code is translated to TROPIC as depicted in
Fig. 3(b).

The elements of the involved metamodels are represented
as places and model elements in terms of tokens residing
in the corresponding places. As depicted in Fig. 5 abstract
and concrete classes are both represented as OneColored-
Places. Although, abstract classes cannot have instances,
places created from abstract classes normally contain tokens
indirectly due to other places stemming from sub-classes,
being contained within them. Furthermore, the name of the
class becomes the name of the place. Subclass relation-
ships are represented by nestedPlaces whereby the place
corresponding to the subclass is contained within the place
corresponding to the superclass. The tokens contained in
the “sub-place” are also visible in the “super-place”, which
means that if a token is contained in a “sub-place” it may
also act as input token for a transition connected to the
“super-place”.

For every object, i.e., instance of Class that occurs in a
model a OneColoredToken is produced, which is put into a
place that corresponds to the respective element in the source

Package

PackageToSchemaPackageToSchema

P1

SourceSource TargetTarget

trace

domain object mapping
structural feature mapping

UMLModelElement

PackageElement

RelModelElement

Schema

P1
p:Package s:Schema

transformation
umlToRdbms(uml:UML,
rdbms:RDBMS){

top relation PackageToSchemaPackageToSchema{
pn:String;

1
2

C1 C2 C3

Class

g

Classifier Table

C1 C2
name=pn

name=pn name=pn

pn:String;
checkonly domain uml

p:Package{
name=pn};

enforce domain rdbms
s:Schema {

}

UMLModelElement_
name

ClassToTableClassToTable

Person
C1

3
domain object mapping

University
P1

RelModelElement_
name

Person
C1

University
P1

c:Class t:Table

name=pn};
}

top relation ClassToTableClassToTable{
cn: String;
checkonly domain uml

Person

Student
C2 Tutor

C3

trace
structural feature mapping

PackageElement_
namespace

University
StudentC2

c:Class

namespace=

t:Table
c:Class{

name=cn
namespace=p:Package{},
kind=‘Persistent‘};

enforce domain rdbms
t:Table{

…
name=cn

Class_kind
Table_schema

Persistent
Persistent

NonPersistent kind=‘Persistent‘

name=cn

4name =cn,
schema=s:Schema{}};

when {
PackageToSchema(p,s);

}
}

schema=

name=cn

namespace=

kind=‘Persistent‘

NonPersistent d e s ste t}
}

(b) TROPIC(a) QVT Relations

Achtung: TracePlaces sind
two-colored Places

Figure 3. UML2Relational: QVT code and corresponding TROPIC specification.

metamodel, e.g., in Fig. 3(b) a OneColoredToken represent-
ing the model element P1 resides in the OneColoredPlace
Package. The color is realized through a unique value
that is derived from the object id (OID).

Attributes and references are represented by TwoCol-
oredPlaces, whereby the name of the place consists of
the name of the containing class and the name of the
attribute or reference itself, separated by an underscore
(ClassName_name). Notationally, the borders of two-
colored places are doubly-lined to indicate that they contain
two-colored tokens. Data values and links are represented
by TwoColoredTokens whereby the fromColor refers to the
owning element and the toColor represents the primitive
data value or the linked target element. For the example, the
link between Class C1 and Package P1 is represented
by a TwoColoredToken residing in the TwoColoredPlace
PackageElement_namespace.

The chosen representation of models by TROPIC let refer-
ences as well as attributes become first-class citizens, result-
ing in a fine-grained decomposition of models. The resulting
representation in combination with weak typing (all concepts
depend on the Ecore types EClass, EAttribute and
EReference, only) turned out to be especially favorable
for the resolution of structural heterogeneities, a main goal
of TROPIC. This is since on the one hand there are no re-
strictions on the order of certain transformations, like a class
must be instantiated before an owned attribute and on the
other hand also the special, but frequently occurring, case of
schematic heterogeneities [18] can be easily dealt with, e.g.,
an attribute in the source model is transformed into a class in
the target model by just moving the token to the respective

place. At the same time, this fine grained resolution leads to
numerous places, which might hinder readability but enables
a detailed debugging view as transformation designer can
exactly determine which (fine-grained) model elements are
involved when firing a transition.

The transformation logic is represented by transitions
expressing the so called DomainPatterns of QVT Rela-
tions which match for source elements and create target
elements. DomainPatterns build digraphs conforming to the
used metamodel (cf. Fig. 4 depicting the DomainPatterns of
the relation ClassToTable), expressing correspondences
between source and target metamodel elements. Unfortu-
nately, this correspondence is hard to grasp in textual syntax.
To get a visual clue which source element is transformed
to which target element, TROPIC represents the nodes of
such a digraph graphically (cf. Fig. 4) whereby every node
is connected to a certain source or target place and nodes
expressing correspondence are collocated.

Transitions consist of input placeholders (LHS of the tran-
sition) representing the pre-conditions of a certain transfor-
mation, whereas output placeholders (RHS of the transition)
depict its post-condition. To express these pre- and post-
conditions, so-called meta tokens are used, prescribing a
certain token configuration by means of colors. By matching
a certain token configuration from the input places, i.e.,
fulfilling the pre-condition, the transition is ready to fire,
with the colors of the input tokens being bound to the meta
tokens residing in the input placements. The production of
output tokens fulfilling the post-condition once a transition
fires is dependent on the matched input tokens. For exam-
ple, when a simple one-to-one correspondence should be

QVT Relations Specification TROPIC TransitionsSimplified Metamodel Digraph
checkonly domain uml
c:Class{

name= cn,
namespace=

p:Package {},
kind=`Persistent´};

Class
name:String
kind:String

Package
name:String

element

*

*
*

general

namespace

Class

namespace

P k

name

conforms to represents

general
Opposite

required trace

Domain object creation

provided trace

};
}Packagekind

Table
name:String

Schema
name:String

tables

*schema

Table

name

enforce domain rdbms
t:Table{

name=cn
schema=s:Schema{}};

}

conforms to
represents

conditions and
mappings

schema
Schemaname }Schema

Figure 4. Dependencies between Metamodels, QVT, and TROPIC.

Meta Object Facility (MOF) TROPIC

Concept Example Concept Example

Class OneColoredPlace

m
en

ts

Class
name : String

Cl

Class

C2

Class name
Attribute TwoColoredPlace

Reference TwoColoredPlace

Generalization NestedPlace

M
et

am
o

d
el

 E
le

m Class
name : String

Class_name

Class_attribute

Classifier

C
2

ClassClassifier Class
name : String

Attributes
name : String

attribute *
Class
name : String

Object
(Instance of
Class)

OneColoredToken
(contained in a
OneColoredPlace)

Value
(Instance of
Attribute)

TwoColoredToken
(contained in a
TwoColoredPlace)

d
el

 E
le

m
en

ts

C1:Class
name = `Person´

C1:Class
name = `Person´

attributeC1:Class

Class

C1

Person
C1

Class_name

Link
(Instance of
Reference)

TwoColoredToken
(contained in a
TwoColoredPlace)

M
o

d

A1:Attribute
name : `Name´

name : `Person´ Class_attribute

P1
A1

Figure 5. Representing MOF concepts within TROPIC

implemented, the colors of input and output meta tokens are
equal meaning that a token is streamed through the transition
only. Starting from the domain object (i.e., the digraph’s
root node of Fig. 4) which is represented in TROPIC by a
one colored meta token within transitions, navigation in the
graph is enabled using two colored meta tokens whereby the
outer color represents the source object and the inner color
represents the target object of the link (e.g., the namespace
link in Fig. 4) or the object and its primitive value in case
of attributes respectively (e.g., the name attribute in Fig. 4).

The graphical representation in TROPIC offers the pos-
sibility to debug QVT Relations code on a high level of
abstraction [19]. Interactive debugging is enabled by step-
wise firing of transitions. For example in the above scenario
first a Schema is created and then Tables are added since
transition (3) in Fig. 3(b) is only enabled if a Schema
has already been created which is determined by the trace
information of transition (1). This shows that with the given
QVT specification a Schema is created irrespective if it
contains persistent classes or not. Please note that model
transformations demand for a specific consumption behavior.
If transitions (3) in Fig. 3 would consume (which is the
default in CPNs) the trace token P1, transition (3) could

only fire once and the 1:n relationship between package and
classes would not be correctly transformed to schemas and
tables. Therefore, TROPIC does not consume the tokens per
default, but only store the combination of tokens currently
fulfilling the precondition in a so called execution history.
This allows transitions to fire for all possible combinations,
which is typically desired in transformation scenarios. The
execution history additionally enables an undo/redo mecha-
nism and thus allows transformation designers to easily step
forwards and backwards in the transformation process. Note
that the tokens in the target places result from successfully
executed transitions meaning that Fig. 3 shows the final state
of a model transformation.

III. TRANSLATING QVT RELATIONS TO TROPIC

The previous section introduced the translation of QVT
Relations to TROPIC at a glance. Now, the translation
is described in detail based on the metamodels of both
transformation languages (cf. Fig. 6).

Representation of source and target metamodels and
models. QVT Relations as well as TROPIC provide contain-
ers (cf. metaclasses RelationTransformation and Net, respec-
tively) for aggregating metamodels, models and transforma-
tion logic. Whereas QVT Relations simply represents the
involved metamodels as a whole (cf. metaclass TypedModel),
e.g., uml and rdbms in the previous example, TROPIC
explicitly represents each element of the metamodels as first
class concepts in terms of a place (c.f. metaclass Place).

Regarding models, QVT provides no explicit represen-
tation mechanism, which is again in contrast to TROPIC,
where each model element is explicitly represented by One-
ColoredTokens residing in corresponding OneColoredPlaces
in case of classes and objects or by TwoColoredTokens
in residing in corresponding TwoColoredPlaces in case of
attributes and values or references and links.

Representation of transformation logic. To aggregate
transformation logic, both, QVT Relations and TROPIC
provide a container (cf. metaclasses Relation and TropicUnit,
respectively). To incorporate the involved metamodels, QVT
Relations uses RelationDomains which bind Relations to
the source or target metamodel. In TROPIC, Arcs connect
the metamodel elements (places) with the transformation

Token
*

Place

name : String

*
*

1

Net

St i

RelationTransformation

*rule

TypedModel

0 1 typedModel

*
modelParameter

OneColoredToken TwoColoredToken

fromColor : String
toColor : String

color : String

a e S g

OneColoredPlace TwoColoredPlaceTROPICUnit*

name : String

Relation
isTopLevel : Bool

RelationDomain
isCheckable : Bool
isEnforceable : Bool

domain
*

0..1 typedModel

pattern0 1
when where

0..10..1

0..1
referredRelation

diti

Placement MetaToken

Transition*
*

1
1

Arc

*
DomainPattern

Variable

bindsTo

TemplateExp

pattern0..1

template
Expression 0..1

Predicate

*predicate

OclExpression
1

Pattern

0..1

RelationCallExp

condition
Expression

*

OutPlacement InPlacement
TwoColoredMetaTokenOneColoredMetaToken

color : String fromColor : String
toColor : String

TPArc PTArc

Variable

*

TemplateExp

ObjectTemplateExpPropertyTemplateItem
part

(a) QVT Relations metamodel (b) TROPIC metamodel() ()

Figure 6. Metamodels of (a) QVT Relations and (b) TROPIC.

logic (transitions) whereby the actual direction of an arc
is derived from the user-defined execution direction of the
QVT Relations.

In QVT, DomainPatterns specify the selection of model
elements forming, as mentioned before, a digraph conform-
ing to a metamodel using the specified domain object as root
node (cf. Fig. 4). The graph consists of objects (cf. class
ObjectTemplExp), attributes and links—both represented by
the class PropertyTemplateItem. In contrast, TROPIC fires
Transitions defining their behavior in terms of Placements
which contain MetaTokens either matching for objects (class
OneColoredMetaToken) or attribute values and links (class
TwoColoredMetaToken). The relation PackageToSchema
in Fig. 3 shows that every part of the DomainPattern of
the source domain, being p:Package and name=pn is
represented as a corresponding InPlacement in the transi-
tions whereby p:Package is represented as a OneCol-
oredMetaToken and name=pn is represented as a TwoCol-
oredMetaToken. The DomainPattern of the target domain
is represented by according OutPlacements whereby same
colored MetaTokens are used to express correspondences
between the source and the target domain.

QVT Relations allows to specify DomainPatterns con-
taining references of the target model having a multiplicity
greater than one, e.g., a Schema can contain an arbitrary
number of Tables. To ensure that the target domain object
(e.g., a Schema) is created only once, a QVT Relations
transformation engine examines the trace information. In
TROPIC, we therefore separate the creation of the domain
object from its containing features, whereby the transition
transforming the domain object produces trace information
used by the transitions mapping the contained features (cf.
transitions (1) and (2) in Fig. 3(b)). Trace information in
TROPIC is furthermore used to express when- and where-
clauses which is the QVT Relations concept to call depen-
dent relations.

Table I summarizes the described mappings between QVT

Relations and TROPIC concepts.

IV. TROPIC DEBUGGING ENVIRONMENT

The graphical representation of QVT Relations code in
TROPIC as described in the previous section, is advanta-
geous with respect to an explicit and homogenous repre-
sentation of all artifacts of a transformation, but is in fact,
just a first step towards a model transformation debugging
environment. Beyond that, the TROPIC debugging environ-
ment provides mechansims in order to support the three
main phases of debugging [20], i.e., observing facts, tracking
origins, and fixing bugs, which is described in the following,
first at a glance and then in detail by example.

A. Debugging Environment at a Glance

The TROPIC debugging environment is based on Eclipse
and includes two editors, one presenting the QVT Relations
in textual syntax (cf. Fig. 7(a)) and another one that shows
the graphical representation thereof in TROPIC (cf. Fig.
7(b)). We assume a syntactically correct QVT Relations
specification since only in this case we can guarantee
a correct translation to TROPIC and the propagation of
changes in TROPIC back to QVT Relations. The TROPIC
editor toolbar (cf. Fig. 7(c)) provides common debugging
functionalities such as enabling stepwise debugging to figure
out the operational semantics by firing transitions including
an undo/redo mechanism. Furthermore, functionalities are
provided to save the generated target model, i.e., to switch
from the token representation to a model representation, and
to load a new source model into the debugging environment.
For testing purposes, an expected target model can be
loaded, which is automatically compared to the target model
actually created by the transformation.

Besides these standard debugging functionalities, there
are additional debugging features resulting as a benefit of
using a dedicated runtime model. In particular, OCL is
employed for two different debugging purposes. First, OCL
is used to define conditional breakpoints at different levels of

Table I
QVT RELATIONS TO TROPIC TRANSLATION

QVT Relation Concept TROPIC Concept

RelationTransformation Net
TypedModel One-/TwoColoredPlace
n.a. (Model element) Token

Relation TropicUnit
Execution direction Arc

DomainPattern Transition
ObjectTemplateExp Placement + OneColoredMetaToken
PropertyTemplateItem Placement + TwoColoredMetaToken
Variable Color of MetaToken

When-clause InPlacement + PTArc from dependent trace place
Where-clause Trace place + TPArc to InPlacement

granularity. Thus, it can not only be defined that execution
should stop if, e.g. a certain token is streamed into a certain
place, but also if tokens occur in several different places.
Second, OCL is used to tackle the well-known problem of
debugging environments that programs execute forward in
time whereas programmers must reason backwards in time

to find the origin of a bug. For this, a dedicated debugging
console based on the Interactive OCL Console of Eclipse
(cf. Fig. 7(d)) is supported, providing several pre-defined
debugging functions to explore and to understand the history
of a transformation by determining and tracking paths of
produced tokens.

Interactive DebuggerInteractive Debugger

Interactive Debugger Console

QVT Relations

transformation umlToRdbms(uml:SimpleUML,
rdbms:SimpleRDBMS){

top relation ClassToTable{
cn: String;
checkonly domain uml
c:Class{ name=cn,
kind=’Persistent’};

enforce domain rdbms
t:Table{name=cn};

where {
AttributeToColumn(c,t);

}
}
relation AttributeToColumn{

an, pn :String;
checkonly domain uml c:Class{

attribute=
a:Attribute {
name=an,
type=
p:PrimitiveDataType{
name=pn}}};

enforce domain rdbms
t:Table{
column=
cl:Column {
name=an,
type=pn}};

where{
SuperAttributeToColumn(c,t);

}
}

relation SuperAttributeToColumn{
checkonly domain uml c:Class{

generalOpposite=
sc:Class {}};

enforce domain rdbms
t:Table {};

where{
AttributeToColumn(sc, t);

}
}

a

cTROPIC

selectedElement().getCreator()
result: Transition (d)
result.getInputTokens(selectedElement())
result: Sequence(Token) {t1, t2, ..., t7}
result -> first().getCreator()
result: Transition (e)

d

UMLModelElement_
name

Class_kind

AttributeToColumn

ClassToTable

Person
C1

Student
C2

Tutor
C3

Persistent
Persistent

NonPersistent

Source Target

trace

trace

structural feature mapping

1

domain object mapping

structural feature mapping

UMLModelElement

C1 C2 C3

Class

PackageElement

Classifier

RModelElement

Table

C1 C2

RModelElement_name

Person
C1

Attribute

PrimitiveDatatype

Class_attribute

Attribute_type

Class_general

Class_generalOpposite

A2
A3

Pr1 Pr2

name
A1

registrNo
A2

lecture
A3

String
Pr1

Integer
Pr2

Column

Table_column

Column_type

A1 A2 A3

name
A1

lecture
A3

String
A1

Integer
A2

c:Class

name=cn

t:Table

name=cn

domain object mapping

name=cn

a:Attribute{

name=an

column=

type=pn

SuperAttributeToColumndomain object mapping

recursive call
trace

sc:Class

A2 A3

Integer
A2

String
A3

String
A3

PackageToSchema…………….

...

attribute=

type=

p:PrimitiveDT{

name=pn

generalOpp=

A1

cl:Column

kind=‘Persistent‘

kind=‘Persistent‘

Student
C2

lecture
A3

registrNo
A2

2

3

4

5
6

registrNo
A2

name=an

b

Figure 7. Debugging Environment showing the transformation of Attributes to Columns

Table II
OCL OPERATIONS FOR DEBUGGING

Context QCL Operation Description

Place getMatchingTokens:Set(Token) tokens that match a transition
getMismatchedTokens:Set(Token) tokens not matching a transition

Token getCreator:Transition transition that created a token

Transition getInputTokens(Token):Set(Token) source tokens of a transition
whyNotActivated:Set(InPlacement) InPlacements that fail

InPlacement getMatchingTokens:Set(Token) tokens that match a condition

B. Debugging Environment By-Example

Fig. 7 shows the QVT Relations code and the correspond-
ing TROPIC specification for transforming Attributes
to Columns to complete our transformation example of
Section II-B. As mentioned before, in addition to the sim-
ple one-to-one correspondence between Attributes and
Columns (cf. relation AttributeToColumn), the inheritance
hierarchy should be flattened, i.e., Attributes of base
classes should be transformed to Columns of the table of
the inherited class (cf. relation SuperAttributeToColumn).
For demonstration purposes, the transformation specifica-
tion, however, contains a bug. In the following, it is de-
scribed how this bug is observed, tracked, and fixed using
the TROPIC debugging environment.

Observing Facts. Observation determines facts about
what has happened in a concrete run of a transformation.
The first possibility of observing facts within our environ-
ment is either to simulate the transformation and watch for
unexpected behavior or to debug the transformation step-by-
step. In order to detect unexpected behavior automatically,
the resulting target model can be compared to an expected
target model to identify wrong or missing target tokens.
If such faulty parts of the target model are detected, the
owning target places as well as the transitions that produce
tokens in these places are highlighted to ease finding the
reasons for the errors. Comparing the resulting elements of
the UML2Relational example, i.e., the tokens in the target
places in Fig. 7, to the expected ones depicted in the bottom
right part of Fig. 2, one can easily recognize that too many
columns have been created. Therefore, the place Column as
well as transition (4) targeting this place are highlighted. Due
to the incorrect amount of columns, all places representing
properties of a column contain errors too and are therefore
highlighted as well. By examining the tokens in the place
Column, one can see that it contains tokens of the non-
persistent class Tutor (labeled with A3). However, it is
not obvious why these additional tokens are created as there
are possibly many tokens and transitions involved in their
creation.

Tracking Origins. Once an error has been observed dur-
ing debugging, the origin has to be discovered by reasoning
backwards in time, questioning e.g, why the tokens labeled

with A3 in the place Column have been created. The
graphical representation shows that the tokens have been
created by transition (4) but we do not know which source
tokens were used to create exactly these target tokens. To
get this information, the transformation designer may use the
interactive debugging console. Within this console, s/he can
use standard OCL functions and pre-defined OCL debugging
functions to formulate queries that can be invoked on the
runtime model, i.e., on the TROPIC representation.

In our example, the transformation designer selects the
bottom right token labeled with A3 of the place Column,
representing a wrongly created column lecture and in-
vokes the function getCreator (cf. line 1 in the debug-
ging console) which highlights the transition (4) in the editor
and additionally returns the result of the function in the de-
bugging console. This transition receives an input token from
a trace place (represented by the topmost LHS metatoken)
which is filled by two transitions, namely by transition (3)
and (6). Therefore, it is not clear which one of these two
transitions is responsible for providing the trace token used
for creating the selected Column token. To determine the
responsible transition, the developer invokes the function
getInputTokens(selectedElement) on transition
(4) (cf. line 2 in the debugging console) returning a se-
quence of input tokens which has been bound to produce
the selectedElement. The elements in this sequence
are ordered regarding to their graphical location within
the transition, thus the first token in the sequence is the
token that matched the topmost LHS metatoken. To get this
token, the transformation designer applies the standard OCL
function first() on the previously computed sequence
which returns the single trace token. Now, the transformation
designer again applies the function getCreator() to
determine which transition is responsible for producing this
trace token, which is transition (5), as transition (6) only
streams the token through. Taking a closer look on transi-
tions (5), one can see that this transition uses tokens of the
wrong source place, namely Class_generalOpposite
instead of Class_general (see error sign in Figure 7),
being the origin of the error. The respective QVT domain
pattern selects the wrong class which is then handed to
the dependent AttributeToColumn relation adding the

Table III
POSSIBLE OPERATIONS FOR BUG FIXING

QVT Concept TROPIC Concept Add Del Edit

RelationTransformation Net x x x
TypedModel Place x x x
n.a. Token X X X
Relation TropicUnit ∼ ∼ X
RelationDomain Arc ∼ ∼ x
DomainPattern Transition ∼ ∼ X
TemplateExp/PropertyTemplateItem Placement/MetaToken X X X

Xapplicable and recommended, ∼ applicable but not recommended x not applicable

wrong columns to a table. This error results in the fact that,
e.g., for the class Student the derived class Tutor is
selected instead of the base class Person and therefore a
column Lecture is created. The currently available pre-
defined OCL operations on TROPIC elements are outlined
in Table II.

Fixing Bugs. After finding the origins of a bug, it is
possible to adapt the transformation logic during debugging
directly in TROPIC and propagate the changes back to QVT
Relations. We mainly focus on bugs in DomainPatterns, as
fixing those bugs reflects minor changes in QVT Relations
and thus can be updated in the debugging environment
during the debugging process.

As described in Section II-B and depicted in Fig. 4, the
graph of the domain pattern corresponds to a metamodel and
is represented in TROPIC in terms of Placements aggregated
in Transitions. When fixing a bug in TROPIC we have
to ensure that the graph remains valid. For example, if a
new precondition should be added to a transition it must be
ensured that the new InPlacement connects to a place which
represents a possible new leave in the graph. Assuming the
class Person as domain object, it would be possible to add
an InPlacement representing the link attribute but it is
not possible to ask for the name property of an attribute
without adding the link, since name is no possible leave.
To hide this complexity from the transformation designer,
every transition is aware of its domain object and the graph
in terms of the already contained Placements. Thus, it is
possible to calculate a list of possible new leaves which is
presented to the transformation designer during bug fixing.
By choosing an entry of the list, the corresponding Place-
ment, the MetaToken as well as the Arc to the corresponding
place are created automatically and added to the transition in
TROPIC and as additional condition in the QVT Relations
specification. If an element of a domain pattern is deleted,
all descendent child nodes in the graph are deleted as
well. Please note that we do not allow the deletion of the
domain object as we would otherwise loose the possibility
to calculate the graph. If such a fundamental modification
is necessary, the domain must be changed in the QVT
Relations specifications and debugging must be restarted.
Furthermore during debugging it is impossible to change

the metamodels of the transformation as this would result in
serious changes in the transformation logic. Although model
elements are not represented in QVT Relations, we see that
it is also possible to add, delete, and edit tokens, which is es-
pecially useful to alter the source models during debugging,
e.g., by specifying missing attributes. Summarizing, Table
III shows which bug fixing actions are allowed on which
QVT concept.

In our example too many Columns have been cre-
ated, because of the wrong specified reference. To col-
lect the attributes of the base classes, we first delete
the wrong generalOpposite restriction of transi-
tion (e) and then add the correct general restric-
tion which actually represents the link to the parent
class by selecting the appropriate entries in the pre-
sented list. In the QVT Relations specification there-
fore the restriction generalOpposite=sc:Class{}
is updated to general=sc:Class{} in the relation
SuperAttributeToColumn.

V. RELATED WORK

The main objective of this paper is to enhance the debug-
gability of QVT Relations by translating them into a CPN
based formalism. Therefore, we consider five orthogonal
threads of related work. First, we point out the debugging
support of existing QVT Relations environments. As we
transform QVT Relations to Colored Petri nets we secondly
examine other translational approaches and thirdly take a
look if there are other approaches available using Petri
nets for model transformation. After comparing debugging
support of other transformation languages to our approach
we finally present related work concerning methods for
debugging model transformations in general.

QVT Relation environments. As mentioned by Kurtev
et al. [4], tool support for QVT is still in its infancy. The
most advanced tool seems to be mediniQVT1 which also
provides some basic debugging features. These features are,
however, fully based on the Eclipse debugger which allows
transformation designers to inspect variables in a certain
execution state only. This makes it hard to recognize what
is really going on during a transformation, because neither

1http://projects.ikv.de/qvt

the output model nor the trace information can be accessed
before the transformation has been finished. Other QVT
Relations tools such as ModelMorf2 or MOMENTQVT3 do
not provide debugging facilities.

Translational approaches for QVT Relations. Besides
dedicated QVT Relations environments, so-called transla-
tional approaches have been proposed for executing QVT
Relations on top of existing technologies. Jouault and Kurtev
[13] propose to execute QVT Relations within the ATL
Virtual Machine (ATL VM), by transforming QVT Relations
into ATL VM code. Romeikat et al. [21] transform QVT
Relations into the QVT Operational Mappings language and
execute the result with tools such as SmartQVT4. These
two approaches transform QVT Relations into code on a
lower level of abstraction and seem to be therefore not
suitable for debugging QVT Relations adequately. Greenyer
and Kindler [22] propose to transform QVT Relations into
Triple Graph Grammars (TGGs) which can be executed in
TGGs tools such as Fujaba5. Because QVT Relations and
TGGs are conceptually and also syntactically similar, one
can remain on the same abstraction level. The debugging
problem is, however, shifted only, since TGGs are not
directly executable within existing tools. Again, TGGs have
to be translated into executable instructions which are not
suitable for debugging QVT Relations.

Petri nets and model transformations. The relatedness
of Petri nets and graph rewriting systems has also induced
some impact in the field of model transformation. Especially
in the area of graph transformations some work has been
conducted that uses Petri nets to check formal properties of
graph production rules. Thereby, the approach proposed in
[23] translates individual graph rules into a place/transition
net and checks for its termination. Another approach is
described in [24], which applies a transition system for
modeling the dynamic behavior of a metamodel. Compared
to these two approaches, our intention to use Petri nets
is fundamentally different. While these two approaches are
using Petri nets as a back-end for automatically analyzing
properties of transformations, we are using Petri nets as a
front-end to foster debuggability as well as to explore formal
properties.

Debugging Support and Understandability of Trans-
formation Languages. In general there is hardly any debug-
ging support for transformation languages. Most often only
low-level information of the execution engine is provided,
but an according traceability to the corresponding higher-
level mapping specifications is missing. For example, in
the Fujaba environment, a plugin called MoTE [25] com-
piles TGG rules [26] into Fujaba story diagrams that are
implemented in Java, which obstructs a direct debugging

2http://www.tcs-trddc.com/ModelMorf
3http://moment.dsic.upv.es/ content/view/34/75/
4http://smartqvt.elibel.tm.fr/
5http://wwwcs.upb.de/cs/fujaba

on the level of TGG rules. In [27] the generated source
code is annotated accordingly to allow the visualization
of debugging information in the generated story diagrams,
but not on TGG level. Additional to that, Fujaba supports
visualization of how the graph evolves during transforma-
tion, and allows interactive application of transformation
rules. Furthermore, approaches like VIATRA [28] producing
debug reports that trace an execution, only, are likewise
considered inadequate for debugging since a minimum re-
quirement for the debugging should be the ability to debug
at least whole transformation rules, by which we refer to
as the stepwise execution and inspection of the execution
state. The debugging of ATL [29] is based on the step-
wise execution of a stack-machine that interprets ATL byte-
code, which also allows observing the execution of whole
transformation rules. SmartQVT and TefKat [30] allow for
similar debugging functionality.

What sets TROPIC apart from these approaches is that all
debugging activities are carried out on a single integrated
formalism, without needing to deal with several different
views. Furthermore, this approach is unique in allowing
interactive execution not only by choosing rules or by
manipulating the state directly, but also by allowing to
modify the structure of the net itself. This ability for live-
programming enables an additional benefit for debugging
and development: one can correct errors (e.g., stucked to-
kens) in the net right away without needing to recompile
and restart the debug cycle.

Concerning the understandability of model transforma-
tions in terms of a visual representation and a possibility
for a graphical simulation, only graph transformation ap-
proaches like, e.g., Fujaba allow for a similar functionality.
However, these approaches neither provide an integrated
view on all transformation artifacts nor do they provide
an integrated view on the whole transformation process in
terms of the past state, i.e., which rules fired already, the
current state, and the prospective future state, i.e., which
rules are now enabled to fire. Therefore, these approaches
only provide snapshots of the current transformation state.

Debugging model transformations. Hibberd et al. [31]
present forensic debugging techniques for model transfor-
mations by utilizing the trace information of model transfor-
mation executions for determining the relationships between
source elements, target elements, and the involved transfor-
mation logic. With the help of such trace information, it
is possible to answer debugging questions implemented as
queries which are important for localizing bugs. In addition,
they present a technique based on program slicing for
further narrowing the area where a bug might be located.
The work of Hibberd et al. is orthogonal to our approach,
because we are using live debugging techniques instead
of forensic mechanisms. However, our approach allows to
answer debugging questions based on the visualization of
the path a source token has taken to become a target token.

VI. CONCLUSION AND FURTHER WORK

In this paper we proposed a graphical debugger for QVT
Relations based on TROPIC. By accomplishing debugging
in TROPIC, one gains several advantages, being, firstly, the
high level of abstraction, secondly, the explicit operational
semantics and thirdly, the homogenous representation of all
transformation artifacts. Furthermore we showed a debug-
ging environment helping programmers to observe facts, find
the origins of errors and correct them in the debugger itself.

Several issues for future work remain open. As already
mentioned the QVT standard defines the operational seman-
tics of QVT Relations twofold, leading to the situation there
exist different implementations of the operational semantics
in different tools. Currently, our translation is based on
the implementation of mediniQVT, but we are planning
to investigate the implementations of different tools. One
part of QVT Relations, that has been neglected so far is
the integration of queries in the TROPIC representation.
Furthermore, as TROPIC is based on a variant of CPNs
we will explore if Petri Net properties can be used to check
for potential shortcomings in QVT Relations specifications.
Additionally, the current visualization of the transforma-
tion logic by means of transitions containing a set of
InPlacements and OutPlacements can easily become hard to
comprehend when domain patterns grow larger. Therefore,
other visualization techniques should be employed, e.g., by
embedding object diagrams for describing the pre- and post-
conditions of transitions.

REFERENCES

[1] Object Management Group, “MDA Guide Version 1.0.1,”
http://www.omg.org/docs/omg/03-06-01.pdf, 2003.

[2] ——, “Meta Object Facility (MOF) 2.0 Query/View/-
Transformation Specification,” www.omg.org/docs/ptc/07-07-
07.pdf, 2007.

[3] P. Wadler, “Why no one uses functional languages,” SIGPLAN
Not., vol. 33, no. 8, pp. 23–27, 1998.

[4] I. Kurtev, “State of the Art of QVT: A Model Transformation
Language Standard,” in Applications of Graph Transforma-
tions with Industrial Relevance: Third International Sympo-
sium, AGTIVE 2007, Kassel, Germany. Springer, 2007, pp.
377–393.

[5] P. Stevens, “A Landscape of Bidirectional Model Transfor-
mations,” in Generative and Transformational Techniques
in Software Engineering II: Int. Summer School. Braga,
Portugal: Springer LNCS 5235, 2007, pp. 408–424.

[6] M. Wimmer, A. Kusel, J. Schoenboeck, G. Kappel, W. Rets-
chitzegger, and W. Schwinger, “Reviving QVT Relations:
Model-based Debugging using Colored Petri Nets,” in Pro-
ceedings of the 12th International Conference on Model
Driven Engineering Languages and Systems (MoDELS’09),
to be published, Denver, USA, 2009.

[7] T. Reiter, M. Wimmer, and H. Kargl, “Towards a runtime
model based on colored Petri-nets for the execution of model
transformations,” in Proceedings of 3rd Workshop on Models
and Aspects - Handling Crosscutting Concerns in MDSD,
Berlin, Germany, 2007, pp. 19–23.

[8] G. Kappel, H. Kargl, T. Reiter, W. Retschitzegger,
W. Schwinger, M. Strommer, and M. Wimmer, “A Frame-
work for Building Mapping Operators Resolving Structural
Heterogeneities,” in Proceedings of Information Systems and
e-Business Technologies (UNISCON’2008). Klagenfurth,
Austria: Springer LNBIP 5, 2008, pp. 158–174.

[9] M. Wimmer, A. Kusel, T. Reiter, W. Retschitzegger,
W. Schwinger, and G. Kappel, “Lost in Translation? Trans-
formation Nets to the Rescue!” in Proceedings of the 8th
Int. Conf. on Information Systems Technology and its Appli-
cations. Sydney, Australia: Springer LNBIP 20, 2009, pp.
315–327.

[10] M. Wimmer, T. Reiter, H. Kargl, G. Kramler, E. Kapsammer,
W. Retschitzegger, W. Schwinger, and G. Kappel, “Lifting
metamodels to ontologies - a step to the semantic integration
of modeling languages,” in Proceedings of the 9th Interna-
tional Conference on Model Driven Engineering Languages
and Systems (MODELS’06). Genua, Italy: Springer LNCS
4199, 2006, pp. 528–542.

[11] Object Management Group, “OCL Specification Version 2.0,”
http://www.omg.org/docs/ptc/05-06-06.pdf, 2005.

[12] J. W. Lloyd, “Practical Advantages of Declarative Program-
ming,” in Proceedings of the Joint Conference on Declarative
Programming (GULPRODE’94), Peñiscola, Spain, 1994, pp.
18–30.

[13] F. Jouault and I. Kurtev, “On the architectural alignment of
ATL and QVT,” in SAC ’06: Proceedings of the 2006 ACM
Symposium on Applied Computing. Dijon, France: ACM,
2006, pp. 1188–1195.

[14] K. Jensen and L. M. Kristensen, Coloured Petri Nets -
Modeling and Validation of Concurrent Systems. Springer,
2009.

[15] P. Stevens, “Bidirectional Model Transformations in QVT:
Semantic Issues and Open Questions,” in Proceedings of the
10th International Conference on Model Driven Engineering
Languages and Systems (MODELS’07). Nashville, USA:
Springer LNCS 4735, 2007, pp. 1–15.

[16] ——, “A simple game-theoretic approach to checkonly QVT
Relations,” in Proceedings of ICMT2009 - International
Conference on Model Transformation Theory and Practice
of Model Transformations. Zurich, Switzerland: Springer
LNCS 5563, 2009, pp. 165–180.

[17] T. Reiter, “T.r.o.p.i.c.: Transfromations on petri nets in color,”
Ph.D. dissertation, Johannes Kepler University Linz, Faculty
of Bioinformatics, Februar 2008.

[18] F. Legler and F. Naumann, “A Classification of Schema
Mappings and Analysis of Mapping Tools,” Proceedings of
Datenbanksysteme in Business, Technologie und Web (BTW
2007), Germany, Aachen, 2007.

[19] A. Kusel, W. Schwinger, M. Wimmer, and W. Retschitzeg-
ger, “Common Pitfalls of Using QVT Relations - Graphical
Debugging as Remedy,” in Proceedings of the 14th IEEE
International Conference on Engineering of Complex Com-
puter Systems (ICECCS 2009). Potsdam, Germany: IEEE
Computer Society, 2009, pp. 329–334.

[20] A. Zeller, Why Programs Fail: A Guide to Systematic Debug-
ging. Morgan Kaufmann, October 2005.

[21] R. Romeikat, S. Roser, P. Müllender, and B. Bauer, “Transla-
tion of QVT Relations into QVT Operational Mappings,” in
Proceedings of 1st International Conference on Theory and
Practice of Model Transformations. Zurich, Switzerland:
Springer LNCS 5063, 2008, pp. 137–151.

[22] J. Greenyer and E. Kindler, “Reconciling TGGs with QVT,”
in Proceedings of 10th International Conference on Model
Driven Engineering Languages and Systems (MODELS’07).
Nashville, USA: Springer LNCS 4735, 2007, pp. 16–30.

[23] D. Varró, S. Varró-Gyapay, H. Ehrig, U. Prange, and
G. Taentzer, “Termination Analysis of Model Transformations
by Petri Nets,” in Proceedings of 3rd International Confer-
ence on Graph Transformations. Natal, Brazil: Springer
LNCS 4961, 2006, pp. 260–274.

[24] J. de Lara and H. Vangheluwe, “Translating Model Simulators
to Analysis Models,” in Proceedings of the International Con-
ference on Fundamental Approaches to Software Engineering
(FASE’08). Budapest, Hungary: Springer LNCS 4961, 2008,
pp. 77–92.

[25] R. Wagner, “Developing Model Transformations with Fu-
jaba,” in Proceedings of the 4th International Fujaba Days
2006, Bayreuth, Germany, 2006, pp. 79–82.

[26] A. Koenigs, “Model Transformation with Triple Graph Gram-
mars,” in Proceedings of Model Transformations in Practice
Workshop of MODELS’05. Montego Bay, Jamaica: Springer
LNCS 3844, 2005.

[27] L. Geiger, “Model Level Debugging with Fujaba,” in Proceed-
ings of 6th International Fujaba Days, Dresden, Germany,
September 2008, pp. 23–28.

[28] A. Balogh and D. Varró, “Advanced model transformation
language constructs in the VIATRA2 framework,” in SAC
’06: Proceedings of the 2006 ACM Symposium on Applied
Computing. Dijon, France: ACM, April 2006, pp. 1280–
1287.

[29] F. Jouault and I. Kurtev, “Transforming Models with ATL,” in
Proceedings of Model Transformations in Practice Workshop
of MODELS’05. Montego Bay, Jamaica: Springer LNCS
3844, 2005, pp. 128–138.

[30] M. Lawley and J. Steel, “Practical Declarative Model Trans-
formation with Tefkat,” in Proceedings of Model Transforma-
tions in Practice Workshop of MODELS’05. Montego Bay,
Jamaica: Springer LNCS 3844, 2005, pp. 139–150.

[31] M. Hibberd, M. Lawley, and K. Raymond, “Forensic De-
bugging of Model Transformations,” in Proceedings of the
10th International Conference on Model Driven Engineering
Languages and Systems (MODELS’07). Nashville, USA:
Springer LNCS 4735, 2007, pp. 589–604.

