
TROPIC - A Framework for Building Reusable
Transformation Components?

Angelika Kusel

Information Systems Group
Johannes Kepler University Linz

Altenberger Straße 69, 4040 Linz, Austria
kusel@bioinf.jku.at

Abstract. Model transformation languages are crucial for the success of
Model-Driven Engineering (MDE), being comparable to the importance
of compilers for high-level programming languages. The support of large
transformation scenarios, however, is still in its infancy since the develop-
ment of transformations currently takes place on a low-level of abstrac-
tion, lacking appropriate reuse mechanisms. We propose a framework
called TROPIC (Transformations on Petri Nets in Color) for developing
model transformations which tackles these limitations. Firstly, TROPIC
allows to specify model transformations on different abstraction levels
by providing an abstract mapping view and a concrete transformation
view. Secondly, TROPIC facilitates reusability by providing an extensi-
ble library of reusable transformation components leading to increased
productivity of model transformation development and to higher quality
of the resulting model transformations.

Key words: Generic Model Transformations, Reuse, Abstraction

1 Introduction and Problem Description

Model-Driven Engineering (MDE) places models as first-class artifacts through-
out the software lifecycle, leading to a change from the “everything is an object”
paradigm to the “everything is a model” paradigm [1]. In this respect, model
transformations play a vital role, representing the key mechanism for vertical
transformations like the generation of code or documentations and horizontal
transformations like translations, augmentations and alignments of models, to
mention just a few. Several kinds of dedicated model transformation languages
have emerged (see [2] for a comparison), which allow specifying and executing
transformations between source and target metamodels and their correspond-
ing models, respectively. None of these languages, however, not even the QVT-
standard [3] proposed by the OMG, became generally accepted as a state-of-the-
art approach. This rare adoption of model transformation languages in practice
seems to be, among others, due to the following reasons. Firstly, existing model
transformation languages do not provide appropriate abstraction mechanisms to
deal with the complexity of overcoming structural heterogeneities between dif-
ferent metamodels, a form of heterogeneity well known in the area of database

?
This work has been partly funded by the Austrian Science Fund (FWF) under grant P21374-N13.



2 A. Kusel

systems when creating mappings between different schemata [4]. Secondly, cur-
rent approaches lack suitable reuse mechanisms in order to reduce the high and
error-prone effort of specifying recurring transformations.

2 Proposed Solution

To alleviate the above mentioned problems, a framework for building reusable
transformation components is proposed (denoted as mapping operators in the
following) which are used to resolve recurring transformation problems in model
translation scenarios (cf. Figure 1 (a)). The framework provides two views on a
transformation problem, namely an abstract mapping view which declaratively
describes the semantic correspondences on a high-level of abstraction and a
transformation view which reveals all details of the transformation logic.

Class AClass A Class XClass X

Class BClass B Class YClass Y

attr cols

Class

Attribute

Table

type:String

Column

Source Metamodel

Target Metamodel

Transformation NetTransformation Net

Source PlacesSource Places Target PlacesTarget PlacesTransformation LogicTransformation Logic

Class Table

attr

Attribute
Column

cols

C2C

R2R

generate
generate

Source Model Target Model

conforms to conforms to

import export
NameID NameID

Table Person

ID:Integer

Name:String

Person

ID:Integer

Name:String

Person

Class Person

C2CC2C

R2RR2R

Legend

LHS RHS
Mapping Model

One Colored Place

Two Colored Place

One Colored Token

Two Colored Token

Transition

C2CC2C Mapping Operator

Required Interface

Provided Interface

name:String

Type

type

C2CC2CC2C

C2AC2A

type

Type

name

type

C2C

C2A

TROPIC Development
Environment

Class AClass A Class XClass X

Class BClass B Class YClass Y

attr cols

Class

Attribute

Table

type:String

Column

Source Metamodel

Target Metamodel

C2CC2C

R2RR2R

name:String

Type

type

C2CC2CC2C

C2AC2A

Class AClass A Class XClass X

Class BClass B Class YClass Y

attr cols

Class

Attribute

Table

type:String

Column

Source Metamodel

Target Metamodel

C2CC2C

R2RR2R

name:String

Type

type

C2CC2CC2C

C2AC2A

R2RR2R

C2CC2CC2C

C2AC2A

Extensible Mapping 
Operator Library

Pattern Language

C2C

A2C

R2C
R2A

C2A

Transformation Scenarios

usesextends

derive

describesmay extend

(b)(a)

Fig. 1. (a) Mapping Framework (b) Multiple Views on a Transformation Problem

Mapping View. The mapping view level comprises mapping operators
which connect source metamodel elements to target metamodel elements. These
mapping operators encapsulate recurring transformation logic and are offered to
a transformation designer by means of an extensible library. As a representation
formalism, we intend to use a subset of the UML 2 component diagram con-
cepts due to the following reasons. Firstly, this formalism supports a declarative
description of mappings. Secondly, a black-box view for transformation logic is
provided. And finally, the component’s provided and required interfaces enable
the composition of mapping operators in order to resolve complex structural
heterogeneities. These interfaces are typed by the meta-metamodel datatypes



TROPIC 3

(i.e. in Ecore EClass, EReference and EAttribute), allowing mapping operators
to be bound to arbitrary metamodels.

In order to exemplify our approach, Figure 1 (b) illustrates the overall idea
from a user’s point of view. For this, a simple example is used, transforming
some basic object-oriented concepts (Classes, Attributes and Types) into
corresponding relational concepts (Tables and Columns). In order to resolve
the occurring structural heterogeneities, three different mapping operators are
used, namely a C2C-component (transforming class instances, e.g., of the class
Attribute into instances of the class Column), a R2R-component (transforming
reference instances, e.g., of the reference attr into instances of the reference
cols) and a C2A-component (transforming class instances into attribute in-
stances, e.g., of the class Type into instances of the attribute type).

Transformation View. On basis of this mapping view, an executable trans-
formation view is generated. For this, each mapping operator of the mapping
view must have a well-defined operational semantics in the form of some exe-
cutable piece of transformation logic. For realizing the transformation view, we
are planning to use a modified form of Coloured Petri Nets [5], in the following
denoted as Transformation Nets [6] due to the following reasons. Firstly, Trans-
formation Nets enable the execution of the transformation without introducing
an impedance mismatch between the mapping view and the transformation view
as each mapping operator can be realized by an independent set of transitions
and places without the need for an explicit control flow between the mapping
operators. Secondly, this formalism allows for a homogenous representation of
all artifacts involved in a model transformation, thus being especially suited for
gaining an understanding of the intricacies of a specific model transformation.
Finally, since Transformation Nets are already executable, an explicit runtime
model is provided facilitating the debugging of model transformations [7].

3 Expected Contributions

Three main contributions are expected which foster reuse and abstraction allow-
ing for larger transformation scenarios. Firstly, abstract reuse will be supported
by the development of a pattern language for model transformations. Subse-
quently, concrete reuse will be supported by offering an extensible mapping op-
erator library. Finally, abstraction will be facilitated through a development
environment, that can be used to realize a mapping view on a concrete transfor-
mation problem and generate the corresponding exeutable transformation logic.

Pattern Language for Model Transformations. A major task will be
the investigation of existing model transformations to build up a catalog of
transformation patterns for recurring transformation problems in the form of
a textual description comprising the standard parts of a design pattern, i.e.,
name, description as well as concrete implementation. For identifying these
patterns, different sources will be investigated like (1) existing lists of pat-
terns for resolving structural heterogeneities [8], [9], (2) existing model transfor-
mations in the ATL model transformation zoo (www.eclipse.org/m2m/atl/atl-
Transformations/), and (3) transformation scenarios between metamodels for



4 A. Kusel

structural domains (e.g., ER models and UML class models) as well as for be-
havioral domains (e.g., BPMN models and BPEL models). Finally, common
problems in the area of information integration will be investigated since the
mapping of schemas is closely related to the mapping of metamodels whereby,
[10] and [11] provide starting points. On top of the resulting list of found pat-
terns, a useful categorization will be established resulting in a pattern language.

Extensible Mapping Operator Library. It goes without saying, that
the resulting library of mapping operators being part of the pattern language
can not be complete with regard to solving arbitrary transformation problems.
Therefore, the transformation designer must be able to define his/her own map-
ping operators leading to the need of a mapping operator editor which allows to
extend the library of existing mapping operators by user-defined ones and thus
potentially extending the pattern language. User-defined mapping operators can
be defined from scratch or by reusing existing ones. In this respect, different
reuse mechanisms should be possible like building a new operator by (1) black-
box reuse comprising the sequencing and/or nesting of existing ones or by (2)
white-box reuse, i.e. inheriting from an existing one and further refining it.

Development Environment. Finally, mapping operators must be applica-
ble in concrete model transformation scenarios representing the mapping view
of a transformation problem. Therefore, a development environment is needed,
which allows first, to build a mapping model consisting of mapping operators
between a concrete source metamodel and a concrete target metamodel and
second, to generate the corresponding executable transformation view.

4 Related Work
Related Work is discussed along three dimensions: abstraction, abstract reuse
and concrete reuse.

Abstraction. The ATLAS Model Weaver (AMW) [12] offers abstraction
mechanisms by the definition of simple correspondences (denoted as weaving
operators) between two metamodels. The operational semantics of the weaving
operators is determined by a higher-order transformation that takes a weaving
model as input and generates model transformation code. The weaving models
are compiled into low-level transformation code in terms of ATL which is in
fact a mixture of declarative and imperative language constructs. Thus, it is
difficult to debug a weaving model in terms of weaving operators, because they
do not explicitly remain in the model transformation code. Moreover, although
it is possible to add new weaving operators, the specification of the operational
semantics thereof is cumbersome, since the whole higher-order transformation
must be adapted. Finally, a weaving operator always connects source metamodel
elements to target metamodel elements, so it is not possible to realize complex
transformation logic by the composition of operators.

Abstract Reuse. Abstract reuse in the form of transformation patterns is
still in its infancy. A first list of patterns in the context of graph transformations
has been proposed by Agrawal et al. [8]. Another initial list of patterns origi-
nating from QVT Relations specifications has been collected by Iacob et al. [9].
These two lists can act as an initial input for our pattern language.



TROPIC 5

Concrete Reuse. Typically, model transformation languages, e.g., ATL [13]
and QVT [3], allow to define transformation rules based on types of the corre-
sponding metamodels. Consequently, model transformations are not reusable
and must be defined from scratch again and again. One exception is the ap-
proach of Varró et al. [14] who define a notion of generic transformations within
their VIATRA2 framework, which in fact resembles the concept of templates in
C++ or generics in Java. Another approach which is now integrating the idea of
genericity are TGGs [15]. Therefore, VIATRA2 as well as TGGs also provide a
way to implement reusable model transformations and could be principally used
to implement our mapping operators. Nevertheless, they do not foster an easy
to debug execution model as is the case with our proposed Transformation Nets.

5 Evaluation

The evaluation of our approach is based on the following four research questions:
Question 1: Are the found patterns useful/applicable in diverse scenarios?

Concerning this question, the following strategy will be applied. The case studies
consisting of numerous transformation examples as described in Section 3 will
be divided into a training set and a test set. The training set will be taken
for finding recurring transformation patterns. Afterwards the test set will be
realized with the found patterns in the training set and evaluated on the basis
of corresponding reuse metrics [16].

Question 2: Does the approach lead to a better understanding of large sce-
narios? Regarding this issue, an empirical study will be conducted with students
from our model engineering courses (around 200 master students every year).
The aim of this empirical study is to evaluate whether the abstract mapping view
leads to a better understanding of a large problem. Therefore, the students will
be divided into two subgroups, whereby one subgroup gets the transformation
definition in our proposed formalism and the other subgroup gets the transfor-
mation definition in a low-level transformation language. The understandability
will then be evaluated based on questionnaires.

Question 3: Is productivity of the development process increased by the usage
of reusable components? Concerning this point, again an empirical study will be
conducted. Thereby, three distinct transformation approaches will be presented,
including our proposed approach. Afterwards the students will have to solve a
certain problem with each of these approaches. The productivity will then be
evaluated based on corresponding metrics.

Question 4: Is the quality in the sense of correctness of the resulting model
transformations increased by the usage of the reusable components? Regarding
the correctness of the resulting model transformations, also an empirical study
will be conducted in conjunction with the study evaluating question 3. Thereby
also the quality in terms of freedom from errors will be measured.

6 Current Status

This research effort is still in an initial stage comprising one publication [17]
which describes a first set of mapping operators. Furthermore, a complementing
research effort realizing the transformation view is currently conducted by [18].



6 A. Kusel

References

1. Bézivin, J.: On the unification power of models. Journal on Software and Systems
Modeling 4(2) (2005) 171–188

2. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3) (2006) 621–645

3. Object Management Group: Meta Object Facility (MOF) 2.0 Query/View/-
Transformation Specification. www.omg.org/docs/ptc/07-07-07.pdf (2007)

4. Kashyap, V., Sheth, A.: Semantic and schematic similarities between database
objects: A context-based approach. The VLDB Journal 5(4) (1996) 276–304

5. Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modeling and Validation of
Concurrent Systems. Springer (2009)

6. Reiter, T., Wimmer, M., Kargl, H.: Towards a runtime model based on colored
Petri-nets for the execution of model transformations. In: 3rd Workshop on Models
and Aspects-Handling Crosscutting Concerns in MDSD, Berlin, Germany. (2007)

7. Wimmer, M., Kusel, A., Schoenboeck, J., Kappel, G., Retschitzegger, W.,
Schwinger, W.: Reviving QVT Relations: Model-based Debugging using Colored
Petri Nets. In: Proc. of MoDELS ’09, Denver (2009)

8. Agrawal, A., Vizhanyo, A., Kalmar, Z., Shi, F., Narayanan, A., Karsai, G.:
Reusable idioms and patterns in graph transformation languages. Electronic Notes
in Theoretical Computer Science 127(1) (March 2004) 181–192

9. Iacob, M.E., Steen, M.W.A., Heerink, L.: Reusable model transformation patterns.
Volume 0., Los Alamitos, CA, USA, IEEE Computer Society (2008) 1–10

10. Legler, F., Naumann, F.: A Classification of Schema Mappings and Analysis of
Mapping Tools. DB-Systeme in Business, Technologie und Web 12 (2007) 449–463

11. Alexe, B., Tan, W., Velegrakis, Y.: STBenchmark: Towards a Benchmark for
Mapping Systems. Proc. of the VLDB Endowment archive 1(1) (2008) 230–244

12. Fabro, M.D.D., Bézivin, J., Jouault, F., Breton, E., Gueltas, G.: AMW: A generic
model weaver. In: Proceedings of the 1ères Journées sur l’Ingénierie Dirigée par
les Modèles, Paris, France. (2005) 10

13. Jouault, F., Kurtev, I.: Transforming Models with ATL. Model Transformations
in Practice Workshop of MODELS’05 (2005)

14. Varró, D., Pataricza, A.: Generic and meta-transformations for model transfor-
mation engineering. In Baar, T., Strohmeier, A., Moreira, A., Mellor, S., eds.:
Proc. UML 2004: 7th International Conference on the Unified Modeling Language.
Volume 3273 of LNCS., Lisbon, Portugal, Springer (October 10–15 2004) 290–304

15. Amelunxen, C., Legros, E., Schurr, A.: Generic and reflective graph transforma-
tions for the checking and enforcement of modeling guidelines. In: IEEE Sympo-
sium on Visual Languages and Human-Centric Computing. (2008) 211–218

16. Frakes, W., Terry, C.: Software reuse: metrics and models. ACM Comput. Surv.
28(2) (1996) 415–435

17. Kappel, G., Kargl, H., Reiter, T., Retschitzegger, W., Schwinger, W., Strommer,
M., Wimmer, M.: A framework for building mapping operators resolving structural
heterogeneities. In: Proc. of Information Systems and e-Business Technologies
(UNISCON’2008), Springer, LNBIP 5 (2008) 158–174

18. Schoenboeck, J.: Transformation Nets - A Runtime Model for Transformation
Languages. Doct. Symp., Models 2009, Denver, USA (2009)


