Lost in Translation?
Transformation Nets to the Rescue!

Manuel Wimmer!, Angelika Kusel?, Thomas Reiter?,
Werner Retschitzegger®, Wieland Schwinger?, and Gerti Kappel

! Vienna University of Technology, Austria
lastname@big.tuwien.ac.at
2 Johannes Kepler University, Austria
lastname@ifs.uni-linz.ac.at
3 University of Vienna, Austria
werner.retschitzeggerQunivie.ac.at

Abstract. The vision of Model-Driven Engineering places models as
first-class artifacts throughout the software lifecycle. An essential pre-
requisite is the availability of proper transformation languages allowing
not only code generation but also augmentation, migration or transla-
tion of models themselves. Current approaches, however, lack convenient
facilities for debugging and ensuring the understanding of the transfor-
mation process. To tackle these problems, we propose a novel formalism
for the development of model transformations which is based on Colored
Petri Nets. This allows first, for an explicit, process-oriented execution
model of a transformation, thereby overcoming the impedance mismatch
between the specification and execution of model transformations, be-
ing the prerequisite for convenient debugging. Second, by providing a
homogenous representation of all artifacts involved in a transformation,
including metamodels, models and the actual transformation logic itself,
understandability of model transformations is enhanced.

Key words: model transformation, runtime model, Colored Petri Nets

1 Introduction

Model-Driven Engineering (MDE) places models as first-class artifacts through-
out the software lifecycle [3]. The main promise of MDE is to raise the level
of abstraction from technology and platform-specific concepts to platform-
independent and computation-independent modelling. To fulfil this promise, the
availability of appropriate model transformation languages is the crucial factor,
since transformation languages are for MDE as important as compilers are for
high-level programming languages. Although numerous model transformation
languages have been already proposed (for a survey, cf., [4]), currently no trans-
formation language, not even the QVT (Query/View/Transformation) standard
of the OMG [1], became accepted as the state-of-the-art model transformation
language, i.e., an adoption in practice has not yet been achieved [7]. In partic-
ular, understandability and debuggability of model transformations are scarcely

2 Wimmer et al.

supported by current approaches due to the following deficiencies. First, the ar-
tifacts involved in a model transformation, i.e., models, metamodels, as well as
the actual transformation logic, are not represented in an integrated view. In-
stead, existing approaches only introduce formalisms for representing the trans-
formation logic without considering the explicit representation of models and
metamodels. Second, existing model transformation languages exhibit an inher-
ent impedance mismatch between the specification and the execution of model
transformations in terms of a one-to-many derivation of concepts. This is above
all due to the fact that they do not support an explicit runtime model for the
execution of model transformations which may be used to observe the runtime
behavior of certain transformations [7], but rather execute their transformations
on a low level of abstraction, e.g. based on a stack machine.

We therefore propose a novel formalism for developing model transformations
called Transformation Nets [14], which tackles the aforementioned limitations of
existing approaches. This formalism is based on Colored Petri Nets [8] and follows
a process-oriented view towards model transformations. The main characteristic
of the Transformation Net formalism is its ability to combine all the artifacts in-
volved, i.e., metamodels, models, as well as the actual transformation logic, into
one single representation. The possibility to gain an explicit, integrated repre-
sentation of the semantics of a model transformation makes the formalism espe-
cially suited for gaining an understanding of the intricacies of a specific model
transformation. This goes as far as to running the model transformation itself,
as the Transformation Net constitutes a dedicated runtime model, thus serving
as an execution engine for the transformation. This insight into transformation
execution particularly favors the debugging and understanding of model trans-
formations. Furthermore, Transformation Nets allow to build reusable modules
that bridge certain kinds of structural heterogeneities, which are well-known in
the area of database systems, as we have already shown in [10].

The remainder of this paper is structured as follows. Section 2 introduces
the Transformation Net formalism. The subsequent Sections 3 and 4 present
how the Transformation Net formalism is meant to be employed for concrete
transformation problems by applying the formalism to a concrete example. Sec-
tion 5 critically reflects the formalism by reporting on lessons learned from two
case studies which have been conducted. Related work is discussed in Section 6.
Finally, Section 7 gives a conclusion as well as an outlook on future work.

2 Transformation Nets at a Glance

This section introduces the Transformation Net formalism, whereby the concep-
tual architecture is shown in Figure 1. In this figure, we see a source metamodel
on the left hand-side and a target metamodel on the right-hand side. In be-
tween, the transformation logic resides describing the correspondences between
the metamodel elements. Furthermore, we see an input model conforming to the
source metamodel, as well as an output model conforming to the target meta-
model that represents the output of the transformation. The middle of Figure 1

Lost in Translation? Transformation Nets to the Rescue! 3

shows the Transformation Net which represents the static parts of the transfor-
mation (i.e. metamodels and models) as places and tokens, respectively and the
dynamic parts (i.e. the transformation logic) as appropriate transitions.

Transformation Net

Source — — Target
Metamodel. - E "';_’g;isc"’""a'“"' Target : etamodel

E Transitions g

2 L

2 2

8 ‘—-l I——’ 8

Source . -New Target

Model = Model

Fig. 1. Conceptual Architecture of Transformation Nets

Transformation Net Metamodel. The abstract syntax of the Transfor-
mation Net language is formalized by means of a metamodel (cf. Figure 2) con-
forming to the Ecore meta-metamodel, the Eclipse realization of OMG’s MOF
standard. This Transformation Net metamodel is based on Colored Petri Net
concepts [8], but represents a specialized version thereof which aims at fulfilling
the special requirements occurring in the domain of model transformations. In
particular, in order to be able to encode metamodels and models, we introduce
two kinds of places and two kinds of tokens (cf. Section 3). The second major
adaption concerns the transitions. Since transitions are used to realize the actual
transformation logic, we borrow a well established specification technique from
graph transformation formalisms [6], which describe their transformation logic
as a set of graphically encoded productions rules (cf. Section 4).

The whole Transformation Net metamodel is divided into four subpackages
as can be seen in Figure 2. Thereby the package Containers comprise the modu-
larization concepts. The package StaticElements is used to represent the static
parts of a model transformation, i.e., metamodels and models. The dynamic el-
ements, i.e., the actual transformation logic, are represented by concepts of the
package DynamicElements. The package Connectors finally is responsible for
connecting the static parts with the dynamic parts.

3 The Static Part of Transformation Nets

When employing Transformation Nets, in a first step, the static parts of a model
transformation, i.e., the metamodels and models, need to be represented in our
formalism (cf. package StaticElements in Figure 2). This incurs transitioning
from the graph-based paradigm underlying MDE into the set-based paradigm
underlying Petri Nets. The design rational behind this transition is the follow-
ing: We rely on the core concepts of an object-oriented meta-metamodel, i.e., the
graph which represents the metamodel consists of classes, attributes, and refer-
ences, and the graph which represents a conforming model consists of objects,

4 Wimmer et al.

TransformationNets
StaticElements
Containers *
Place

*
m—® Net

*
1_[name : String 0—>
—name : String ~
A P
* ! ! OneColoredToken TwoColoredToken
m ‘ OneColoredPlace ‘ ‘ TwoC ‘
—color : String —fromColor : String
—toColor : String
Connectors DynamicElements T
*
Transition 0%*‘ L MetaToken
—name : String %
—condition : String

)

[

—history : Tuple ‘ [o} ‘ OneCi Token | | TwoC Token
= —hungry : Bool || -color : String ~fromColor : String
/]\ —negated : Bool —toColor : String

Fig. 2. The Transformation Net metamodel

data values and links. Therefore we distinguish between one-colored places con-
taining one-colored tokens for representing the nodes of graphs, i.e., the objects,
and two-colored places containing two-colored tokens. These two-colored tokens
are needed for representing on the one hand links between the objects, i.e., one
color represents the source object and the other the target object, and on the
other hand attribute values, i.e., one color represents the containing object and
the other the actual value.

Running Example. For describing the Transformation Net formalism in detail,
we make use of a running example. The example is based on the Class2Relational
case study! which became the de-facto standard example for model transfor-
mations, transforming an object-oriented model into a corresponding relational
model. Due to reasons of brevity, only the most challenging part of this case
study is described in this paper, namely how to represent inheritance hierarchies
of classes within relational schemas.

Figure 3 shows UML diagrams of a simplified object-oriented metamodel as
the source, and a metamodel for relational schemas as the target, together with
a conforming source model and a to be generated target model. Thereby a ‘one-
table-per-hierarchy’ approach is followed. Arguably, in terms of O/R mapping
strategies, this may not be the most sophisticated approach. However, it makes
the model transformation much more intriguing, thanks to the transitive closure
that has to be computed over the class hierarchy. The middle layer of Figure
3 shows how the metamodel elements and model elements are represented as
places and tokens, respectively, which is discussed in the following subsections.

3.1 Representing Metamodel Elements as Places

Classes represented as One-Colored Places. Both, abstract and concrete
classes are represented as OneColoredPlaces. Subclass relationships are repre-

! http:/ /sosym.dcs.kcl.ac.uk/events/mtip05

Lost in Translation? Transformation Nets to the Rescue! 5

Source Target
N
H
2 T -
g | 1 nai.‘{ e : String
< +| Column_ pk”y?l
g nagfie : String P I
. - Stril 8
% , L Attribute typei: String y
= name : String dls [+]
isPrims:Bool |

 Column Tablecols Table

D0OC ° @

Column_name S

Table_néme
A3 Ad

m
[(Person] :
Gl e Table_pke
e »

Sy) e e
ey

C1: Table

Attribute”isPrim
[l Attriblite_type

B00D), ,,, OO

Class atir ‘Attribute_name

& A3 d_
[name] [addr Jeustip]ler

- name = "addr’
C1: Cla: isPrim = false

A2 : Attribute

¢
§

Transformation

Transformation Net

name = 'name*
isPrim = true

Models (M1)

i
isPrim = false T2 : Primitive

. name = 'Integer’
C3: Class -
»

C2: Class A3 : Attribute

Fig. 3. The Class2Relational Transformation Problem

sented by the notion of places being contained within places. The notation used
to visually represent one-colored places is a circle or an oval, which is traditionally
used to depict places in Petri Nets. Concerning the example, depicted in Figure
3, one can see that each class of the metamodels — Classifier, Primitive,
Class and Attribute of the source metamodel as well as Table, Column and
PKey of the target metamodel — got represented through a respective one-colored
place. Since Class and Primitive are subclasses of Classifier, these places
became nested into the super-place.

References and Attributes represented as Two-Colored Places. Refer-
ences and attributes are represented as TwoColoredPlaces. Notationally, two-
colored places are represented like one-colored places. However, for easier dis-
tinction, indicating that these places contain two-colored tokens, the borders of
two-colored places are doubly-lined. Considering the running example, one can
see that for each reference like e.g. Attribute.type and for each attribute like
e.g. Attribute.name a corresponding two-colored place — Attribute_type and
Attribute_name, respectively — has been created.

3.2 Representing Model Elements as Tokens

Objects represented as One-Colored Tokens. For every object, that occurs
in a source model, a OneColoredToken is produced, which is put into the place
that corresponds to the respective class in the source metamodel. The “color” is
in fact expressed by means of a unique value that is derived from the identifying

6 Wimmer et al.

attribute of the original model object. Hence, all one-colored tokens are “colored”
with a unique literal. With regard to the running example, one can see that
each instance of a class got represented through a respective one-colored token.
Therefore, e.g. the one-colored place Class contains three one-colored tokens
with distinct colors each one representing one of the three class instances Person,
Cust and RegCust.

Links and Values represented as Two-Colored Tokens. For every link
as an instance of a reference, as well as for every value as an instance of an
attribute, a TwoColoredToken is produced. The fromColor attribute of such
a token (cf. Figure 2) refers to the color of the token that corresponds to the
owning object. The toColor is given by the color of the token that corresponds to
the linked target object or the primitive data value. Notationally, a two-colored
token is represented as a ring (denoting the “from”-color) surrounding an inner
circle (denoting the “to”-color). Concerning the example, one can see that for
each link as well as for each value a two-colored token got generated. Therefore,
e.g. the two-colored place Class_par contains two tokens, in which one of these
represents the inheritance relationship between the class Cust and the class
Person and the other one represents the inheritance relationship between the
class RegCust and the class Cust.

4 The Dynamic Part of Transformation Nets

After the previous section dealt with describing how models and metamodels are
represented as the static parts of a Transformation Net, this section introduces
the dynamic parts of a Transformation Net. The actual transformation logic
is embodied through a system of Petri Net transitions and additional places
which reside in-between those places representing the original input and output
metamodels as is shown for the Class2Relational example in Figure 4. In this
way, tokens are streamed from the source places through the Transformation Net
and finally end up in target places. Hence, when a Transformation Net has been
generated in its initial state, a specialized Petri Net engine can then execute the
process and stream tokens from source to target places. The resulting tokens in
the places that were derived from elements of the target metamodel are then
used to instantiate an output model that conforms to the target metamodel.

Matching and producing model elements by firing transitions. An exe-
cution of a model transformation has two major phases. The first phase comprises
the matching of certain elements of the source model from which information is
derived that is used in the second phase for producing the elements of the out-
put model. This matching and producing of model elements is supported within
Transformation Nets by firing transitions. In Colored Petri Nets, the firing of
a transition is based on a condition that involves the values of tokens in input
places. Analogously, transitions in a Transformation Net are enabled if a certain
configuration of matching tokens is available. This configuration is expressed

Lost in Translation? Transformation Nets to the Rescue! 7

with the remaining elements of the previously shown Transformation Net meta-
model (cf. subpackage DynamicElements in Figure 2). Thereby, transitions are
represented through the Transition class. To specify their firing behavior, a
mechanism well known from graph transformation systems [6] is used. Thereby,
two patterns of input and output placeholders for tokens are defined, which rep-
resent a pre- and a post-condition by matching a certain configuration of tokens
from the input places, and producing a certain configuration of tokens in the
output places. The matching of tokens is the activity of finding a configuration
of tokens from input places which satisfies the transition’s pre-condition. Once
such a configuration is found, the transition is enabled and ready to fire, with
the colors of the input tokens to be bound to the input pattern. The production
of output tokens once a transition fires, is typically dependent on the matched
input tokens. For instance, when a transition is simply streaming a certain token,
it would produce as an output the exact same token that was matched as an
input token, thereby for example (cf. (¢) in Figure 4) transforming an attribute
of a top class into a column of the corresponding table.

Specification of transition’s firing rules. In general, transformation rules
are more complex than just transforming one element of the source model into
exactly one element of the target model. Instead, to resolve structural hetero-
geneities only specific elements fulfilling certain conditions have to be selected,
computations for deriving new values and links have to be done, and completely
new elements have to be generated in the target model which do not exist in
the source model. Considering our running example, such a complex transfor-
mation rule is e.g. that only top classes should be transformed into tables. For
describing complex transition firing rules, we have chosen the following specifi-
cation mechanism (cf. Figure 2). A transition can have a number of Placement
objects. Such a placement is merely a proxy for a certain input or output place
which is connected to the placement by an Arc object. The incoming and out-
going arcs of a transition are represented by the classes PTArc and TPArc,
which connect to its owned InPlacement and OutPlacement objects. Every
placement can then contain a MetaToken object, represented in the metamodel
through the class MetaToken and its specializations OneColoredMetaToken and
TwoColoredMetaToken. Hence, a meta token can either stand for a one-colored
or a two-colored token and can be used in two different ways:

— Query Tokens: Query tokens are meta tokens which are assigned to input
placements. Query tokens can either stand for one-colored or two-colored to-
ken configurations, whose colors represent variables that during matching are
bound to the color of an actual input token. Note that the colors of query
tokens are not the required colors for input tokens, instead they describe color
combination patterns that have to be fulfilled by input tokens. Normally, query
tokens match for existence of input tokens but with the concept of negated
input placements it is also possible to check for the non-existence of certain to-
kens. For example, this is required in our running example to find top classes,
because a top class is a class which does not have an outgoing par link to
another class.

8 Wimmer et al.

— Production Tokens: Output placements contain so-called production tokens
which are equally represented through the class MetaToken and its subclasses.
For every production token in an output placement, a token is produced in
the place that is connected to the output placement via an outgoing arc. The
color of the produced token is defined by colors that are bound to the colors
of the input query tokens. However, it is also possible to produce a token of
a not yet existing color, for instance if the color of the output query token
does not fit to any of the input query tokens. With this mechanism, new
elements can be created in the target model which do not exist in the source
model. Considering our running example, this mechanism is needed in order to
produce primary keys in the target model which are not explicitly represented
in the source model.

Please note that the default firing behavior of Transformation Nets is different
to standard Petri Nets in the sense that transitions in standard Petri Nets always
consume the tokens from the input places and produce new tokens in the output
places. This behavior can also be achieved in Transformation Nets by setting
the value of the attribute hungry of the corresponding Inplacement to “true”.
It has to be emphasized, however, that this is not the default setting due to the
fact that it is often the case that more than one transition has a certain place
as an input place and therefore if all the connected transitions would consume
the tokens, erroneous race conditions would appear. Therefore, by default, every
transition is just reading the tokens of the connected input places and does not
delete them. In order to prevent a transition to fire more than once for a certain
token configuration, the already processed configurations are stored in a so-called
switching history (cf. attribute history in Figure 2). In our running example,
all transitions are marked as being not hungry.

fg 'Source [| (CondSteamen Iransformation | | “Tablename Target)
£ Classifier_name TraheCIosure 1 D .@@ ; e

E O [e)]@ D (c)(Streamer i —

é . [T Topclassce‘s i OO Table_cols

& o® =00 °

/] (b)

Class_attr

Attribute_isPrim

PK_cols

|
|
!
|
|
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
|
!
|
|
|
|
Column_type }
|
|
|
Jj

|
|
|
|
|
! Column
Attribute_name | D)
Ag A4 == @
name creditimil @ t Column_name
" A Ad
Attribute % name
‘0@ |
|
| Attribute_type 1 A3 Ad
\ < Stringl[StrinalintegerInteger
1 (@®@ e !
e —————————

Fig. 4. Class2Relational example realized with Transformation Nets

Lost in Translation? Transformation Nets to the Rescue! 9

Transformation Logic for the Class2Relational Example. To exemplify
the use of transitions for defining transformation logic, Figure 4 depicts the
transitions necessary in our running example. Thereby the transformation net is
shown in it’s final state after streaming all the tokens through the net. As men-
tioned in Section 3, a ‘one-table-per-hierarchy’ approach is pursued resulting
in the need for computing the transitive closure, i.e. making explicit all inheri-
tance relationships, of the class hierarchy. Module (a) contains two transitions
and a place which are jointly responsible for fulfilling this task. Thereby the left
transition just copies the inheritance links defined in the model by matching a
two-colored token from the input place Class_par and streaming this token to
the connected output place. This output place accumulates all inheritance links
including the transitive ones that are computed by the following right transition.
This transition takes two two-colored tokens, each one representing a parent-link
of the inheritance hierarchy and if the inner color of the one input-token matches
the outer color of the other input token, i.e., there is another class that inherits
from the subclass, a link is established from this indirect subclass to the super-
class and put into the corresponding place. In this way, all possible inheritance
relationships can be derived. The ones that have no further parent are extracted
and matched by the transition of module (b). Note that for this transition we
have to use a negated input placement represented by a dashed circle. If such
a matching token configuration is found, the transition takes the inner color of
this link and streams it to the TopClasses place, since such a token represents
a top-level-class of the inheritance hierarchy. These top-level-classes are of spe-
cial interest in this transformation as the number of connected transitions to
this place reveals. Module (c), for instance, is responsible for creating tables for
each found top-level class and therefore just streams tokens of this place to the
Table place. Modules (d) and (e) are responsible for computing the columns of
the generated tables and therefore also rely on the top-level classes. In order
to accomplish this task, module (e) streams all those Class_attr tokens to the
Table_cols place that are owned by a top-level class. Additionally since a ‘one-
table-per-hierarchy’ approach is followed, also those attributes need to become
columns which are contained in some subclass and for this task module (d) is re-
sponsible. Thereby all those Class_attr tokens are streamed to the Table_cols
place which are in a direct or indirect inheritance relationship to a top-level-class
according to the transitive closure. From these two-colored tokens, module (f)
generates tokens for the Column place by peeling the inner color out of the two-
colored tokens and generating one-colored output tokens. For generating primary
keys from identifier attributes, i.e., attributes where isPrim = true, module (g)
and (h) are employed. While the first one is a special kind of conditional streamer
for filtering the identifier attributes by evaluating the condition (inner = true)
and assigning the result token to the transition instead of an additional query
token, the second one is responsible for generating for each identifier attribute
a new one-colored token representing a primary key and linking this newly cre-
ated token with tables and columns accordingly. Finally, module (i), (j), and (k)

10 Wimmer et al.

are used to stream the attribute values for the previously generated tables and
columns into the places Table name, Column name, and Column_type.

5 Lessons Learned

This section presents lessons learned from the Class2Relational case study. Ad-
ditionally to this horizontal (i.e., model to model) transformation scenario, a
vertical (i.e., model to code) transformation scenario, has been conducted in or-
der to clarify the value of our approach for diverse application areas. The vertical
scenario is the BPMN2BPEL example taken from a graph transformation tool
contest?. The case studies have been realized with the help of our prototype for
modeling, executing and debugging transformation nets. Further details of the
case study realizations and tool support may be found at our project page>.

Composition and weak typing favors reusability. First of all, it has
been shown that several kinds of transitions occur many times with minor devi-
ations only. Such transitions can be generalized to transformation patterns and
subsequently realized by modules. Since the inplacements as well as the out-
placements are just typed to one-colored tokens and two-colored tokens, respec-
tively and not to certain metaclasses, these modules can be reused in different
scenarios. This kind of reuse is not restricted to single transitions only, since
through the composition of transitions by sequencing as well as nesting the re-
sulting modules, modules, realizing complex transformation logic, can be built.
The Class2Relational case study was realized by the usage of just eight different
modules, whereby the CondStreamer module was applied three times (cf. Figure
4), thus justifying the potential for reuse.

Visual syntax and live programming fosters debugging. Transforma-
tion nets represent a visual formalism for defining model transformations which
is especially favorable for debugging purposes. This is not least since the flow of
model elements undergoing certain transformations can be directly followed by
observing the flow of tokens whereby undesired results can be detected easily.
Another characteristic of transformation nets, that fosters debuggability, is live
programming, i.e., some piece of transformation logic can be executed and thus
tested immediately after definition without any further compilation step. There-
fore, testing can be done independently of other parts of the Transformation Net
by just setting up a suitable token configuration in the input places.

Implicit control flow eases evolution. The control flow in a transfor-
mation net is given through data dependencies between various transitions. As
a consequence, when changing a transformation, one needs to maintain a sin-
gle artifact only instead of requiring additional efforts to keep control flow and
transformation logic (in the form of rules) synchronized. For instance, when a
certain rule would need to be changed to match for additional model objects,

2 http://www.fots.ua.ac.be/events/grabats2008
3 http://big.tuwien.ac.at/projects,/tropic

Lost in Translation? Transformation Nets to the Rescue! 11

one has to explicitly take care to call this rule at a time when the objects to be
matched already exist.

Fine-grained model decomposition facilitates resolution of hetero-
geneities. The chosen representation of models by Petri nets lets references
as well as attributes become first-class citizens, resulting in a fine-grained de-
composition of models. The resulting representation in combination with weak
typing turned out to be especially favorable for the resolution of structural het-
erogeneities. This is since on the one hand there are no restrictions, like a class
must be instantiated before an owned attribute and since on the other hand e.g.
an attribute in the source model can easily become a class in the target model
by just moving the token to the respective place.

Transitions by color-patterns ease development but lower readabil-
ity. Currently the precondition as well as the postcondition of a transition are
just encoded by one-colored as well as two-colored tokens. On the one hand, this
mechanism eases development since e.g. for changing the direction of a link it
suffices just to swap the respective colors of the query token and the production
token. On the other hand, the case study has shown that the larger the trans-
formation net grows the less readable this kind of encoding gets. Therefore, it
has been proven useful to assign each input as well as each output placement a
human-readable label, that describes the kind of input and output, respectively.

6 Related Work

One of the main objectives of transformation nets is to enhance the debuggabil-
ity and understandability of model transformations by using a Petri net based
formalism. Therefore, we consider two orthogonal threads of related work. First,
we discuss how debugging and understandability in terms of a visual representa-
tion as well as the possibility for graphical simulation are supported by current
model transformation approaches, and second, we elaborate on the general usage
of Petri Nets in model transformation approaches.

Debugging Support and Understandability. Debugging support only at
the execution level requires traceability to the corresponding higher-level map-
ping specifications in order to be aware of the effects a certain mapping induces
on the state of the execution. For example, in the Fujaba environment?, a plu-
gin called MoTE [16] compiles TGG rules [11] into Fujaba story diagrams that
are implemented in Java, which obstructs a direct debugging on the level of
TGG rules. Additional to that, Fujaba supports visualization of how the graph
evolves during transformation, and allows interactive application of transforma-
tion rules. Furthermore, approaches like VIATRA [2] producing debug reports
that trace an execution, only, are likewise considered inadequate for debugging
since a minimum requirement for the debugging should be the ability to debug
at least whole transformation rules, by which we refer to as the stepwise execu-
tion and inspection of the execution state. The debugging of ATL [9] is based on

4 http://www.fujaba.de

12 Wimmer et al.

the step-wise execution of a stack-machine that interprets ATL byte-code, which
also allows observing the execution of whole transformation rules. SmartQVT?
[1], TefKat [12] and KerMeta [13] allow for similar debugging functionality.

What sets transformation nets apart from these approaches is that all debug-
ging activities are carried out on a single integrated formalism, without needing
to deal with several different views. Furthermore, this approach is unique in al-
lowing interactive execution not only by choosing “rules” or by manipulating
the state directly, but also by allowing to modify the structure of the net itself.
This ability for “live”-programming enables an additional benefit for debugging
and development: one can correct errors (e.g., “stucked” tokens) in the net right
away without needing to recompile and restart the debug cycle.

Concerning the understandability of model transformations in terms of a vi-
sual representation and a possibility for a graphical simulation, only graph trans-
formation approaches like, e.g., Fujaba allow for a similar functionality. However,
these approaches neither provide an integrated view on all transformation arti-
facts nor do they provide an integrated view on the whole transformation process
in terms of the past state, i.e., which rules fired already, the current state, and
the prospective future state, i.e., which rules are now enabled to fire. Therefore,
these approaches only provide snapshots of the current transformation state.

Petri Nets and Model Transformations. The relatedness of Petri nets
and graph rewriting systems has also induced some impact in the field of model
transformation. Especially in the area of graph transformations some work has
been conducted that uses Petri nets to check formal properties of graph produc-
tion rules. Thereby, the approach proposed in [15] translates individual graph
rules into a place/transition net and checks for its termination. Another ap-
proach is described in [5], which applies a transition system for modeling the
dynamic behavior of a metamodel.

Compared to these two approaches, our intention to use Petri nets is entirely
different. While these two approaches are using Petri nets as a back-end for
automatically analyzing properties of transformations, we are using Petri nets
as a front-end for fostering debuggability and understandability. In particular,
we are focussing on how to represent model transformations as Petri Nets in an
intuitive manner. This also covers the compact representation of Petri Nets to
eliminate the scalability problem of low-level Petri nets. Finally, we introduce
a specific syntax for Petri Nets used for model transformations and integrate
several high-level constructs, e.g., inhibitor arcs and pages, into our language.

7 Conclusion and Future Work

In this paper, we have presented the Transformation Net formalism which is
meant to be a runtime model for the representation of model transformations.
First investigations have shown that the formalism is promising to solve a wide
spectrum of transformation problems like horizontal transformation scenarios

® http://smartqvt.elibel.tm.fr

Lost in Translation? Transformation Nets to the Rescue! 13

and vertical transformation scenarios, respectively. Especially the debugging of
model transformations is fostered since Transformation Nets provide an inte-
grated view on all transformation artifacts involved as well as a dedicated run-
time model. For future work we strive to investigate formal properties like reach-
ability, liveness or boundedness of Petri Nets and their potential applicability
as well as usefulness for model transformations. Furthermore we aim at trans-
lating existing model transformation languages into transformation nets like the
QVT-Relations standard. By doing so, we gain (1) operational semantics for the
QVT-Relations standard and (2) a visual debugging possibility.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

Object Management Group (OMG). Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, Final Adopted Specification, 2007.

A. Balogh and D. Varré. Advanced model transformation language constructs in
the VIATRA2 framework. 21st ACM Symposium on Applied Computing, 2006.

J. Bézivin. On the Unification Power of Models. Journal on Software and Systems
Modeling, 4(2), 2005.

K. Czarnecki and S. Helsen. Feature-based survey of model transformation ap-
proaches. IBM Systems Journal, 45(3), 2006.

J. de Lara and H. Vangheluwe. Translating Model Simulators to Analysis Models.
11th Int. Conf. on Fundamental Approaches to Software Engineering, 2008.

H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of graph
grammars and computing by graph transformation: vol. 2: applications, languages,
and tools. World Scientific Publishing Co., 1999.

R. France and B. Rumpe. Model-driven Development of Complex Software: A
Research Roadmap. 29th Int. Conf. on Software Engineering, 2007.

K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Monographs in Theoretical Computer Science, Springer, 1992.

F. Jouault and I. Kurtev. Transforming Models with ATL. Model Transformations
in Practice Workshop of MODELS’05, 2005.

G. Kappel, H. Kargl, T. Reiter, W. Retschitzegger, W. Schwinger, M. Strommer,
and M. Wimmer. A framework for building mapping operators resolving structural
heterogeneities. 2nd Int. United Information Systems Conf. (UNISCON’08), 2008.
A. Koenigs. Model Transformation with Triple Graph Grammars. Model Trans-
formations in Practice Workshop of MODELS’05, 2005.

M. Lawley and J. Steel. Practical Declarative Model Transformation with Tefkat.
Model Transformations in Practice Workshop of MODELS’05, 2005.

P. Muller, F. Fleurey, and J. Jezequel. Weaving Executability into Object-Oriented
Meta-languages. 8th Int. Conf. on Model Driven Engineering Lanuages and Sys-
tems, 2005.

T. Reiter, M. Wimmer, and H. Kargl. Towards a runtime model based on colored
Petri-nets for the execution of model transformations. In Proceedings of the 3rd
Workshop on Models and Aspects @ ECOOPO07, 2007.

D. Varré, S. Varr6-Gyapay, H. Ehrig, U. Prange, and G. Taentzer. Termination
Analysis of Model Transformations by Petri Nets. 8rd Int. Conf. on Graph Trans-
formations, 2006.

R. Wagner. Developing Model Transformations with Fujaba. 4th Int. Fujaba Days,
2006.

