
Transformation Nets - A Runtime Model for
Transformation Languages?

Johannes Schoenboeck

Institute of Software Technology and Interactive Systems
Vienna University of Technology

Favoritenstraße 9-11/188-3, 1040 Vienna, Austria
schoenboeck@big.tuwien.ac.at

Abstract. Model-Driven Engineering places models as first-class arti-
facts throughout the software lifecycle requiring the availability of proper
transformation languages. Although numerous approaches are available,
they lack convenient facilities for supporting debugging and understand-
ing of the transformation logic. This is not least because transformation
engines operate on a low level of abstraction, hide the operational seman-
tics of a transformation and scatter metamodels, models, transformation
logic, and trace information across different artifacts. To tackle these
problems, we propose a DSL on top of Colored Petri Nets (CPNs)—called
Transformation Nets—for the development, execution and debugging of
model transformations on a high level of abstraction. This formalism
makes the afore hidden operational semantics explicit by providing a
runtime model in terms of places, transitions and tokens, and ensures a
homogenous view on transformations by representing them on the basis
of the runtime model.

Key words: Model Transformation, Debugging, CPN, Runtime Model

1 Introduction and Problem Description
The availability of proper model transformation languages is the crucial factor in
MDE, since transformation languages are as important for MDE as compilers are
for high-level programming languages. Several kinds of dedicated transformation
languages have been proposed (see [1] for an overview), comprising imperative,
declarative and hybrid ones. Imperative approaches allow to specify complex
transformations more easily but induce more overhead code as many issues have
to be accomplished in an explicit way, e.g., specification of the execution order.
Although hybrid and declarative model transformation languages relieve trans-
formation designers from these burdens, specification of transformation logic is
still a tedious and error prone task due to the following reasons.

First, transformation engines used for executing model transformations op-
erate on a considerably lower level of abstraction than the transformation logic
itself. This leads to an impedance mismatch between specification and execution,
thus hampering understandability and debuggabilty. Second, declarative and hy-
brid approaches use black-box transformation engines hiding the actual opera-
tional semantics, e.g., the Atlas Transformation Language (ATL) uses a stack
? This work has been funded by the Austrian Science Fund (FWF) under grant

P21374-N13.



machine [2]. As a consequence, debugging of model transformations is limited to
the information provided by the transformation engine, most often just consist-
ing of variable values and logging messages, but missing important information
e.g., why certain parts of a transformation are actually executed or not. Finally,
comprehensibility of transformation logic is hampered as current transformation
languages provide a limited view on the execution of model transformations,
since metamodels, models, transformation specification, and trace information
are scattered across different artifacts.

What is needed is a declarative approach that integrates all artifacts in a
common view thereby providing a runtime model that makes the operational
semantics of a transformation specification explicit. Based on this runtime model,
debugging on the level of transformation specifications should be enabled rather
than just forcing transformation designers to interpret low-level error messages.

2 Proposed Solution

The conceptual architecture of our approach tackling the aforementioned limita-
tions is shown in Fig. 1. The Transformation Net formalism [3], a DSL on top of
CPNs [4], follows a process-oriented view towards model transformations making
the operational semantics of the transformation logic explicit. Transformation
Nets form a runtime model that provides the explicit statefulness of imperative
approaches through tokens contained within places. The abstraction of control
flow known from declarative approaches is achieved as the net’s transitions can
fire autonomously, thus making use of implicit, data-driven control flow.

Transforma
Transform

Source
M t d l

on
fo

rm
s» PlacesPlaces TransitTransit

Transform
LogicMetamodel Source

TokenToken

«c
o

Source
Model

ation Net Target
M t d lmation

tionstions

MetamodelTargetmation
on

fo
rm

s»

New Target
Model

«c
o

Fig. 1. Conceptual Architecture of Transformation Nets

Furthermore, Transformation Nets provide a uniform formalism not only for
representing the transformation logic together with the metamodels and the
models themselves, but also for executing the transformations. In particular,
places in Transformation Nets are derived from elements of metamodels, whereby
a place is created for every class, attribute and reference in a metamodel. Tokens
are created from elements of models and then put into the according places.
Finally, transitions represent the actual transformation logic. The existence of
certain model elements (i.e., tokens) allows transitions to fire and thus stream
these tokens from source places to target places finally representing instances of
the target metamodel to be created and thereby establishing trace information in
terms of tokens within trace places. The abstract syntax of the Transformation
Net language is formalized by means of a metamodel (see [3]) conforming to the
Ecore meta-metamodel, the Eclipse realization of OMG’s MOF standard.



3 Expected Contributions

By the proposed solution we expect three main contributions: (1) a runtime
model based on CPNs being the prerequisite for both, (2) debugging of trans-
formation languages and (3) an environment to specify and to debug Transfor-
mation Nets.

Runtime Model for Model Transformation Languages. The runtime
model based on CPNs allows transformation designers to gain an explicit, inte-
grated representation of the semantics of model transformations which partic-
ularly favors debugging and understanding. The runtime might act as a trans-
formation engine for various declarative transformation languages, e.g., QVT
Relations, to benefit from our debugging features. As Petri Nets provide formal
definitions of concurrent operations, parallel execution of transformation logic is
possible to increase efficiency of the execution phase. To ensure valid target mod-
els it should be possible to specify different levels of integrity constraints, i.e., an
optimistic approach, where conformance will be checked after transformation or
a pessimistic approach, where conformance is ensured during transformation.

Debugging of Model Transformations. The runtime model supports
transformation designers in debugging transformation logic along the three main
phases of debugging: (1) observing facts, (2) tracking origins and (3) fixing bugs.
Observing facts and tracking origins can be achieved using appropriate mecha-
nisms before (i.e., static debugging), during (i.e., life debugging) or transforma-
tion execution (i.e., forensic debugging).

Observing facts. Formal properties of CPNs [5] such as Reachability, Liveness
or Persistence can be exploited for static debugging. Reachability allows to check
if the desired final state (i.e., the expected output model) is reachable from the
initial state (i.e., the given input model) with the defined transformation logic.
Liveness properties can be applied to detect “dead” transformation logic (L0-
liveness) or for defining test cases, e.g., to check if a transition fires as many
times as expected (L2-liveness). Finally, the persistence property can be used
to detect non-determinism or erroneous race conditions. Besides live debugging
(simulation) also forensic debugging is supported in that the resulting target
model can be compared to an expected target model to identify wrong target
tokens similar to unit-based testing of software.

Tracking origins. The transformation process can be executed stepwise re-
vealing which tokens enable a certain transition and which tokens get produced
by firing this transition, enabling live debugging. This is possible because Trans-
formation Nets provide a white-box view on model transformation execution, i.e.,
the specification does not need to be translated into some low-level executable
artifact but can be executed right away. Additionally, the runtime metamodel
also allows to employ MDE standards for debugging such as OCL to define con-
ditional breakpoints or to explore the execution state by using queries on the
runtime model to reason backwards in time. Additionally, forensic debugging
is enabled by tokens in the corresponding trace places indicating which source
elements were used to create specific target elements.



Fixing Bugs. Since model transformations can be “simulated” on the basis
of CPNs, a bug can be fixed right away without interruption of the simulation.

Development Environment for Transformation Nets. The runtime
model as well as the debugging techniques will be integrated in a development
environment supporting the creation, execution and debugging of Transforma-
tion Nets. We will additionally provide mappings from declarative transforma-
tion languages to Transformation Nets for debugging purposes, e.g., for QVT
Relations [6] as shown in Fig. 2. The editor toolbar provides common debug-
ging functionalities such as enabling stepwise debugging to figure out the opera-
tional semantics by firing transitions including an undo/redo mechanism. Besides
these standard debugging functionalities, there are additional debugging features
which result as a benefit of using a dedicated runtime model, e.g., an Interactive
OCL Console to explore and to understand the history of a transformation by
determining and tracking paths of produced tokens [7].

Interactive DebuggerInteractive Debugger

Interactive Debugger Console

QVT Relations

transformation umlToRdbms(uml:SimpleUML, 
rdbms:SimpleRDBMS){

top relation ClassToTable{
cn: String;
checkonly domain uml 
c:Class{ name=cn,
kind=’Persistent’};

enforce domain rdbms 
t:Table{name=cn};

where {
AttributeToColumn(c,t);

}
}
relation AttributeToColumn{

an, pn :String;
checkonly domain uml c:Class{

attribute=
a:Attribute {
name=an,
type=
p:PrimitiveDataType{
name=pn}}};

enforce domain rdbms 
t:Table{
column=
cl:Column {
name=an,
type=pn}};

where{
SuperAttributeToColumn(c,t);

}
}

relation SuperAttributeToColumn{
checkonly domain uml c:Class{

generalOpposite=
sc:Class {}};

enforce domain rdbms 
t:Table {};

where{
AttributeToColumn(sc, t);

}
}

a

TROPIC

selectedElement().getCreator()
result: Transition (d)
result.getInputTokens(selectedElement())
result: Sequence(Token) {t1, t2, ..., t7}
result -> first().getCreator()
result: Transition (e) 

d

UMLModelElement_
name

Class_kind

AttributeToColumn

ClassToTable

Person
C1

Student
C2

Tutor
C3

Persistent
Persistent

NonPersistent

Source Target

trace

trace

structural feature mapping

1

domain object mapping 

structural feature mapping 

UMLModelElement

C1 C2 C3

Class

PackageElement

Classifier

RModelElement

Table

C1 C2

RModelElement_nameAttribute

PrimitiveDatatype

Class_attribute

Attribute_type

Class_general

Class_generalOpposite

A2 A3

Pr1 Pr2

name
A1

registrNo
A2

lecture
A3

String
Pr1

Integer
Pr2

Column

Table_column

Column_type

A1 A2 A3

name
A1

lecture
A3

String
A1

Integer
A2

c:Class

name=cn

t:Table

name=cn

domain object mapping 

name=cn

a:Attribute{

name=an

column=

type=pn

SuperAttributeToColumndomain object mapping 

recursive call 
trace

sc:Class

A2 A3

Integer
A2String

A3

String
A3

PackageToSchema…………….

...

attribute=

type=

p:PrimitiveDT{

name=pn

generalOpp=

A1

cl:Column

kind=‘Persistent‘

kind=‘Persistent‘

Student
C2

lecture
A3

registrNo
A2

2

3

4

5
6

registrNo
A2

name=an

Person
C1

c
b

Fig. 2. Development Environment for Transformation Nets.

4 Related Work
Related work regarding the use of Petri Nets for model transformations and
debugging support of transformation languages is presented in the following.

Petri Nets and Model Transformations. In the area of graph transfor-
mations, some work has been conducted that uses Petri Nets to check formal
properties of graph production rules. Thereby, the approach proposed in [8]



translates individual graph rules into a place/transition net and checks for its
termination. Another approach is described in [9], which applies a transition
system for modeling the dynamic behavior of a metamodel.

Compared to these two approaches, our intention to use Petri nets is entirely
different, i.e., not just using them as a back-end for automatically analyzing
properties of transformations, but additionally use them as a front-end for fos-
tering debuggability and understandability.

Debugging Support for Model Transformations. In the Fujaba envi-
ronment, a plugin called MoTE [10] compiles TGG rules [11] into Fujaba story
diagrams that are implemented in Java, which obstructs a direct debugging on
the level of TGG rules. Furthermore, approaches like VIATRA [12] produce de-
bug reports that trace an execution, only, but do not allow to debug certain
transformation rules. Debugging of ATL [2] is based on the step-wise execu-
tion of a stack-machine that interprets ATL byte-code. In contrast to the above
language-specific debugging facilities, Hibberd et al. [13] present forensic de-
bugging techniques by utilizing trace information of model transformations for
localizing bugs. In addition, they present a technique based on program slicing
for further narrowing the area where a bug might be located.

While Hibberd focuses only on forensic debugging, Transformation Nets ad-
ditionally enable live debugging. What sets our approach apart from these ap-
proaches is that all debugging activities are carried out on a higher level of
abstraction and on a single formalism. Current approaches do not provide an
integrated view on the whole transformation process in terms of the past state,
i.e., which rules fired already, the current state, and the prospective future state,
i.e., which rules are now enabled to fire. Therefore, these approaches only pro-
vide snapshots of the current transformation state. Furthermore, our approach
is unique in allowing interactive execution.i.e., fixing bugs during execution.

5 Plan for Evaluation

The plan for evaluating our approach builds on empirical studies and on applying
case studies.

Empirical studies. To evaluate usability and applicability of Transforma-
tion Nets we intend to conduct empirical studies with students from our model
engineering courses (around 200 master students every year) based on question-
naires. Additionally, we will use the debugging questions of Hibberd et al. [13]
and let students answer those questions with our approach to verify the debug-
ging support.

Case Studies. Case studies for transforming models will be set up and
implemented with distinct existing model transformation languages, including
Transformation Nets. The results will be evaluated on the basis of a suitable
subset of the ISO 9126 software quality model [14]. We intend to use a repre-
sentative selection of metamodels defining structural and behavioral languages.
For this, we aim to use the well-known Class2Relational example [15] and the
CSP2ActivityDiagrams example [16]. These case studies will also be used to
evaluate to what extent concurrent execution of transformation logic improves
the performance of model transformations.



6 Current Status
Currently a first prototype to specify and execute Transformation Nets is avail-
able which is applied in several case studies to verify the basic approach, as the
research is in it’s initial state. Additionally, a complementing research focuses on
how Transformation Nets can be employed in reusable mapping operators [17].

References

1. Czarnecki, K., Helsen, S.: Feature-based Survey of Model Transformation Ap-
proaches. IBM Systems Journal 45(3) (2006)

2. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: Atl: A model transformation tool.
Science of Computer Programming 72(1-2) (June 2008) 31–39

3. Wimmer, M., Kusel, A., Reiter, T., Retschitzegger, W., Schwinger, W., Kappel,
G.: Lost in Translation? Transformation Nets to the Rescue! In: Proc. of 3rd Int.
United Information Systems Conf. (UNISCON’09), Sydney, Australia, Springer
(April 2009) 315–327

4. Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modeling and Validation of
Concurrent Systems. Springer (2009)

5. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4) (1989) 541–580

6. Kusel, A., Schwinger, W., Wimmer, M., Retschitzegger, W.: Common pitfalls of
using qvt relations - graphical debugging as remedy. In: 14th IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS 2009), Pots-
dam, Germany, IEEE Computer Society (June 2009) 329–334

7. Wimmer, M., Kusel, A., Schoenboeck, J., Kappel, G., Retschitzegger, W.,
Schwinger, W.: Reviving QVT Relations: Model-based Debugging using Colored
Petri Nets. In: Proc. of MoDELS ’09, Denver (2009)

8. Varró, D., Varró-Gyapay, S., Ehrig, H., Prange, U., Taentzer, G.: Termination
Analysis of Model Transformation by Petri Nets. In: Proc. of Int. Conf. on Graph
Transformation. Volume 4178., Natal, Brazil, LNCS (September 2006) 260–274

9. de Lara, J., Vangheluwe, H.: Translating Model Simulators to Analysis Models.
In: Proc. of 11th Int. Conf. on Fundamental Approaches to Software Engineering,
Budapest, Hungary (April 2008) 77–92

10. Wagner, R.: Developing Model Transformations with Fujaba. Technical report,
University of Paderborn (September 2006)

11. Koenigs, A.: Model Transformation with Triple Graph Grammars. Model Trans-
formations in Practice Workshop of MODELS’05, Montego Bay, Jamaica (2005)

12. Balogh, A., Varró, D.: Advanced model transformation language constructs in the
VIATRA2 framework. In: Proc. of SAC ’06, NY, USA, ACM (2006) 1280–1287

13. Hibberd, M.T., Lawley, M.J., Raymond, K.: Forensic Debugging of Model Trans-
formations. In: Proc. of MoDELS’07, Nashville, USA (October 2007)

14. International Organization for Standardization (ISO) / International Electrotech-
nical Commission (IEC), Geneva, Switzerland: ISO/IEC Standard No. 9126: Soft-
ware engineering Product quality; Parts 14 (2004)

15. Bézivin, J., Rumpe, B., Schürr, A., Tratt, L.: Model Transforma-
tions in Practice Workshop of MODELS’05, Montego Bay, Jamaica.
http://sosym.dcs.kcl.ac.uk/events/mtip05/long cfp.pdf (2005)

16. Taentzer, Gabriele and Rensink, Arend: AGTIVE 2007 Tool Contest.
http://www.informatik.uni-marburg.de/∼swt/agtive-contest/ (2007)

17. Kusel, A.: TROPIC - A Framework for Building Reusable Transformation Com-
ponents. Doctoral Symposium, Models 2009, Denver, USA (2009)


