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Abstract. Systems supporting situation awareness in large-scale control
systems, such as, e. g., encountered in the domain of road traffic man-
agement, pursue the vision of allowing human operators prevent critical
situations. Recently, approaches have been proposed, which express sit-
uations, their constituting objects, and the relations in-between (e. g.,
road works causing a traffic jam), by means of domain-independent on-
tologies, allowing automatic prediction of future situations on basis of
relation derivation. The resulting vast search space, however, could lead
to unacceptable runtime performance and limited expressiveness of pre-
dictions. In this paper, we argue that both issues can be remedied by
taking inherent characteristics of objects into account. For this, an on-
tology is proposed together with optimization rules, allowing to exploit
such characteristics for optimizing predictions. A case study in the do-
main of road traffic management reveals that search space can be sub-
stantially reduced for many real-world situation evolutions, and thereby
demonstrates the applicability of our approach.

1 Introduction

Situation awareness. Situation awareness is gaining more and more impor-
tance as a way to help human operators cope with information overload in
large-scale control systems, as, e. g., encountered in the domain of road traffic
management. In this respect, a major vision of situation-aware systems is to
support human operators in anticipating possible future situations in order to
pro-actively prevent critical situations by taking appropriate actions. As first
steps towards making this vision come true, situation-aware systems aggregate
information about physical objects (e. g., road works) and relations among them
(e. g., causes) into relevant situations (e. g., road works cause a traffic jam).
Situation evolution and prediction. Situations evolve continuously, result-
ing from alterations of real-world objects over time (e. g., road works cause a
traffic jam which grows, then shrinks, and finally dissolves). Such evolutions are
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also dealt with in the fields of context prediction [1] and time series analysis [2]
to predict future developments. However, techniques proposed in these fields are
often based on quantitative data and make use of learning from historic data
to achieve domain-independence. Therefore, they are only able to detect situa-
tions that have already occurred in the past, and, hence, are not applicable for
predicting critical situations before they occur for the first time [1]. In situation
awareness, however, such critical situations often endanger life and are, besides
that, not observable in sufficient quantity to obtain meaningful training data for
machine learning (e. g., a wrong-way driver rushing into a traffic jam). In our
previous work [3],[4],[5],[6], we therefore proposed—in accordance with Llinas
et al. [7]—to pursue a different approach using domain-independent ontologies
describing qualitative facts for achieving situation awareness, as well as tech-
niques thereupon predicting future situations without relying on historic data.
For this, we described situation evolution in terms of transitions of the relations
contributing to a situation. Based on this, prediction of whether or not a cur-
rent situation can evolve into a critical situation, is achieved by computing all
possible paths of such transitions between the current and the critical situation.
Optimization potentials for prediction. The number of such paths, how-
ever, depends on the contributing objects and the relations defined among them,
resulting in a vast search space of possible transitions between two situations [5].
This holds the risk of inducing unacceptable runtime performance and limiting
the expressiveness of predictions. We argue that both issues can be remedied
by taking into account inherent characteristics of involved objects, describing
in detail which relations among them are actually possible, and which transi-
tions between these relations may occur. Up to now, such knowledge is often
incorporated only implicitly, like, e. g., in terms of subsumption rules for assess-
ing situations [8]. In this paper, we propose a domain-independent ontology for
modeling object evolution characteristics describing how a real-world object an-
chored in time and space can change, and based on this, optimization rules for
reducing prediction search space.
Structure of the paper. In Section 2, we summarize our previous work on
situation awareness and exemplify the potentials of our approach in the domain
of road traffic management. In Section 3, an ontology together with optimization
rules is proposed for representing and exploiting object evolution characteristics.
Next, we evaluate the applicability of such characteristics on basis of a case study
in Section 4. Finally, we provide an overview of related work in Section 5, before
we conclude the paper in Section 6 by indicating further prospects of our work.

2 Motivating Example

Road traffic management systems, responsible for, e. g., ensuring safe driving
conditions, are a typical application domain for situation awareness. In this sec-
tion, examples from the domain of road traffic management are used to summa-
rize our previous work on situation awareness and to illustrate the potentials of
incorporating object evolutions characteristics into prediction of situations.



Situation awareness in road traffic management. In principle, human op-
erators of road traffic management systems observe highways for critical situa-
tions like, e. g., a wrong-way driver heading towards a traffic jam, in order to
resolve them by taking appropriate actions. In our previous work [4] we intro-
duced a framework for building situation-aware systems on basis of a domain-
independent ontology. This framework was used to build a prototype [6] support-
ing human operators and, thereby, the feasibility of our approach to situation
awareness was shown. In the framework’s ontology, objects and relations among
them, which are derived from object properties, are aggregated into situations.
Information on such objects and relations (and thereby on traffic situations) is
obtained from various sources such as, e. g., from traffic flow monitoring systems
and drivers reporting traffic information. Changes of object properties over time,
like, e. g., movement on a road, reported by such sources cause changes in the
relations between objects, leading in turn to situation evolution.

Spatial and temporal relations. For describing such relations between ob-
jects, we discern families of spatial and temporal relations, with each family
modeling a certain real-world aspect [3]. These comprise mereotopological rea-
soning about regions, describing, e. g., whether a traffic jam occurs in a tunnel,
positional and orientational reasoning about points, expressing, e. g., that an ac-
cident happened in front of a traffic jam, as well as size and distance. Temporal
relation families allow us to express that, e. g., an accident occurred shortly be-
fore a traffic jam. For describing these relation families, we base upon well-known
calculi further detailed in Section 3.

Predicting future situations. By employing these relation calculi, prediction
of situations provides the basis for early detection of possibly emerging critical
situations. Let us suppose that human operators of a road traffic management
system want to be informed of a critical situation “Wrong-way driver in the
area of road works”, as depicted in Fig. 1. In order to pro-actively take actions
such as, e. g., issue warnings to motorists, human operators want to be informed
already if such a situation is possibly emerging, which is indicated by the initial
situation “Wrong-way driver very close to road works”. In Fig. 1, we illustrate
the combination of relations from appropriate relation families—in this case,
mereotopology, distance, orientation, and size—which have to be valid between
objects in order to constitute the initial situation. All other situations in this ex-
ample would be formalized with similar combinations, but details are left out for
brevity. For predicting whether or not this situation can evolve into the critical
situation, we derive all possible paths of transitions between these two situa-
tions (Fig. 1 shows an exemplary subset thereof). A transition between two such
situations occurs, if a transition is possible in at least one of the contributing
relation families. By that, we can predict to reach the situation depicted in step
1 with one transition describing a change in the distance between the wrong-way
driver and road works. With one further step—one transition in our relation fam-
ily describing mereotopology and one transition in the family describing spatial
distance—we predict to reach the critical situation. Due to relation families be-
ing defined independently from concrete objects, alternative paths via different
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Fig. 1. Exemplary prediction of situations towards a critical situation.

situations are predicted, as depicted in Fig. 1. However, not all of these predicted
situations and paths can actually occur in real-world.
Considering object evolution. The approach we present in this paper aims
to eliminate such impossible future situations and transitions between them by
incorporating object evolution characteristics into the prediction process. Pre-
requisite for this is to remove impossible relations and transitions from relation
families. For example, knowledge that a wrong-way driver can only change its
position, but obviously not its size, allows us to rule out a predicted future situa-
tion, in which the wrong-way driver encloses the area of road works, as depicted
in Fig. 1. Another impossible situation occurs, if our information sources report
that the wrong-way driver turned left at the depicted junction (i. e., leaving the
highway), instead of following step 1. Object evolution characteristics enable us
to conclude that no further evolution towards the critical situation is possible,
as road works can not change their position, and a wrong-way driver can not
turn back towards the road works. Hence, in Fig. 1 we can exclude the situation
“Wrong-way driver turns back” from the possible paths towards the critical sit-
uation, which allows us to take back issued warnings. Without object evolution
characteristics, we would not be able to detect this circumstance, and would still
predict that the critical situation is about to emerge.

Summarizing, by using object evolution characteristics, we are able to re-
duce the number of relevant relations and transitions in a relation family as a
pre-requisite for removing impossible situations and transitions between them.
Thereby, the number of possible paths between two situations, i. e., prediction
search space, is reduced.

3 Object Evolution Characteristics

Object evolution characteristics, as laid out in the previous section, bear poten-
tial for increasing performance during prediction of future situations, as well as



for increasing prediction expressiveness. In Fig. 2, the principle idea of our ap-
proach is depicted, by showing the interaction between the different constituents.
An evolution ontology defines the vocabulary for describing object evolution
characteristics, which is exploited by optimization rules to optimize relation
families. On basis of such optimized relation families, a prediction algorithm—
presented in our previous work [5]—generates optimized possible evolutions be-
tween situations. In the following, these constituents are described in detail.
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Fig. 2. Overview of our approach.

Object evolution ontology. Situation evolution, as described above, depends
on the ability of objects to change over time. Considering object evolution
characteristics in more detail, one can naturally differentiate between situation-
independent ones describing inherent characteristics of objects that do not affect
or depend on other objects (e. g., road works can not change their size), and
situation-dependent ones defining how an object evolves in relation with other
objects (e. g., a traffic jam caused by an accident in front of it can only dissolve
after the accident has been cleared). Although the potential benefit of situation-
dependent object evolution characteristics are likely to be higher than those
of situation-independent ones, they incur a fundamental increase in modeling
complexity, as object evolution characteristics would have to be modeled indi-
vidually for every situation. Therefore, in the object evolution ontology proposed
in the following, we focus on situation-independent object evolution characteris-
tics, and later show in Section 4 that, thereby, already substantial optimizations
can be achieved with reasonable modeling effort.

We differentiate in the ontology depicted in Fig. 3 between non-changing
objects and changing objects being able to change at least in some of their prop-
erties, thus contributing to situation evolution. As objects in situation awareness
are anchored in time and space, corresponding types describe an object’s typi-
cal lifespan and size, as well as an object’s particular kind of supported spatial
change (scaling—changes size, translational motion—changes position, and ro-
tation1—changes orientation). A complementary characteristic—boundary per-
meability—describes, whether or not objects are able to share the same region

1 In the field of computer graphics, a fourth change—reflection—is known, but this is
of little practical benefit for describing real-world objects in situation awareness.
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Fig. 3. Ontology for describing object evolution characteristics.

with other objects (e. g., a tunnel has a permeable boundary, meaning that other
objects can be inside the tunnel). The object evolution characteristics of con-
crete objects (e. g., a wrong-way driver) are then modeled by inheriting from
the appropriate types of the evolution ontology (cf. Table 2 for an exemplary
tabular representation).

Relation families. For formalizing the relation families introduced in Section 2,
we use well-known calculi from the field of spatio-temporal reasoning: the Region
Connection Calculus (RCC, cf. [9]) describes mereotopology, Spatial Distance
of Boundaries (SpatDistBoundary, cf. [10]) formalizes spatial distance, and the
Oriented Points Relation Algebra (OPRA, cf. [11]) describes orientation. Each
relation family is described with a directed graph representing relations between
objects as nodes and possible transitions in-between as edges (called conceptual
neighborhood graph—CNG [12]), as depicted in Figure 42.
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2 Note that in this paper we use a rather basic notion of an orientation calculus
describing relative orientation between two objects on their centroids in order to
increase comprehensibility. In contrast, OPRA would result in a very large CNG.



Optimization rules. On basis of the ontology introduced above, optimiza-
tions on the level of single relation families are enabled using optimization rules
detailed in the following. Relation families describing mereotopology, distance,
and orientation are influenced by types representing object evolution character-
istics, and thereby drive the formalization of optimization rules. In particular,
mereotopological relations are influenced by characteristics describing whether
and how objects support translational motion or scaling, and whether an object’s
boundaries are permeable. For example, a car having a non-permeable boundary
can be a proper part of a tunnel having a permeable boundary, but the inverse
relation is not possible. Relations describing positions and distances are influ-
enced by translational motion and scaling only. For example, road works and
accidents can not move, inducing that the spatial distance between them will
not change throughout their lifespan. Finally, relations describing orientation
are influenced by rotation, translational motion, and scaling.

Optimization rules—on basis of the object evolution characteristics—define
conditions for removing relations and transitions from the relation family’s CNG.
These optimization rules are formalized in terms of a simplified syntax based on
the Semantic Web Rule Language (SWRL, [13]). In this syntax, an object o

being a member of the type T is expressed as T(o), whereas two objects o1

and o2 taking part in the relation R are expressed as R(o1,o2). Table 1 lists
optimization rules for the relations and transitions of the three relation families
RCC, SpatDistBoundary, and Orientation together with their effect on relations
and transitions. In general, it can be seen that, concerning RCC, optimization
rules reduce the number of possible relations and transitions. We pick out the

Table 1. Optimization rules for three relation families.

Optimization Rule Optimization Effect

RCC

Not optimizable Disrelated is not removable
1 NonPermeableBoundary(o2) Removes PartiallyOverlapping(o1,o2)

2 NonPermeableBoundary(o2) ∨ IsSmaller(o2, o1) Removes ProperPart(o1,o2)

3 NonPermeableBoundary(o1) ∨ IsSmaller(o1, o2) Removes ProperPartInverse(o1,o2))

4 NonPermeableBoundary(o1)∨NonPermeableBoundary(o2)∨ IsLarg-
er(o1, o2) ∨ IsLarger(o2, o1)

Removes Equals(o1,o2)

5 ¬(ScalingObject(o1) ∨ ScalingObject(o2) ∨ TranslationalMotionOb-
ject(o1) ∨ TranslationalMotionObject(o2))

Removes all transitions

SpatDistBoundary

Not optimizable Relations are not removable
6 ¬(ScalingObject(o1) ∨ ScalingObject(o2) ∨ TranslationalMotionOb-

ject(o1) ∨ TranslationalMotionObject(o2))
Removes all transitions

Orientation

Not optimizable Relations are not removable
7 ¬(ScalingObject(o1) ∨ ScalingObject(o2) ∨ TranslationalMotionOb-

ject(o1) ∨ TranslationalMotionObject(o2))
Removes InFrontOf ↔ Equal and re-
moves Equal ↔ Behind

8 ¬((RotatingObject(o1)∧(ScalingObject(o1)∨TranslationalMotionOb-
ject(o1)))∨ (RotatingObject(o2)∧ (ScalingObject(o2)∨Translational-
MotionObject(o2))))

Removes all other transitions

relation ProperPart of RCC to exemplify the meaning of these optimization
rules: ProperPart(o1,o2) between the objects o1 and o2 is removed from RCC
and, therefore, not taken into account during prediction of situations, if o2 does
not have a permeable boundary and if o2 is smaller than o1. All other rules can



be interpreted analogously. With similar rules on combined relations of different
relation families, we are able to optimize complex situation types. The opti-
mizations achievable for different object combinations and transitions between
situations are shown in the next section.

4 Road Traffic Management Case Study

In this section, we employ a case study in the domain of road traffic management
to discuss the potentials of situation-independent object evolution characteris-
tics for optimizing prediction of future situations. For this, we base upon road
traffic objects with their evolution characteristics, as well as situations defined
in collaboration with the Austrian highways agency ASFINAG3 (cf. [14] for a
detailed overview of the more than 100 road traffic objects, and 16 critical sit-
uations considered in our prototype). In Table 2, we use the evolution ontology
introduced above to describe evolution characteristics of a small subset of these
objects, which was selected to show each spatial characteristic at least once.

Table 2. Evolution characteristics of real-world objects.

Object Size Translational-
MotionObject

Scaling-
Object

Rotating-
Object

Boundary

RoadWorks Large - - - PermeableBoundary
Accident Medium - - - NonpermeableBoundary
WrongWayDriver Small X - X NonpermeableBoundary
TrafficJam Large X X X PermeableBoundary

Optimization of a single relation family’s relations and transitions.
To start with, we evaluate the effects of these object evolution characteristics
on relations and transitions of single relation families. Fig. 5 shows the opti-
mizations for the RCC relation family achieved by applying the optimization
rules introduced above to the objects Accident and RoadWorks described in Ta-
ble 2. Naturally, these objects with few evolution characteristics are best suited
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Fig. 5. Optimized RCC relation family.

to reduce the CNGs of relation families. For example, as neither road works

3 www.asfinag.at



nor accidents can change their position or size, optimization rule 5 removes all
transitions from RCC. This means that, once a particular relation between two
objects is detected, no further evolution can occur. Additionally, the relations
ProperPartInverse and Equals are removed by the optimization rules 3 and 4,
because an accident’s non-permeable boundary does not allow other objects to
enter the region occupied by the accident. These optimizations reduce the search
space, because less relations and/or transitions need to be taken into account
during prediction of situations. At the same time, prediction expressiveness is
increased, because only those relations and transitions being actually relevant
for the involved objects are used for predicting situations. For example, on basis
of such an optimized CNG, as depicted in Fig. 5, we no longer would predict that
an accident can become ProperPartInverse of road works. Similar optimiza-
tions are also possible between wrong-way drivers and traffic jams. If objects are
capable to change in many ways, like, e. g., traffic jams do, such optimizations
are, as already mentioned, not possible.

Optimization of situations and transitions between two situations. As
described before, relation families optimized in such a way reduce the number
of situations and transitions towards a critical situation. In Fig. 6, a wrong-way
driver is close to a traffic jam, indicating a possibly emerging critical situation,
which is reached when the wrong-way driver rushes into the traffic jam. In gen-
eral, intermediary situations and transitions between these two situations are
predicted if, as mentioned above, a transition is possible in at least one of the
contributing relation families. Without taking object evolution characteristics
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into account, prediction would result in a large number of such intermediary
situations and transitions. From these, first of all three situations with their cor-
responding transitions can be ruled out employing the optimized CNGs, because
they rely on impossible relations. Additionally, another situation is not possible,
because its combination of relations demands object evolution characteristics not
being supported by the wrong-way driver: the situation PartiallyOverlapping

& Close describes that a wrong-way driver and a traffic jam partially overlap
(i. e., a wrong-way driver is partly outside and partly inside a traffic jam), while



at the same time their boundaries are close to each other. This is not possible,
because the size of a wrong-way driver only allows VeryClose when overlapping
another object. Such an optimization rule is not listed in Table 1, because it is
actually situation-dependent. Overall, the optimizations reduce the number of
possible situations between the initial and the critical situation from nine to five,
and the transitions from 19 to four. If additionally removing non-reachable situ-
ations, a further reduction to three situations, and three transitions is possible.
Optimization on basis of semantics of combined relation families. How-
ever, in this example we still find transitions, which are actually not possible in
a real-world scenario. These impossible transitions are characterized by implicit
semantics resulting from combined relations. For example, we predict to reach
PartiallyOverlapping & VeryClose with a single transition from Disrelated

& Close, because it only requires one transition in RCC and one transition in
SpatDistBoundary. But two real-world objects would first become Disrelated

& VeryClose, before they can become PartiallyOverlapping. Removing such
transitions will be subject of our ongoing work (cf. Section 6).
Summary of optimization results. In Table 3, we summarize the achiev-
able optimizations for ten out of the 16 situations defined with ASFINAG. For
formally describing the situations, we use the syntax introduced for our opti-
mization rules in Section 3. We then compare the number of situations and
transitions predicted between an initial and a critical situation with and with-
out considering object evolution characteristics. In general, it can be seen that
considering object evolution characteristics—unless the evolution paths are al-
ready optimal, as it is the case in the fourth example—leads to a substantial
reduction of both situations and transitions between them by more than 50%.
Particularly interesting is the last example, which—caused by the initial situa-
tion not containing any relation—leads to a large number of possible situations
and transitions, because potentially every situation comprising a combination
of relations from the families RCC and Orientation leads to the critical situa-
tion. In such settings, object evolution characteristics are particularly helpful to
reduce the search space: if taking into account that road works are stationary
and that a traffic jam can only be caused by road works being in front of it, all
situations not containing InFrontOf are invalid.

5 Related Work

In this section, we present related research on prediction techniques in various
domains, as well as more closely related work on the optimization and combina-
tion of calculi stemming from the area of qualitative spatial reasoning.
Prediction in other domains. Predicting future situations based on current
and historic data is a task relevant in numerous domains. Various techniques
in the field of time-series analysis, often being based on quantitative data, ex-
ist to, e. g., forecast future developments of stocks [2]. Efforts applying these
approaches to the domain of road traffic management exist [15], but naturally
they do not focus on predicting situations, but instead aim to predict traffic flow



Table 3. Summary of achievable optimizations.

Situation description and formalization Optimization

Initial situation: wrong-way driver close to traffic jam
WrongWayDriver(o1)∧TrafficJam(o2)∧Disrelated(o1, o2)∧Close(o1, o2)
Critical situation: wrong-way driver rushes into traffic jam
WrongWayDriver(o1) ∧ TrafficJam(o2) ∧ PartiallyOverlapping(o1, o2) ∧
V eryClose(o1, o2)
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Initial situation: poor driving conditions near the border area of traffic jam
PoorDrivingConditions(o1) ∧ TrafficJam(o2) ∧ Disrelated(o1, o2) ∧ Com-
mensurate(o1, o2)
Critical situation: poor driving conditions in the area of traffic jam
PoorDrivingConditions(o1) ∧ TrafficJam(o2) ∧ PartiallyOverlap-
ping(o1, o2) ∧ V eryClose(o1, o2)
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Initial situation: poor driving conditions cause an accident
PoorDrivingConditions(o1)∧Accident(o2)∧PartiallyOverlapping(o1, o2)∧
V eryClose(o1, o2)
Critical situation: poor driving conditions move away from the accident
PoorDrivingConditions(o1) ∧ Accident(o2) ∧ Disrelated(o1, o2) ∧
Commensurate(o1, o2)

63
100

63

50

100
Number of 
situations

63

1513 4
50

100
Number of 
situations

Number of

63

1513 4
0

50

100

Without With

Number of 
situations

Number of 
transitions

63

1513 4
0

50

100

Without With

Number of 
situations

Number of 
transitions

63

1513 4
0

50

100

Without With

Number of 
situations

Number of 
transitions

63

1513 4
0

50

100

Without With

Number of 
situations

Number of 
transitions

Initial situation: traffic jam potentially grows together with another traffic jam
TrafficJam(o1) ∧ TrafficJam(o2) ∧ Disrelated(o1, o2) ∧ Close(o1, o2)
Critical situation: traffic jams are grown together
TrafficJam(o1) ∧ TrafficJam(o2) ∧ Disrelated(o1, o2) ∧ V eryClose(o1, o2)
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Initial situation: road works become active
RoadWorks(o1)
Critical situation: road works cause abnormal traffic
RoadWorks(o1)∧AbnormalTraffic(o2)∧PartiallyOverlapping(o1, o2)∧In-
FrontOf(o1, o2)
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in terms of vehicle throughput. Solutions relying on alternative techniques, but
still being based on quantitative data, like, e. g., neural networks [16] or bayesian
belief networks [17], in a similar manner only predict traffic flow. In [18], a neural
network-based solution to predict traffic accidents based on recognizing patterns
in vehicle tracking data is presented. Compared to our work, this approach is
tailored to the specific problem of accident prediction, whereas we aim for pre-
diction of arbitrary situations from qualitative data in a domain-independent
manner. Research in the area of context awareness postulates object evolution
characteristics [19] and proposes to predict a situation’s future on its historic
attribute values. However, similar to the work on context history presented in
[1], such an approach is unable to predict events that did not occur in the past.

Optimization of relation calculi. Dylla et al. [20] analyze a single calculus
(OPRA) for optimization by manually eliminating transitions between relations
being impossible due to characteristics like, e. g., locomotion. In contrast to this
work, we propose domain-independent concepts for describing such characteris-
tics and apply these concepts to automatically optimize different calculi. More-
over, we describe optimizations for combined calculi, which are frequently used
in situation awareness to define situations. Possible combination methods, as
well as comparisons of their reasoning performance are presented in Wölfl et al.
[21]. The authors differentiate between orthogonal combinations expressing new
calculi by combining existing formalisms without semantic interdependencies,
and non-orthogonal combinations consisting of calculi with semantic interdepen-
dencies. In situation awareness, we typically encounter non-orthogonal combina-



tions, which should best be combined using so-called tight integration techniques,
as Wölfl et al. suggest. Such tight integrations are more expressive—i. e., contain
more relations—than loose ones, which might due to their algorithmic design al-
ready rule out important relations. However, this advantage has its downside in
prediction performance, as a large number of relations induces a large number
of predictable situations and transitions. With our approach, we argue that pre-
diction performance of tightly integrated calculi can be improved by removing
impossible relations not fitting the characteristics of involved objects.

6 Future Work

We aim for further extending our object evolution ontology with additional ob-
ject evolution characteristics, and in particular, with types for describing object
evolution patterns. Such patterns promise a finer-grained representation of an
object’s changes over time (e. g., a traffic jam first grows, then begins to shrink,
and finally dissolves), facilitating prediction of future situations with knowledge
about complex object behavior. By recognizing these patterns we envision to
provide operators of systems supporting situation awareness with better recom-
mendations for actions to be taken. Second, our optimization rules are to be
extended with situation-dependent rules, and with rules exploiting semantics
of combined relation families, which are currently only implicitly available in
ontology-driven situation awareness. Finally, we want to measure the effects on
runtime performance resulting from removing relations and transitions of single
relation families, as well as from removing situations and transitions between
them from predicted situation evolutions. For this, we will extend our prototype
and base on real-world test data provided by ASFINAG.
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