
Surviving the Heterogeneity Jungle with
Composite Mapping Operators∗

M. Wimmer1, G. Kappel1, A. Kusel2,
W. Retschitzegger2, J. Schoenboeck1, and W. Schwinger2

1 Vienna University of Technology, Austria
{lastname}@big.tuwien.ac.at

2 Johannes Kepler University Linz, Austria
{firstname.lastname}@jku.at

Abstract. Model transformations play a key role in the vision of Model-
Driven Engineering. Nevertheless, mechanisms like abstraction, variation
and composition for specifying and applying reusable model transforma-
tions – like urgently needed for resolving recurring structural hetero-
geneities – are insufficiently supported so far. Therefore, we propose to
specify model transformations by a set of pre-defined mapping opera-
tors (MOps), each resolving a certain kind of structural heterogeneity.
Firstly, these MOps can be used in the context of arbitrary metamod-
els since they abstract from concrete metamodel types. Secondly, MOps
can be tailored to resolve certain structural heterogeneities by means of
black-box reuse. Thirdly, based on a systematic set of kernel MOps re-
solving basic heterogeneities, composite ones can be built in order to deal
with more complex scenarios. Finally, an extensible library of MOps is
proposed, allowing for automatically executable mapping specifications
since every MOp exhibits a clearly defined operational semantics.

Key words: Executable Mappings, Reuse, Structural Heterogeneities

1 Introduction

Model-Driven Engineering (MDE) places models as first-class artifacts through-
out the software lifecycle [2] whereby model transformations play a vital role.
In the context of transformations between different metamodels and their cor-
responding models, the overcoming of structural heterogeneities, being a result
of applying different modeling constructs for the same semantic concept [9, 12]
is a challenging, recurring problem, urgently demanding for reuse of transfor-
mations. Building and applying such reusable transformations requires (i) ab-
straction mechanisms, e.g., for dealing with arbitrary metamodels, (ii) variation
mechanisms, e.g., for tailoring a reusable transformation to certain metamodels,
and (iii) composition mechanisms, e.g., for assembling a whole transformation
specification from reusable transformations. As a backbone, such reusable trans-
formations are required to be offered by means of an extensible library being a
prerequisite for reducing the high effort of specifying model transformations.

∗
This work has been funded by the Austrian Science Fund (FWF) under grant P21374-N13.

We therefore propose to specify horizontal model transformations by means
of abstract mappings using a set of reusable transformation components, called
mapping operators (MOps) to resolve recurring structural heterogeneities. Firstly,
to reuse these MOps for mappings between arbitrary metamodels, i.e., metamodel
independence, MOps are typed by the core concepts of meta-metamodeling lan-
guages, being classes, attributes, and relationships [6], instead of concrete meta-
model types. Secondly, to resolve certain structural heterogeneities, MOps can
be tailored by means of black-box reuse. Thirdly, based on a set of kernel MOps
resolving basic heterogeneities, composite ones can be built in a simple plug
& play manner in order to deal with more complex scenarios. Finally, a set
of MOps is proposed, providing an initial library of reusable transformations
encapsulating recurring transformation logic for the resolution of structural het-
erogeneities. The rationale behind is to follow an MDE-based approach, since
abstract mappings can be seen as platform-independent transformation models
abstracting from the underlying execution language. These abstract mappings
can then be automatically translated to different transformation languages by
means of higher-order transformations (HOTs) [17] since the MOps exhibit a
clearly defined operational semantics thereby achieving transformation language
independence. Please note that the presented kernel MOps supersede the MOps
presented in our previous work [8], since the initial MOps suffered from two main
problems. Firstly, the initial MOps were too fine-grained resulting in scalability
problems. Thereby, they neglected the fact that a whole transformation problem
can be partitioned into coarse-grained recurring sub-problems demanding for
coarse-grained MOps too. Secondly, the initial MOps represented hard-coded
patters and were too inflexible to form the basis for arbitrary composite MOps.

The remainder is structured as follows. Section 2 introduces an example
exhibiting several structural heterogeneities, which are resolved by means of
composite MOps in Section 3. Section 4 presents a MOps kernel providing the
basic building blocks for composite MOps. Related work is surveyed in Section 5,
a prototypical implementation is proposed in Section 6, and a critical discussion
of the proposed approach with an outlook on future work is given in Section 7.

2 Motivating Example

Structural heterogeneities between different metamodels occur due to the fact
that semantically equivalent concepts can be expressed by different metamodel-
ing concepts. The ClassDiagram shown on the left side of Fig. 1, only provides
unidirectional references to represent relationships, thus bidirectionality needs to
be modeled by a pair of opposite references. In contrast, the ERDiagram explicitly
represents bidirectionality, allowing to express relationships in more detail.

In the following, the main correspondences between the ClassDiagram and
the ERDiagram are described. On the level of classes, three main correspon-
dence types can be recognized, namely 1:1, 1:n and n:1, indicated by dotted
lines in Fig. 1. 1:1 correspondences can be found (i) between the root classes
ClassDiagram and ERDiagram and (ii) between Class and Entity. Regarding
1:n correspondences, again two cases can be detected, namely (i) between the

ClassDiagram

0 *
classes

ERDiagram

0 *
entities

1:1

(M
2)

0..*
Class
name : String

1

P t
0..*

properties

Entity
name : String

0..*

Attribute
0..*

attributes types
1relationships

1:n

1:1

Targ

e
M

et
am

od
el

s

referencestarget

Property
name : String
type : String

Attribute
name : String

Type
1

type

refersToRelationship
name : String

0..*

n:1

1:n

get M
etam

odel

So
ur

ce

Reference
0..*

yp
name : String 0..*

name : String

Role
name : String

roles
2

1:n

ls (M
2)

Reference
name : String
upperBound : Int
lowerBound : Int

1
opposite

Cardinality
upper : Int
lower : Int

cardinality
1

1:n

Fig. 1. Metamodels of the Running Example

class Property and the classes Attribute and Type and (ii) between the class
Reference and the classes Role and Cardinality. Although these are two oc-
currences of a 1:n correspondence, there is a slight difference between them,
since in the first case only for distinct values of the attribute Property.type,
an instance of the class Type should be generated. Finally, there is one occur-
rence of a n:1 correspondence, namely between the class Reference and the
class Relationship. It is classified as n:1 correspondence, since for every pair
of References that are opposite to each other, a corresponding Relationship

has to be established. Considering attributes, only 1:1 correspondences occur,
e.g., between Class.name and Entity.name, whereas regarding references, 1:1
and 0:1 correspondences can be detected. Concerning the first category, one
example arises between ClassDiagram.classes and ERDiagram.entities. Re-
garding the latter category, e.g., the relationship ERDiagram.types exists in the
target without any corresponding counterpart in the source.

Summarizing, for the resolution of structural heterogeneities the fulfillment
of the following requirements is desirable. Firstly, for allowing a transformation
designer to focus on the correspondences in terms of abstract mappings, i.e.,
without having to cope with implementation details, abstraction from a con-
crete transformation language is preferable (cf. abstraction by simplification in
Section 5). Moreover, for being able to cope with large transformation problems,
a transformation designer should be empowered to focus on a specific struc-
tural heterogeneity at a certain point in time (cf. abstraction by selection in
Section 5). Furthermore, even this simple example depicts that there are recur-
ring kinds of correspondences demanding for reusable transformations between
arbitrary metamodels (cf. abstraction by generalization in Section 5). Secondly,
since equal correspondences (like the 1:n correspondences in the example) can
be resolved in different forms, tailoring mechanisms without having to know the
internals (black-box reuse) are desired. Thirdly, in order to be able to solve a
transformation problem by a divide-and-conquer strategy adequate composition
mechanisms are required. Finally, to ease the tedious task of specifying trans-
formations, reusable transformations should be offered in an extensible library.

3 Composite Mapping Operators to the Rescue

The identified correspondences between metamodels (cf. Fig. 1) need to be re-
fined to a declarative description of the transformation, denoted as mapping,
which abstracts from a concrete transformation language achieving abstraction
by simplification. To support transformation designers in resolving structural
heterogeneities in the mapping, we provide a library of composite MOps. In this
respect, reuse is leveraged since the proposed MOps are generic in the sense that
they abstract from concrete metamodel types, thereby achieving abstraction by
generalization. Thus, MOps can be applied between arbitrary metamodels since
they are typed by the core concepts of current meta-modeling languages like
Ecore or MOF. To further structure the mapping process we propose to specify
mappings in two steps. Firstly, composite MOps, describing mappings between
classes are applied, providing an abstract blackbox-view (cf. Fig. 2). Composite
MOps select specific metamodel extracts to focus on when refining the mapping,
providing abstraction by selection. Although attributes and references might be
necessary to identify the correspondences in the blackbox-view, the actual map-
ping thereof is hidden in the whitebox-view. Secondly, in this whitebox-view the
composite MOps can further be refined to specify the mappings between at-
tributes and relationships using so-called kernel MOps (cf. Section 4).

We propose composite MOps (cf. Table 1), which have been inspired by a
mapping benchmark in the area of data engineering [1], describing recurring
mappings between relational and hierarchical schemas. Thereby we identified
typical mapping situations being 1:1 copying, 1:n partitioning, n:1 merging, and
0:1 generating of objects, for which different MOps are provided. Since the map-
ping is executed on instance level, the actually transformed instance set should
be configurable by additional conditions. Finally, inverse operators are defined,
which allow to re-construct the original source object set.

1:1 Correspondences. MOps handling 1:1 correspondences map exactly
one source class to one target class. Currently, two MOps are provided, being a
Copier and a ConditionalCopier. A Copier simply creates one target object
for every source object, applied in our example to map, e.g., the class Class to
the class Entity (cf. Fig. 2(b)). Furthermore, it is often desired that a target
object should only be created if a source object fulfills a certain condition, e.g.,
only if the Class.name attribute is not null. Therefore, the functionality of a
Copier is extended to a ConditionalCopier that requires the specification of a
condition, reducing the generated object set. Please note that there is no inverse
MOp for the ConditionalCopier, since it would require knowing the filtered
instances in order to re-construct the original object set.

1:n Correspondences. MOps handling 1:n correspondences connect one
source class with at least two target classes and therefore allow to split con-
cepts into finer-grained ones. There are three MOps belonging to this cate-
gory, being the VerticalPartitioner, the HorizontalPartitioner, and the
CombinedPartitioner. In this respect, a VerticalPartitioner deals with the
problem when attributes of one source class are part of different classes in the
target, e.g., the attributes of the class Reference are part of the classes Role

and Cardinality in the running example (cf. Fig. 2(d)). Besides this default
behavior, aggregation functionality is sometimes needed. Concerning the run-
ning example, this is the case when splitting the Property concept into the
Attribute and Type concepts, since a Type should only be instantiated for dis-
tinct Property.type values (cf. Fig. 2(c)). In contrast, a HorizontalPartitioner
splits the object set to different classes by means of a condition, e.g., splitting
References into unbounded (upperBound=-1) and bounded (upperBound6=-1)
ones. As the name implies, a CombinedPartitioner combines the functionality
of both operators, e.g., if a Property.type attribute should additionally be split
into numerical and non-numerical types.

n:1 Correspondences. Since MOps handling n:1 correspondences merge
several source objects, they require at least two source objects (not necessarily
from different classes) to create a single target object, thus representing in fact
the inverse operators of 1:n MOps. In this respect, a VerticalMerger merges
several source objects that are related to each other by references into a single
target object. The VerticalMerger in our example (cf. Fig. 2 (e)) has two
connections to the class Reference and a condition expressing that two objects
have to be opposites to each other to generate a single instance of the target
class Relationship. In contrast, a HorizontalMerger builds the union of the
source objects. Finally, the CombinedMerger again combines the functionality of
the two before mentioned MOps.

0:1 Correspondences. MOps handling 0:1 correspondences are applied if
the target metamodel contains classes without any equivalent source classes. For
this reason we provide the ObjectGenerator MOp. Therefore mechanisms for
generating objects (and its contained values and links) are needed, which is the
main contribution of the following section.

Table 1. Composite Mapping Operators

Copier creates exactly one target object per source object Copier

ConditionalCopier creates one target object per source object if condition is fullfilled n.a.

VerticalPartitioner splits one source object into several target objects VerticalMerger

HorizontalPartitioner splits the source object set to different target object sets HorizontalMerger

CombinedPartitioner combines behavior of VerticalPartitioner and HorizontalPartitioner CombinedMerger

VerticalMerger merges several source objects to one target object VerticalPartitioner

HorizontalMerger creates union of the source object set HorizontalPartitioner

CombinedMerger combines behavior of VerticalMerger and HorizontalMerger CombinedPartitioner

0:1 - generating ObjectGenerator generates a new target object without corresponding source object n.a.

Inverse MOp

1:1 - copying

Condition

1:n - partitioning

n:1 - merging

Correspondence MOp Description

4 Specification of Composite MOps with Kernel MOps

In the previous section we introduced composite MOps to resolve structural
heterogeneities in-the-large by using their blackbox-view. In this section we in-
troduce so-called kernel MOps for mapping classes, attributes, and references
in all possible combinations and mapping cardinalities which is the basis for
resolving structural heterogeneities in-the-small. Subsequently, we discuss how
kernel MOps are used to form composite MOps and show exemplarily how the
whitebox-view is specified by means of kernel MOps.

Source TargetMapping

ClassDiagram

0..*

ERDiagram

Class

classes

1 Entity
0..*
entities

a

C C

Class
name : String

1 Entity
name : String

Attribute
St i

0..*
attributes types

1

0..*

properties relationships

b

c

C C

od
el

s
(M

2) referencestarget

name : String

Type
name : String

1

type

0 *

refersTo

Property
name : String
type : String

CC
M

et
am

o

Reference
name : String

0..*

name : String 0..

Relationship
name : String

0..*

roles
2

CC

e

upperBound : Int
lowerBound : Int

1 opposite

Role
name : String

Cardinality

cardinality
1

d
CC

upper : Int
lower : Int

Fig. 2. Solution of the Mapping Example (Blackbox-view of MOps)

4.1 Kernel MOps

In order to provide a MOps kernel, i.e., a minimal set of required MOps to
overcome structural heterogeneities in-the-small, we systematically combined
the core concepts of metamodeling languages, being (i) classes, (ii) attributes,
and (iii) references with different mapping cardinalities, thereby complement-
ing the work of Legler and Naumann [12] focusing on attributes only. Based
on this rationale, the kernel MOps allow mapping source elements to target
classes (2ClassMOps), target attributes (2AttributeMOps), and target relation-
ships (2RelationshipMOps) (cf. first inheritance level of the kernel MOps layer
in Fig. 3). On the second inheritance level we distinguish the following kernel
MOps, according to different cardinalities.

1:1 Mappings. C2C, A2A, and R2R MOps are provided for copying exactly
one object, value, and link from source to target, respectively. Therefore, each
of their source and target references point to the same Ecore concept in Fig. 3.

n:1 Mappings. To resolve the structural heterogeneity that concepts in the
source metamodel are more fine-grained than in the target metamodel, MOps are
needed for merging objects, values, and links. For this, the MOps Cn2C, An2A, and
Rn2R are provided that require a merge condition expressed in OCL, specifying
how to merge elements, e.g., a function to concatenate several attribute values.

0:1 Mappings. Whereas source and target elements of kernel MOps dealing
with 1:1 and n:1 mappings are all of the same type, i.e., pointing to the same
Ecore concept in Fig. 3, 0:1 MOps (02C, 02A, and 02R), bridge elements of differ-
ent concepts, whereby the 0 indicates that there is no source element of equivalent
type. Therefore, these MOps are intended to solve structural heterogeneities re-
sulting from expressing the same modeling concept with different meta-modeling
concepts – a situation which often occurs in metamodeling practice – and are
therefore a crucial prerequisite to “survive the heterogeneity jungle”.

MOps for 0:1 Mappings. In the following, we shortly elaborate on each
concrete 0:1 MOp depicted on the third inheritance level in Fig. 3.

EAttribute

EClass

EStructuralFeature

EReference

KernelMOP

2ClassMOP

ta
rg
et

C2C Cn2C 02C

so
ur
ce

so
ur
ce

so
ur
ce

2AttributeMOP

ta
rg
et

A2A An2A 02A

2..*

2..*

11

2RelationshipMOP

ta
rg
et

R2R Rn2R 02R

11

2..*11

so
ur
ce

so
ur
ce

1

so
ur
ce

1..*

so
ur
ce

1..*

1..* 1

Ecore

function:String

1..*

sourceContext

sourceContext

targetContext

1
11

CombinedMOP

c2c

Kernel MOPs

ObjectGeneratorVerticalMergerCopier

CombinedMerger

HorizontalPartitioner

HorizontalMerger

VerticalPartitionerCombinedPartitioner

02ccn2c

1
1

vMerger

2..*

copiercondCopier

2..*

copier

2..* 1 1..*

copier

0..*

hPart

1..*
{xor}

attribute

objGen

relationship

vPart

1

CompositeMOPs

1

0..* 0..*

A2C R2C

so
ur
ce

C2A R2A

so
ur
ce

so
ur
ce

CC2R CA2R AC2RAA2R

1 1 1

1 1 1

0..*

rS
ta
rt

rE
nd

rS
ta
rt

rE
nd

rS
ta
rt

rE
nd

rS
ta
rt

rE
nd

ConditionalCopier

Fig. 3. Metamodel of Kernel and Composite MOps

02C MOps. This kind of MOp is used to create objects out of values and
links. In particular, the A2C MOp is used for resolving the structural heterogene-
ity that in one metamodel a concept is expressed by an attribute, whereby the
other metamodel defines the concept by an additional class. In the running ex-
ample, this kind of heterogeneity occurs between the attribute Property.type

and the class Type. Analogously, it might be the case that one metamodel has
a reference between two classes whereas the other metamodel exhibits an addi-
tional class in between the corresponding classes. In such a case, for every link
an object has to be created which is realized by the R2C MOp.

02A MOps. Besides MOps for explicating source model concepts by means
of classes in a target model, MOps are needed to generate values from objects and
links. Concerning the first case, a target class may require a certain attribute, for
which no corresponding attribute in the source class exists, e.g., an additional id
attribute. In this case a value has to be set for every generated target object by
a C2A MOp since for every source object a value has to be generated. Concerning
the second case, if an object has been generated from a link (cf. R2C MOp) and
the class of the generated object requires an attribute, we provide an R2A MOp,
which sets a value of an attribute of the generated object for every source link.

02R MOps. Finally, links may be generated on the target side which have
no corresponding links on the source side, but are computable by analyzing the
source model. Since links need a source and a target object, it is not sufficient to
use A2R and C2R MOps, only, instead we need two elements on the left hand side
of such MOps. By systematically combining the possible source elements used
to generate target objects which are additionally linked, the following MOps

are supported: CC2R, AC2R, CA2R, and AA2R whereby the first letter identifies the
element used to generate the source object of the link and the second letter
identifies the element used to generate the target object.

In contrast to composite MOps, we do not provide 1:n kernel MOps as they
can be reduced to n × 1:1 correspondences and thus be again realized as a com-
posite MOp. Furthermore, MOps handling 1:0 correspondences are not needed,
since this means that there is a source concept without any corresponding target
concept, i.e., no transformation action is required (in the forward direction).

4.2 Composition Model for MOps

To assemble the presented kernel MOps to composite MOps and to bind them
to specific metamodels, every MOp has input ports with required interfaces (left
side of the component) as well as output ports with provided interfaces (right side
of the component), typed to classes (C), attributes (A), and relationships (R) (cf.
Fig. 4). Since there are dependencies between MOps, e.g., a link can only be set
after the two objects to be connected are available, every 2ClassMOp and every
composite MOp (which contains 2ClassMOps) additionally offers a trace port
(T) at the bottom of the MOp, providing context information, i.e., offering
information about which output elements have been produced from which input
elements. This port can be used by other MOps to access context information
via requiredContext ports (C) with corresponding interfaces on top of the MOp,
or in case of 2RelationshipsMOps via two ports, whereby the top port depicts
the required source context and the bottom port the required target context (cf.
Fig. 4). Since MOps are expressed as components, the transformation designer
can apply them in a plug & play manner by binding their interfaces.

For composing kernel MOps we provide the abstract class CombinedMOp, ag-
gregating 2AttributeMOps and 2RelationshipMOps (cf. Fig. 3). As we identified
correspondences between classes in a first step, those kernel MOps dealing with
the mapping of classes are an obligatory part of every composite MOp. There-
fore, every composite MOp consists of one concrete refinement of the abstract
class 2ClassMOp, dependent on the composite MOps’ number of correspondences,
being a Copier for 1:1 mappings using a C2C kernel MOp, a VerticalMerger

for n:1 mappings using a Cn2C kernel MOp, and an ObjectGenerator for 0:1
mappings using a 02C kernel MOp, as depicted in Fig. 3. Furthermore, com-
posite MOps can again be combined to more complex composite MOps, e.g., a
VerticalPartitioner consists of several Copiers and ObjectsGenerators.

In this respect, the presented metamodel (cf. Fig. 3) makes the relationships
between kernel MOps and composite MOps explicit thereby representing a con-
ceptual model of heterogeneities, being a main advance compared to our previous
work in [8] where no statements about interrelationships have been made.

4.3 Whitebox-View of Composite MOps

In Section 3 we only specified mappings between source and target metamodel
classes in a first step, leaving out mappings for attributes and references. This

is done in the second step, by switching to the whitebox-view of the composite
MOps. Because each composite MOp sets the focus by marking involved meta-
model classes for a specific mapping, switching to the whitebox-view allows to
show only the metamodel elements which are relevant for this mapping. The
transformation designer has to complete the mappings by adding appropriate
kernel MOps to the composite MOp and by specifying their bindings to at-
tributes and references. Thereby bindings of 2ClassMOps are automatically set
by analyzing the class bindings afore defined in the blackbox-view. To exem-
plify this, we elaborate on the whitebox-view of the Copier (cf. Fig. 4) and the
VerticalPartitioner (cf. Fig. 5) by means of our running example.

Whitebox-View of Copier. The intention of a Copier is to transform one
object and its contained values and links to a corresponding target object. Thus,
a Copier generates one target object for every source object by the C2C kernel
MOp, representing the fixed part of the Copier (cf. both Copiers in Fig. 4) for
which the bindings are automatically derived. The bindings of the variable part,
i.e., arbitrary number of 2AttributeMOps and 2RelationshipMOps, are depen-
dent on the specific metamodels. For example, the transformation designer has
to use an A2A kernel MOp to specify the correspondence between the attribute
Class.name and Entity.name. The inclusion of attribute and relationship map-
pings results in additional ports compared to the blackbox-view (Fig. 2), which
only shows class ports. As attributes only exist in the context of an object, the
A2A MOp depends on the C2C MOp for acquiring context information.

For mapping references, 2RelationshipMOps are employed in both Copiers.
For example, the reference ClassDiagram.classes is mapped to the reference
ERDiagram.entities using a R2R MOp. As links require a source and a target
object, the R2R MOp is linked to the trace port of the C2C MOp on top and to the
trace port provided by the second copier at the bottom. Since the remaining ref-
erences on the target side, i.e., ERDiagram.types and ERDiagram.relationships,
do not have a counterpart reference on the source side, they have to be mapped
by 0:1 MOps. Concerning links instantiated from the reference ERDiagram.type,
the links’ source object is an ERDiagram object which is created from a ClassDia-
gram object and the target object is a Type object created from a value of the
Property.type attribute. These source elements are related by the path Class-

Diagram.classes.properties. In order to reflect this in the target model, the
user has to specify this path explicitly since otherwise only the cross product
between the involved objects could be built. As the link’s source was created on
basis of a class and the link’s target on basis of an attribute, a CA2R MOp is ap-
plied. Finally, since ERDiagram.relationships links have to reflect the context
of instances from class ClassDiagram and from class Reference, described by
the path ClassDiagram.classes.references, we apply a CC2R MOp.

Whitebox-View of VerticalPartitioner. Since in the general case the
VerticalPartitioner only splits attributes of the source class to attributes in
several different target classes, Copiers can be reused. As shown in Example
Application 1 in Fig. 5, the first Copier creates Role objects and sets the value
of the Role.name attribute and the second one creates Cardinality objects and

Syntax Example Applications

st
ra

ct
 S

yn
ta

x

*

*Copier 2AttributeMOP

cl cl

ref2

C

R

ref1 R
ref1

CCC CC
T
22C CC C22C CC C22C CC C

CC
R22CA RCA R

RR RR

CC
Rclasses

ClassDiagramClassDiagram ERDiagramERDiagram

entities

TypeType
0..*

types
CC

22R RR R22R RR R22R RR R

1 C2C
Sy

nt
ax

A
bs 2RelationshipMOP CC

TCC

0..*
Class
name 0..*

ypeyp
name

RelationshipRelationship
name

0..*
relationships

Entity
name

CC

CC

CC
R22CC RCC R

CC

ref3 R

cl cl CCCC CC
T
22C CC C22C CC C22C CC C

T

cl cl CCCC CC
T
22C CC C22C CC C22C CC C

CC

t1

C
on

cr
et

e

Property
name
type

0..*
properties

a e

AttributeAttribute
name

attributes
0..*ref1 R

attr1 A
attr1

T

CC

CC
R

CC

AA AA

CC
A22A AA A22A AA A22A AA A

ref1
RR RR 22R RR R22R RR R22R RR R

R

attr [*]
A

CC

CC

T

R

CC

AA AA

CC
A22 AttributeMOPAttributeMOP

RR RR 2222 RelationshipMOPRelationshipMOP

[*][*]

[*][*]ref [*]

attr [*]

ref [*]

t1

Fig. 4. Whitebox-View of Copier

sets the attributes Cardinality.upper and Cardinality.lower. Again the at-
tribute mappings are specified by the transformation designer in the whitebox-
view. Since there is no equivalent for the Role.cardinality link in the source
model available, a link for every object pair has to be generated by the CC2R

MOp, which is automatically added to the Copier since it is always required.
As the Copiers do not affect the instance set, there has to be a 1:1 relationship
between the target classes. In case that the target classes are related by a 1:*
relationship, the intention typically is to generate only one object per distinct
value of a dedicated source attribute, e.g., only one Type object per distinct
Property.type value, which can not be achieved by a Copier. In order to gen-

Concrete SyntaxAbstract Syntax

t1 * Copier cl parent

ref

hild
T

[1..*]

CCCCC CC CC
T
22C CC C22C CC C22C CC C

CC

CC

T

R220 R0 R220 R0 R220 R0 R R R

child t1CC

t2

0..*

1..

VPartitioner

Copier

ObjectGen

Example Application 1 Example Application 2

childC
[1..*]

C

T

[1..*]
[ObjectGen | Copier]

t1 U t2

cl parent
CCC

attr1
AA

AparAttr1

name
type
name
type *

CCCC CC
T
22C CC C22C CC C22C CC C

CC
AA AA

CC
A22A AA A22A AA A22A AA A A

Property
name11

11 Attribute
Role
name

cl parent

ref

CCC

R

attr1
AA

A
parAttr1

cardinality
Reference
name

CCCC CC
T
22C CC C22C CC C22C CC C

CC
R22CC RCC R R

AA AA

CC
A22A AA A22A AA A22A AA A A

1 ref R

child
T

C child C TypeType

type

1
C

t2

CC

CC

T

R22CA RCA R R

t1CC

22AA CC22AA CC22AA CCupper

1

lower

T

CC CCC
child

C

T
Cardinality

cardinality
upperBound
lowerBound

child

CC

T

22

t1CC

1

1
1
1

C22C CC C22C CC C22C CC C

t2

childAttr1 A

T

attr2
AA AA AAA

yp
namename

A

T

t1 U t2

CC

22AA AA22AA AA22AA AA

lower
childAttr1 Aattr2

AA

attr3
AA

childAttr2 A

T

AA AA

CC
A22A AA A22A AA A22A AA A A

AA AA

CC
A22A AA A22A AA A22A AA A A

t1 U t2

1

Fig. 5. Whitebox-View of VerticalPartitioner

erate the distinct objects the ObjectGenerator is applied, using an A2C MOp to
generate the according objects based on the Property.type attribute (cf. Ex-
ample Application 2 in Fig. 5). In order to decide whether a new object should
be created, i.e., an attribute value for which no object has been created up to
now, the A2C MOp queries its own context information.

5 Related Work

In the following, related transformation approaches are considered stemming
not only from the area of model engineering, but also from data and ontology
engineering since models can be treated as data, metamodels as schemas and
transformations as a means for realizing data exchange. A similar analogy can
be drawn for the area of ontology engineering. The comparison to our MOps
is done in the following according to the introduced criteria (i) abstraction, (ii)
variation, (iii) composition, and (iv) library of pre-defined MOps (cf. Table 2).

Table 2. Comparison of Transformation Approaches

Copy-
Paste Inheritance Internal External 1:1 1:n n:1 0:1

QVT Relations control flow
when,
where

clauses

TGG (Moflon) control flow

corres-
pondence
nodes set

focus

genericity
(proposed) layers

VIATRA control flow genericity ASMs
ATL (delcarative

part) control flow
lazy
rules

AMW execution
language ~ genericity nesting ~ ~

MOps execution
language

Composite
MOps set

focus
genericity

context
passing

Clio/Clip execution
language ~ genericity

context
passing ~

Mapforce execution
language ~ genericity ~ ~ ~

Ontology
Eng. MAFRA execution

language genericity
context
passing ~

Model
Eng.

White-Box Reuse

Data
Eng.

Transformation
Approach

Abstraction

By
Simplification

By
Selection

By
Generalization

Black-
Box

Reuse
Extensibility

Variation Composition

Explicit
Implicit

Mapping Cardinality

Library

Concerning abstraction, different kinds of mechanisms have been investigated,
namely (i) abstraction by simplification, (ii) abstraction by selection and (iii) ab-
straction by generalization. These terms are inspired by the general discussion of
abstraction in [11]. In the context of model transformations abstraction by sim-
plification denotes the removal of elements from a transformation language, ab-
stracting language-specific details, e.g., for describing correspondences between
classes. Abstraction by selection is the process of focussing on a certain part of
the metamodels only, i.e., the transformation designer is enabled to specify a
whole transformation in a divide-and-conquer manner, e.g., partitioning a cer-
tain Class into several others. Abstraction by generalization is interpreted in the
model transformation context, i.e., allowing to focus on the generic transforma-
tion logic. This is currently mostly supported by generic types.

With respect to abstraction by simplification, the approaches can be catego-
rized into two groups, namely the ones abstracting from control flow only and the

ones abstracting from the underlying execution language at all, thus focussing on
the mapping specification, also known as schema mapping approaches from the
area of data engineering. Regarding abstraction by simplification, only TGGs
[10] provide support, since by defining the correspondence nodes, a focus on a
certain metamodel part is set. The subsequent definition of the underlying graph
transformation rule therefore just concentrates on this focused part of the meta-
model. AMW [4], Clio/Clip [14], and Mapforce3 provide only basic support in the
sense that they allow to collapse certain metamodel parts. Concerning abstrac-
tion by generalization, TGGs, VIATRA [18], AMW, Clio/Clip, Mapforce and
MAFRA [13] provide support by genericity. In contrast, our approach provides
all kinds of abstraction mechanisms, being (i) simplification through abstract-
ing from the underlying execution language, (ii) selection since the composite
MOps set a certain focus, which can be concentrated on in the white-box view,
and (iii) generalization through abstraction from the concrete metamodel since
MOps are based on the meta-metamodel.

With respect to variation mechanisms, the support for (i) white-box reuse,
i.e., the implementation must be known in order to customize the reused compo-
nents and for (ii) black-box reuse can be distinguished. In this context, mainly
white-box reuse is supported so far by existing approaches. It is supported in
the simplest form by copy-paste (QVT Relations, VIATRA, ATL [7]) as well as
by inheritance (QVT Relations, TGGs, VIATRA, ATL). Regarding black-box
reuse, only Mapforce provides basic support, e.g., by allowing to set parameters
for string operators. On the contrary, MOps can be tailored without knowing
the internals, thus realizing black-box reuse.

Concerning composition mechanisms, the approaches have been examined
according to the criteria proposed by [3], distinguishing between (i) implicit
composition, i.e., hard-coded mechanisms not adaptable by the transformation
designer and (ii) explicit composition, i.e., composition can be explicitly specified
by the transformation designer, further classified into (iia) internal composition,
i.e., intermingling composition specification and rules and (iib) external composi-
tion, i.e., there is a clear separation between composition specification and rules.
With respect to explicit composition mechanisms, all the approaches provide
support except Mapforce. Regarding internal composition, most approaches fol-
low this idea in different forms. Whereas QVT allows to describe composition by
means of preconditions (when-clauses) and postconditions (where-clauses), ATL
allows for the explicit calling of lazy rules. In contrast, Clio/Clip and MAFRA
rely on data dependencies between the rules only, i.e., context passing. This is
favorable, since the ordering of rules just depends on the data and therefore our
approach also follows this idea. Concerning external composition, only TGGs
and VIATRA follow this approach allowing for a clear separation between rules
and composition specification in the simple form of layers (TGGs) or by the
more sophisticated form of ASM (abstract state machine) programs (VIATRA).

Concerning the library aspect, only AMW, Clio/Clip, Mapforce and MAFRA
provide a basic set of pre-defined components. In this respect, (i) the mapping

3 http://www.altova.com/mapforce.html

cardinality, i.e., the cardinality supported by the offered MOps and (ii) the pos-
sibility to extend the pre-defined set of MOps have been investigated. With re-
spect to mapping cardinality, only 1:1 mappings are supported by all approaches.
More coarse-grained MOps, i.e., composite MOps (1:n, n:1, n:m) are neglected
so far. Finally, for 0:1 mappings, i.e., the mapping between different metamodel
concepts only basic support is provided. Regarding the extension of predefined
MOps with user-defined ones, only Mapforce allows for the definition of new ones
on the one hand by composing existing ones and on the other hand by writing a
code script, i.e., the transformation designer has to define a MOp from scratch.
Basically, also AMW could be extended by modifying the underlying metamodel
and the HOT responsible for generating the executable ATL code. Nevertheless,
this kind of extensibility is quite heavyweight and reserved to specialists. In con-
trast, our approach supports all kinds of mapping cardinalities and by offering
a set of kernel MOps, the library can be easily extended by composing a new
MOp out of kernel MOps or other composite ones.

6 Prototypical Implementation

This section elaborates on the prototypical implementation of the presented
approach based on the AMMA platform4. In particular, we extended AMW [5]
to specify mappings by using the presented MOps as well as a HOT [17] for
generating executable ATL code [7] out of the mappings (cf. Fig. 6).

Extending AMW. The AMW framework provides a generic infrastructure
and editor to declaratively specify weaving models between two arbitrary models.
The editor is based on a generic weaving metamodel, defining generic weaving
links, which can be extended to specify custom weaving links. The generic weav-
ing links are mainly represented by the abstract classes WLink. For each kernel
and composite MOp shown in Fig. 3, we introduced a direct or indirect subclass
of WLink defining the properties of the MOp. In order to ensure context-sensitive
mapping constraints, we provide basic verification support based on the EMF
Validation Framework5, e.g., every MOp has to be correctly connected to its
source and target metamodel elements as well as to its context mappings.

Execution of Mapping Operators. The extended AMW metamodel de-
fines the abstract syntax of the mapping language, but does not provide means
to specify the operational semantics needed for execution of mappings. Since
we explicitly represent mappings as a model, we employ a HOT to compile the
mappings into executable ATL code. For MOps dealing with 1:1, 1:n and n:1
mappings, declarative ATL code is generated in terms of matched rules. For
MOps dealing with 0:1 mappings imperative code blocks are generated. Consid-
ering our running example, an A2C MOp was applied to generate Type objects
on basis of distinct Property.type values, for which a lazy rule is required.
To ensure that the lazy rule is called only for distinct values, according trace
information is needed. Since ATL provides trace information automatically for

4 http://wiki.eclipse.org/AMMA
5 http://www.eclipse.org/modeling/emf/?project=validation

matched rules, only, we implemented our own, more flexible trace model for pro-
viding trace information for every rule (irresponsible of the rule type) and for
providing traces of values and links in addition to objects. For example, this spe-
cific trace information is needed to omit the creation of redundant Type objects
in our running example. For 0:1 R-MOps it has to be ensured that the source and
target objects of the link to be generated have already been established, before
the link is set. Therefore, those links are created in an endpoint rule, which is
called by the ATL engine just before termination. For more information on our
prototype, we kindly refer the interested reader to our project homepage6.

MOP Metamodel AMW ATL MetamodelAMW
Editor

based
on

ATL Metamodel

generated by instance ofinstance of

instance of

ATL Code

generates

ATL HOT

inputMapping

Fig. 6. Generating Transformation Code from Mapping Model

7 Critical Discussion and Future Work

A critical reflection of our MOps opens up several issues for future work.
Incorporation of Additional Modeling Concepts. Currently, only the

most important concepts of modeling languages, i.e., classes, attributes and rela-
tionships have been considered. It would be highly desireable, however, to extend
our MOp library to be able to deal also with concepts such as inheritance. We
have already published first ideas in this direction in [8].

Effort Reduction by Matching Techniques. Our mapping approach con-
sists of two steps being first the definition of mappings on class level which has
to be further refined with attribute and relationships mappings. Since this re-
finement can be time-consuming, matching strategies [15, 16] may be applied
to automatically derive attribute and relationship mappings. Matching in this
context may be especially beneficial since through setting a certain focus in the
blackbox view, the search area is already restricted.

Impedance Mismatch Reduction by Other Execution Languages.
The operational semantics of our MOps is defined using a HOT to ATL. Thus,
there is an impedance mismatch between the abstract mapping specification
and the executable code, which hinders understandability and debugging of the
generated code. Therefore, the translation to other transformation languages
should be investigated, trying to identify which transformation language fits
best to the mapping specification. In this respect, the applicability of our own
transformation language TROPIC [19] should be investigated as well.

6 www.modeltransformation.net

Usability Evaluation. Kernel MOps provide rather fine-grained operators
for overcoming structural heterogeneities. Nevertheless, they abstract from the
intricacies of a certain transformation language, e.g., 0:1 MOPs often require
querying trace information or helper functions which require considerable effort
in implementing manually. Therefore, the usability of our approach has to be
investigated in further studies, evaluating the expected advantage.

References

1. B. Alexe, W.-C. Tan, and Y. Velegrakis. STBenchmark: Towards a Benchmark for
Mapping Systems. VLDB Endow., 1(1):230–244, 2008.

2. J. Bézivin. On the Unification Power of Models. Journal on Software and Systems
Modeling, 4(2):31, 2005.

3. K. Czarnecki and S. Helsen. Feature-based Survey of Model Transformation Ap-
proaches. IBM Systems Journal, 45(3):621–645, 2006.

4. M. D. Fabro and P. Valduriez. Towards the development of model transformations
using model weaving and matching transformations. SoSym, 8(3):305–324, 2009.

5. M. Del Fabro, J. Bézivin, F. Jouault, E. Breton, and G. Gueltas. AMW: A Generic
Model Weaver. In Proc. of IDM’05, 2005.

6. R. Hull and R. King. Semantic Database Modeling: Survey, Applications, and
Research Issues. ACM Comput. Surv., 19(3):201–260, 1987.

7. F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A Model Transformation
Tool. Science of Computer Programming, 72(1-2):31–39, June 2008.

8. G. Kappel, H. Kargl, T. Reiter, W. Retschitzegger, W. Schwinger, M. Strommer,
and M. Wimmer. A Framework for Building Mapping Operators Resolving Struc-
tural Heterogeneities. In Proc. of UNISCON’2008, pages 158–174, 2008.

9. V. Kashyap and A. Sheth. Semantic and schematic similarities between database
objects: A context-based approach. The VLDB Journal, 5(4):276–304, 1996.

10. A. Koenigs. Model Transformation with Triple Graph Grammars. Model Trans-
formations in Practice Workshop of MODELS’05, Montego Bay, Jamaica, 2005.

11. J. Kramer. Is abstraction the key to computing? Com. ACM, 50(4):36–42, 2007.
12. F. Legler and F. Naumann. A Classification of Schema Mappings and Analysis of

Mapping Tools. Proc. of BTW’07, 2007.
13. A. Maedche, B. Motik, N. Silva, and R. Volz. MAFRA - A MApping FRAmework

for Distributed Ontologies. In Proc. of EKAW’02, pages 235–250, 2002.
14. A. Raffio, D. Braga, S. Ceri, P. Papotti, and M. A. Hernández. Clip: a visual

language for explicit schema mappings. In Proc. of ICDE’08, pages 30–39, 2008.
15. E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-

ing. The VLDB Journal, 10(4):334–350, 2001.
16. R. Ramos, O. Barais, and J. M. Jézéquel. Matching Model-Snippets. In Proc. of

MoDELS’07, 2007.
17. M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin. On the Use of Higher-

Order Model Transformations. In Proc. of ECMDA-FA’09, pages 18–33, 2009.
18. D. Varró and A. Pataricza. Generic and meta-transformations for model transfor-

mation engineering. In Proc. of UML’04, pages 290–304. Springer, 2004.
19. M. Wimmer, A. Kusel, T. Reiter, W. Retschitzegger, W. Schwinger, and G. Kappel.

Lost in Translation? Transformation Nets to the Rescue! In Proc. of UNISCON’09,
pages 315–327, 2009.

