
Catch me if you can –
Debugging Support for Model Transformations?

J. Schoenboeck1, G. Kappel1, A. Kusel2,
W. Retschitzegger2, W. Schwinger2, and M. Wimmer1

1 Vienna University of Technology, Austria
{schoenboeck|kappel|wimmer}@big.tuwien.ac.at

2 Johannes Kepler University Linz, Austria
{kusel|retschitzegger}@bioinf.jku.at, wieland.schwinger@jku.ac.at

Abstract. Model-Driven Engineering places models as first-class arti-
facts throughout the software lifecycle requiring the availability of proper
transformation languages. Although numerous approaches are available,
they lack convenient facilities for supporting debugging and understand-
ing of the transformation logic. This is because execution engines op-
erate on a low level of abstraction, hide the operational semantics of a
transformation, scatter metamodels, models, transformation logic, and
trace information across different artifacts, and provide limited verifica-
tion support. To tackle these problems, we propose a Domain-Specific
Language (DSL) on top of Colored Petri Nets (CPNs)—called Transfor-
mation Nets—for the execution and debugging of model transformations
on a high level of abstraction. This formalism makes the afore hidden
operational semantics explicit by providing a runtime model in terms of
places, transitions and tokens, integrating all artifacts involved into a
homogenous view. Moreover, the formal underpinnings of CPNs enable
comprehensive verification of model transformations.

Key words: Model Transformation, Debugging, CPN, Runtime Model

1 Introduction
The availability of model transformation languages is the crucial factor in MDE,
since they are as important for MDE as compilers are for high-level program-
ming languages. Several kinds of transformation languages have been proposed,
comprising imperative, declarative, and hybrid ones [5]. Imperative approaches
allow the specification of complex transformations more easily than declarative
approaches, e.g., by providing explicit statefulness, but induce more overhead
code as many issues have to be accomplished explicitly, e.g., specification of
control flow. Although hybrid and declarative model transformation languages
relieve transformation designers from these burdens, specification of transforma-
tion logic is still a tedious and error prone task due to the following reasons.

First, languages such as the Atlas Transformation Language (ATL) [10],
Triple Graph Grammars (TGGs) [12], and QVT Relations [17] specify corre-
spondences between source and target metamodel elements (cf. Fig. 1 (a)) on a
? This work has been funded by the Austrian Science Fund (FWF) under grant

P21374-N13.

high level of abstraction, whereas accompanying execution engines operate on
a considerably lower level. For example, ATL uses a stack machine and TGGs
are first translated to Fujaba [21], and then to Java. As a consequence, debug-
ging of model transformations is limited to the information provided by these
engines, most often just consisting of variable values and logging messages, but
missing important information, e.g., why certain parts of a transformation are
actually executed. Thus, only a snapshot of the actual execution state is pro-
vided during debugging while coherence between the specified correspondences
is lost. Therefore, these execution engines act as a black-box to the transfor-
mation designer hiding the operational semantics. Second, comprehensibility of
transformation logic is further hampered as current transformation languages
provide only a limited view on a model transformation problem. For example
in ATL, metamodels, models, the transformation specification, and trace infor-
mation are scattered across different artifacts. Graph transformation approaches
using graph patterns also only reveal parts of the metamodel. Additionally, both
approaches hide the transformation of concrete model elements. Finally, compre-
hensive verification support of model transformations is missing, although first
approaches are available, e.g., work in the area of graph transformations such as
[3].

Source
Metamodel

Target
Metamodel

transformation ClassToRel
(class:Class, rel:Relational){
top relation PackageToSchemaPackageToSchema{

checkonly domain class
p:Package{classes=c:Class{

isPersistent=true}};
enforce domain rel
s:Schema {tables=t:Table{}};

}

QVT R l ti TGG

Correspondences

Source
Model

New Target
Model

conforms

input output

executed by

Transformation
Engine

conforms

QVT Relations TGGs

C d

f
Transformation Net

Target
Metamodel

Source
Metamodel

f

executed by

transformation ClassToRel
(class:Class, rel:Relational){
top relation PackageToSchema{

checkonly domain class
p:Package{classes=c:Class{

isPersistent=true}};
enforce domain rel
s:Schema {tables=t:Table{}};

}

QVT Relations TGGs

Correspondences

Source
Metamodel

f f

Target
Metamodel

transformation ClassToRel
(class:Class, rel:Relational){
top relation PackageToSchema{

checkonly domain class
p:Package{classes=c:Class{

isPersistent=true}};
enforce domain rel
s:Schema {tables=t:Table{}};

}

QVT Relations TGGs

Correspondences

Target
conforms

New Target
Model

Transitions

Transformation
Logic

conforms

Source
Model

Source

Places

Tokens

Transitions

() G l A hit t (b) T f ti N t

Source
Model

New Target
Model

conforms

input output

executed by

Transformation
Engine

conforms

(a) General Architecture (b) Transformation Net

Fig. 1. Model Transformation Architecture

To tackle the aforementioned limitations of current approaches and their un-
derlying execution engines we propose Transformation Nets (TNs), a DSL on
top of Colored Petri Nets (CPNs) [9], for developing, executing and debugging
model transformations (cf. Fig. 1(b)). In particular, for every metamodel ele-
ment, places in TNs are derived, whereby a corresponding place is created for
every class, every attribute and every reference. Model elements are represented
by tokens which are put into the according places. Finally, the actual transforma-
tion logic is represented by transitions. The existence of certain model elements
(i.e., tokens) allows transitions to fire and thus stream these tokens from source
places to target places representing instances of the target metamodel to be
created. This approach follows a process-oriented view towards model transfor-
mations allowing debugging on an appropriate level of abstraction. Furthermore,
TNs provide the explicit statefulness of imperative approaches through tokens

contained within places. The abstraction of control flow known from declarative
approaches is achieved as the net’s transitions can fire autonomously, thus mak-
ing use of implicit, data-driven control flow. Nevertheless, the stepwise firing of
the transitions makes explicit the operational semantics of the transformation
logic and thereby enables simulation-based debugging (cf. (1) in Fig. 2). The abil-
ity to combine all the artifacts involved, i.e., metamodels, models, as well as the
actual transformation logic, into a single representation makes the formalism es-
pecially suited for gaining an understanding of the intricacies of a specific model
transformation. Moreover, TNs form a runtime model, serving as an execution
engine for diverse model transformation languages, e.g., QVT Relations. As the
runtime model itself is formally specified in terms of a metamodel [24], it can
be exploited for model-based debugging by using OCL queries to find the origin
of a bug (cf. (2) in Fig. 2). Finally, the formal underpinnings of CPNs enable
verification-based debugging by state space exploration, which contains all pos-
sible firing sequences of a CPN (cf. (3) in Fig. 2). This allows the application
of generally accepted behavioral properties, characterizing the nature of a cer-
tain CPN, e.g., to verify if a certain target model can be created with the given
transformation logic. Whereas previous work [22–24] focused on distinct aspects
of the TN formalism, this work aims at providing a comprehensive consideration
of the diverse debugging features.

Target
Metamodel

Source
Metamodel

transformation ClassToRel
(class:Class, rel:Relational){
top relation PackageToSchema{

checkonly domain class
p:Package{classes=c:Class{

isPersistent=true}};
enforce domain rel
s:Schema {tables=t:Table{}};

}

Correspondences

2
Development and
Debugging Environment
Model-Based Debugging

implements

Target
conforms

Transformation Net

Transitions

Transformation
Logic

conforms
Source

Tokens

Transitions

executed by

QVT Relations TGGs

1 Runtime Model
Simulation-Based Debugging

based on

New Target
Model

Source
Model

Places

3 Colored Petri Nets
Verification-Based Debugging

Fig. 2. Expected Main Contributions

The rest of the paper is structured as follows. Section 2 presents the concepts
of the runtime model. Subsequently, Section 3 shows how to exploit the runtime
model for model-based debugging. In Section 4, we introduce properties of CPNs,
which can be used to formally verify model transformations. Section 5 reports
on lessons learned, whereas Section 6 discusses related work. Finally, Section 7
provides an outlook on future work.

2 Runtime Model for Simulation-Based Debugging

In this section, we introduce the proposed runtime model by first describing
the static parts thereof, i.e., metamodels and models, followed by the dynamic
parts, i.e., transformation logic itself. In order to exemplify this, Fig. 3 depicts
a small excerpt of the metamodels of the well-known UML2RDBMS case study
[17] serving as a simple running example throughout the rest of the paper.

M
et

am
od

el
s

(M
2)

UMLModelElement
name : String
UMLModelElement
name : String

PackagePackage PackageElementPackageElement

ClassifierClassifier

Class
kind : String
Class
kind : String

element *

UML RDBMS

RModelElement
name : String
RModelElement
name : String

SchemaSchema TableTable
table

*

AttributeAttribute

PrimitiveDatatypePrimitiveDatatype

attribute*

1 type

*
*

general

generalOpposite

Column
type : String
Column
type : String

*
column

namespace

schema

Fig. 3. Metamodels of the UML2RDBMS Example

Static Parts. When employing TNs, the static parts of a model transfor-
mation, i.e., metamodels and models, need to be represented in our formalism.
This incurs transitioning from the graph-based paradigm underlying MDE into
the set-based paradigm underlying Petri Nets (cf. Fig. 4). The abstract syntax
of TNs is formalized by means of a metamodel (see [24]) conforming to the Ecore
meta-metamodel, the Eclipse realization of OMG’s MOF standard. The design
rationale behind this transition is the following: We rely on the core concepts of
an object-oriented meta-metamodel (MOF), i.e., the graph which represents the
metamodel consists of classes, attributes, and references, and the graph which
represents a conforming model consists of objects, data values and links. There-
fore, we distinguish between one-colored places containing one-colored tokens for
representing the nodes of graphs, i.e., objects, and two-colored places containing
two-colored tokens. These two-colored tokens represent on the one hand links
between objects, i.e., one color represents the source object and the other the
target object, and on the other hand attribute values, i.e., one color represents
the containing object and the other one the actual value. The color is realized
through a unique value that is derived from the object’s id.

TNs also support modeling concepts beyond classes, attributes and refer-
ences. Subclass relationships are currently represented by nested places whereby
the place corresponding to the subclass is contained within the place correspond-
ing to the superclass. The tokens contained in the subplace may also act as input
tokens for a transition connected to the superplace. For deep inheritance hierar-
chies we represent the classes by separated places whereby the is-a relationship
between objects is expressed by duplicating the tokens in every place involved in
the inheritance hierarchy, e.g., for representing a class object, a token is put into
the place Class and another, same-colored, token into the place Classifier. Or-
dered references in the metamodel are represented similar to ordinary references
but induce a FIFO semantics when firing the transition in the TN. To represent

multiplicities of references defined in the metamodel accordingly, places may be
annotated with a relative capacity constraint to restrict the number of tokens
of a specific outer-color. Finally, places may be annotated with an absolute ca-
pacity to restrict the total number of their tokens, e.g., for enforcing sequential
processing.

Meta Object Facility (MOF) Transformation Nets
Concept Example in UML Concept Example

Class OneColoredPlace

Attribute TwoColoredPlace

Reference TwoColoredPlace

Generalization NestedPlace

Ordered
Reference OrderedPlace

Not used in metamodels Absolute
Capacity

Multiplicity Relative
Capacity

Object
(Instance of
Class)

OneColoredToken
(contained in a
OneColoredPlace)

Value
(Instance of
Attribute)

TwoColoredToken
(contained in a
TwoColoredPlace)

Link
(Instance of
Reference)

TwoColoredToken
(contained in a
TwoColoredPlace)

M
et

am
od

el
 E

le
m

en
ts

M
od

el
 E

le
m

en
ts

Class
kind : String
Class
kind : String

Class
kind : String
Class
kind : String

PrimitiveTypePrimitiveTypetype 1AttributeAttribute

C1:Class
kind=`persistent´
C1:Class
kind=`persistent´

C1:Class
kind=`persistent´
C1:Class
kind=`persistent´

A1:AttributeA1:AttributeattrC1:Class
kind=`persistent´
C1:Class
kind=`persistent´

Class
C2

Class_kind

Class_attr

Class

C1

persistent
C1

Class_kind

Classifier

C
2

Class

ordered

Class_attrAttributeAttributeClass
kind : String
Class
kind : String

{ordered} *

1

1

ClassifierClassifier Class
kind : String
Class
kind : String

AttributeAttributeattr *Class
kind : String
Class
kind : String

Buffer

Attribute_type

Class_attr
C1
A1

attr

Fig. 4. Representing MOF concepts within Transformation Nets

Dynamic Parts. The transformation logic is embodied by Petri Net tran-
sitions and additional trace places which reside in-between those places repre-
senting the original input and output metamodels. A transition consists of input
placeholders (LHS of the transition) representing its pre-condition, whereas out-
put placeholders (RHS of the transition) depict its post-condition. To express
these conditions, meta tokens are used, prescribing a certain token configura-
tion by means of color patterns. By matching a certain token configuration from
the input places, i.e., fulfilling the pre-condition, the transition is ready to fire.
The production of output tokens fulfilling the post-condition once a transition
fires depends on the matched input tokens. Finally, TNs exhibit a specific firing
behavior where tokens are not consumed per default since typically all combina-
tions of tokens fulfilling a certain precondition are desired in a transformation
scenario, e.g., to correctly resolve 1:n relationships between objects. This is re-
alized by a transition’s history which logs the already fired token combinations.

Since meta tokens are just typed to one-colored and two-colored tokens, but
not to certain metamodel classes, transitions can form reusable transformation
patterns which can be applied in different scenarios (cf. Fig. 5). For example,
when a simple one-to-one correspondence should be implemented, the colors
of input and output meta tokens are equal, meaning that a token is streamed
through the transition only, e.g., to map Attributes to Columns (cf. Streamer
in Fig. 5(a)). In order to set inverted references, transition (b) in Fig. 5 matches
a two-colored token from its input place, and produces an inverted token in
the output place, thus building up the Inverter pattern. To get the value of an
attribute or the target of a link which is represented by the inner color of the two-
colored token, transition (c) matches two-colored tokens from input places and
peels off the outer color of the token (cf. Peeler in Fig. 5). Finally, transition (d)
represents a variation of the Streamer pattern called ConditionalStreamer adding
additional preconditions. For example, this pattern may be used to ensure that
objects have been created before a link can be set between them. These patterns
represent basic building blocks recurring in diverse model transformation sce-
narios. Complementary research focuses on how these fine grained patterns can
be employed in more coarse grained reusable mapping operators [14].

(a) Streamer (b) Inverter (c) Peeler (d) Conditional Streamer

Streamer Inverter TopClasses

CondStreamer

Peeler

Attribute Class_generalClass_generalColumn Class_generalOpposite SuperClass

p

Attribute

Class_attr
Table_cols

Fig. 5. Transitions forming Transformation Patterns

Summarizing, TNs allow the transformation process to be executed stepwise
revealing which tokens enable a certain transition and which tokens get produced
by firing this transition, enabling simulation-based debugging. This is possible
because TNs provide a white-box view on model transformation execution, i.e.,
the specification needs not to be translated into another low-level executable
artifact but can be executed right away. As already mentioned, this runtime
might act as an execution engine for various declarative transformation languages
which have a close correspondence to TNs, e.g., for QVT Relations as shown in
[23], to benefit from our debugging features.

3 Development Environment for Model-Based Debugging

For exemplifying model-based debugging features integrated into a development
environment, we make use of the running example, whereby an OR-mapping
strategy of creating a table for every persistent class is pursued. Moreover, at-
tributes inherited from base classes should result in additional columns. As shown
in Fig. 6, our example input model comprises three classes whereby class C2 in-
herits from class C1 and class C3 inherits from class C2 (cf. link general) but
only class C1 and C2 are marked persistent. Therefore, the desired output model
should contain two Tables, one for class C1 and one for class C2, whereby table

C2 gets an additional column originating from the attribute name of class C1. In
the following we use this example to demonstrate our debugging facilities.

M
od

el
s

(M
1)

C1 : Class
kind = 'Persistent'
name = ‘Person‘

C1 : Class
kind = 'Persistent'
name = ‘Person‘

C2 : Class
kind = 'Persistent'
name = ‘Student‘

C2 : Class
kind = 'Persistent'
name = ‘Student‘

C3 : Class
kind = 'NonPersistent'
name = ‘Tutor‘

C3 : Class
kind = 'NonPersistent'
name = ‘Tutor‘

element

element

element

P1 : Package
name = ‘University‘
P1 : Package
name = ‘University‘

P1 : Schema
name = ‘University‘
P1 : Schema
name = ‘University‘

C1 : Table
name = ‘Person‘
C1 : Table
name = ‘Person‘

C2 : Table
name = ‘Student‘
C2 : Table
name = ‘Student‘

table

table

namespace

namespace
namespace

A1 : Attribute
name = ‘name‘
A1 : Attribute
name = ‘name‘

A2 : Attribute
name = ‘registrNo‘
A2 : Attribute
name = ‘registrNo‘

A3 : Attribute
name = ‘lecture‘
A3 : Attribute
name = ‘lecture‘

general

general

generalOpposite

generalOpposite

attribute

attribute

attribute

Pr1 : PrimitiveDatatype
name = ‘String‘
Pr1 : PrimitiveDatatype
name = ‘String‘

Pr2 : PrimitiveDatatype
name = ‘Integer‘
Pr2 : PrimitiveDatatype
name = ‘Integer‘

type

type

type

A1 : Column
name = ‘name‘
type = ‘String‘

A1 : Column
name = ‘name‘
type = ‘String‘

A2 : Column
name = ‘name‘
type = ‘String‘

A2 : Column
name = ‘name‘
type = ‘String‘

A3 : Column
name = ‘registrNo‘
type = ‘Integer‘

A3 : Column
name = ‘registrNo‘
type = ‘Integer‘

column

column

column

schema

schema

UML RDBMS

Fig. 6. Source and Target Models – Transforming Persistent Classes only.

Our development and debugging environment is based on Eclipse including
two editors, one presenting the transformation specification, e.g, QVT Relations
code (cf. Fig. 7(a)) and another one that shows the graphical representation
thereof in terms of TNs (cf. Fig. 7(b)), realizing the above example. To provide
common debugging functionalities, such as stepwise debugging, an editor toolbar
(cf. Fig. 7(c)) is offered. Furthermore, functionalities to save the generated target
model, i.e., to switch from the token representation to a model representation,
and to load a new source model into the debugging environment are included.

Besides these standard functionalities, there are additional debugging fea-
tures resulting as a benefit of using a dedicated runtime model (cf. model-based
debugging). In particular, OCL is employed for two different debugging purposes.
First, OCL is used to define conditional breakpoints at different levels of gran-
ularity. Thus, it cannot only be defined that execution should stop if a certain
token is streamed into a certain place, but also if a certain combination of tokens
occurs. Second, OCL is used to tackle the well-known problem in debugging that
programs execute forwards in time whereas programmers must reason backwards
in time to find the origin of a bug. For this, a dedicated debugging console based
on the Interactive OCL Console of Eclipse (cf. Fig. 7(d)) is supported, providing
several pre-defined debugging functions to explore and to understand the history
of a transformation by determining and tracking paths of produced tokens [23].

The TN in its final state realizing the introduced example is depicted in
Fig. 7(b). By comparing this generated target model to the expected one (cf.
Fig. 6) we can see that more columns have been created than intended, e.g.,
two tokens labeled with A3 in the place Column. The graphical representation
shows that the tokens have been created by transition (4) but we do not know
which source tokens were used to create exactly these target tokens. To get
this information, the transformation designer may use the interactive debugging
console. Within this console, s/he can use standard OCL functions and pre-
defined OCL debugging functions to formulate queries that can be invoked on
the runtime model.

Interactive DebuggerInteractive Debugger

Interactive Debugger Console

QVT Relations

transformation umlToRdbms(uml:SimpleUML,
rdbms:SimpleRDBMS){

top relation ClassToTable{
cn: String;
checkonly domain uml
c:Class{ name=cn,
kind=’Persistent’};

enforce domain rdbms
t:Table{name=cn};

where {
AttributeToColumn(c,t);

}
}
relation AttributeToColumn{

an, pn :String;
checkonly domain uml c:Class{

attribute=
a:Attribute {
name=an,
type=
p:PrimitiveDataType{
name=pn}}};

enforce domain rdbms
t:Table{
column=
cl:Column {
name=an,
type=pn}};

where{
SuperAttributeToColumn(c,t);

}
}

relation SuperAttributeToColumn{
checkonly domain uml c:Class{

generalOpposite=
sc:Class {}};

enforce domain rdbms
t:Table {};

where{
AttributeToColumn(sc, t);

}
}

Transfromation Net

selectedElement().getCreator()
result: Transition (4)
result.getInputTokens(selectedElement())
result: Sequence(Token) {t1, t2, ..., t7}
result -> first().getCreator()
result: Transition (5)

a

d

UMLModelElement_
name

Class_kind

AttributeToColumnAttributeToColumn

ClassToTableClassToTable

Person
C1

Person
C1

Student
C2

Student
C2

Tutor
C3

Tutor
C3

PersistentPersistent
PersistentPersistent

NonPersistentNonPersistent

SourceSource TargetTarget

trace

trace

structural feature mapping

1

domain object mapping

structural feature mapping

UMLModelElement

C1C1 C2C2 C3C3

Class

PackageElement

Classifier

RModelElement

Table

C1C1 C2C2

RModelElement_nameAttribute

PrimitiveDatatype

Class_attribute

Attribute_type

Class_general

Class_generalOpposite

A2A2 A3A3

Pr1Pr1 Pr2Pr2

name
A1

name
A1

registrNo
A2

registrNo
A2

lecture
A3

lecture
A3

String
Pr1

String
Pr1

Integer
Pr2

Integer
Pr2

Column

Table_column

Column_type

A1A1 A2A2 A3A3

name
A1

name
A1

lecture
A3

lecture
A3

String
A1

String
A1

Integer
A2

Integer
A2

c:Class

name=cn

t:Table

name=cn

domain object mapping

name=cn

a:Attribute{

name=an

column=

type=pn

SuperAttributeToColumnSuperAttributeToColumndomain object mapping

recursive call
trace

sc:Class

A2A2 A3A3

Integer
A2

Integer
A2String

A3
String

A3

String
A3

String
A3

PackageToSchemaPackageToSchema…………………………..

......

attribute=

type=

p:PrimitiveDT{

name=pn

generalOpp=

A1A1

cl:Column

kind=‘Persistent‘

kind=‘Persistent‘

Student
C2

Student
C2

lecture
A3

lecture
A3

registrNo
A2

registrNo
A2

2

3

4

5
6

registrNo
A2

registrNo
A2

name=an

Person
C1

Person
C1

getCreator(A3)

getInputTokens(A3)

getCreator(T5)

Step 1

Step 2

Step 3

b
c

Fig. 7. Development Environment for Transformation Nets.

In our example, the transformation designer selects the top-right token la-
beled with A3 of the place Column, representing a wrongly created column
lecture and invokes the function getCreator(A3) (cf. Step 1 in Fig. 7) which
highlights transition (4) in the editor and additionally returns the result of the
function in the debugging console. This transition reads an input token from a
trace place (first LHS meta token) which receives tokens from transition (3) and
(6). Therefore, it is unclear which one of these two transitions is responsible for
providing the trace token used for creating the selected Column token.

To determine the responsible transition, the developer invokes the function
getInputTokens(A3) on transition (4) (cf. Step 2 in Fig. 7) returning a sequence
of input tokens which has been bound to produce the token A3. The elements
in this sequence are ordered with respect to their graphical location within the
transition, thus the first token in the sequence is the token that matched the
top-most LHS metatoken. To get this token, the transformation designer ap-
plies the standard OCL function first() on the previously computed sequence
which returns the single trace token. Now, the transformation designer applies
the function getCreator(T5) (cf. Step 3 in Fig. 7) to determine which transition
is responsible for producing this trace token, which yields transition (5), as tran-
sition (6) only streams the token through. Taking a closer look at transition (5),
one can see that this transition uses tokens of the wrong source place, namely
Class generalOpposite instead of Class general (see error sign in Fig. 7(b)),
being the origin of the problem. The respective QVT code selects the super class
instead of the base class causing the inclusion of wrong columns to the table.

4 Formal Properties for Verification-Based Debugging
Because TNs are based on CPNs, formal properties for verifying the correctness
of model transformations can be applied (cf. verification-based debugging). For
this, the state space of the CPN, being a directed graph with a node for each
reachable marking and an arc for each occurring binding element, has to be
constructed to calculate diverse behavioral properties.

M
od

el
s

(M
1)

C1 : Class
name = ‘Person‘
C1 : Class
name = ‘Person‘

C2 : Class
name = ‘Student‘
C2 : Class
name = ‘Student‘

C3 : Class
name = ‘Tutor‘
C3 : Class
name = ‘Tutor‘

C1 : Table
name = ‘Person‘

C1 : Table
name = ‘Person‘

A1 : Attribute
name = ‘name‘
A1 : Attribute
name = ‘name‘

A2 : Attribute
name = ‘registrNo‘
A2 : Attribute
name = ‘registrNo‘

A3 : Attribute
name = ‘lecture‘
A3 : Attribute
name = ‘lecture‘

general

general

generalOpposite

generalOpposite

attribute

attribute

attribute

A1 : Column
name = ‘name‘
A1 : Column
name = ‘name‘

A2 : Column
name = ‘registrNo‘
A2 : Column
name = ‘registrNo‘

A3 : Column
name = ‘lecture‘
A3 : Column
name = ‘lecture‘

column

column

column

UML RDBMS

Fig. 8. Source and Target Models – Transforming Top Classes only

In order to exemplify the verification potential, we make again use of the
running example – this time pursuing a different OR-mapping strategy, namely
a one-table-per-hierarchy approach according to the case study presented in [2].
As shown in Fig. 8, our example comprises the same input classes and attributes
as introduced before. Therefore, the desired output model should now contain
one Table, aggregating three Columns (all attributes of the three classes). At a
first glance the generated target model in Fig. 9(a) seems to be correct, but a
closer look reveals that a link from table C1 to column A3 is missing (cf. missing
two-colored token in place Table column), compared to the desired target model
depicted in Fig. 8. Even in this small example the error is hard to observe
manually, suggesting the need for formal verification. In order to accomplish
this, the specified transformation logic in TNs is translated to a corresponding
CPN (see Fig. 9(b)), which allows to reuse formal verification capabilities of
existing Petri Net engines, e.g., CPN Tools3. The first step in the verification
process is the calculation of the state space (see Fig. 9(c)), further on used to
determine behavioral properties, i.e. the verification process is based on a certain
input model (see Fig. 9(d)). In the following, we show how these properties (cf.
[16] for an overview) can be used to enable verification-based debugging.

Model Comparison using Boundedness Properties. Typically, the first
step in verifying the correctness of a transformation specification is to compare
the target model generated by the transformation to the expected target model.
To identify wrong or missing target elements in terms of tokens automatically,
Boundedness properties (Integer Bounds and Multiset Bounds) can be applied.
In our example, the upper Integer Bound of the Table cols place is two (cf. Fig.
9(d)) whereas the desired target model requires three tokens, as every column has
to belong to a certain table. By inspecting the Multiset Bounds one recognizes
3 http://wiki.daimi.au.dk/cpntools/cpntools.wiki

CondPeeler
TransitiveClosure
CondStreamer Linker

TopClassesUMLModelElement

PackageElement

Classifier

a

Class

Attribute

C1 C2 C3

A1
A2

A3

Column

Table

C1

TopClasses

C1

Table_cols

1 2

3

CondStreamer

RModelElement

Class_general

Class_attribute

Table_column

A2

Attr_Buffer

LiftAttr

4

5

A1
A3

Streamer Trace6 C2C

A3A2A1

…
Integer Bounds Upper Lower

verify

b

translate

…
Table_cols 2 0
…..
Upper Multi-Set Bounds
…
Table_cols 1`(1200,"Person",1,"name")++

1`(1200,"Person",2,“registrNo")++
…
Home Markings

b

d

[1320]
Dead Markings

[1320]
Dead Transition Instances
TransitiveClosureLinker

export

c

construct

Fig. 9. Transformation Verification Prototype showing the UML2RDBMS example

that a link to the column A3 originating from an attribute of class C3 is missing.
If such erroneous parts of the target model are detected, the owning target place
is highlighted in the TN (see error sign besides the Table cols place in Fig.
9(a)). Properties going beyond concrete input models can be checked by using
custom functions, e.g., expressing that for all possible corresponding input and
output models the number of attributes in the input model is always equal to
the number of columns in the output model.

Transition Error Detection using Liveness Properties. Errors in the
transformation specification occur if either a transition is specified incorrectly
or the source model is incorrect. Both cases might lead to transitions which
are never enabled during execution, so called Dead Transition Instances or L0-
Liveness [16]. The state space report in Fig. 9(d) shows that transition 2 in the
TN is a Dead Transition Instance, which is therefore marked with an error sign.
The intention of transition 2 in our example is to calculate the transitive closure,
thus there should be an additional link from class C3 to class C1 as class C3 also

inherits from class C1 (see Fig. 8). When investigating the LHS of transition 2
in Fig. 9(a) we see that the inheritance hierarchy is faulty; the pattern specifies
that a class X (white color) is parent of a class Y (black color) and of a class
Z (gray color). To fix the color pattern we need to change the outer and inner
colors of the second input token of the transition. After fixing the error, the
state space can be constructed again and will not contain any dead transitions
anymore.

Termination and Confluence Verification using Dead and Home
Markings. A transformation specification must always be able to terminate,
thus the state space has to contain at least one Dead Marking. This is typically
ensured by the history concept of TNs, which prevents firing recurring token
combinations. Moreover, it has to be ensured that a dead marking is always
reachable, meaning that a transformation specification is confluent, which can
be checked by the Home Marking property requiring that a marking M can be
reached from any other reachable marking.

The generated report in Fig. 9(d) shows that in our example a single Home
Marking is available which is equal to the single Dead Marking (both identified
by the marking 1320), meaning that the transformation specification always
terminates and is confluent. To achieve a correct transformation result, an equal
Home Marking and Dead Marking is a necessary but not a sufficient condition,
as it cannot be ensured that this marking represents the desired target model. By
exploring the constructed state space, it is possible to detect if a certain marking,
i.e., the target marking derived from the desired target model, is reachable with
the specified transformation logic. If this is the case, and if this marking is equal
to both, Home Marking and Dead Marking, it is ensured that the desired target
model is created with the specified transformation logic in any case.

5 Lessons Learned

This section presents lessons learned from already conducted transformation
examples with our TN formalism and thereby discusses key features as well as
current limitations of the TN approach.

Colored Tokens Representing Model Elements Reveal Traceability.
The source model to be transformed is represented by means of one-colored
tokens and two-colored tokens residing in the source places of the TN whereby
the actual transformation is performed by streaming these tokens to the target
places. Through this mechanism traceability is ensured since the source – target
relationship can be derived by simply searching for same-colored tokens in source
places and target places, respectively.

Visual Syntax and Live Programming Fosters Debugging. TNs pro-
vide a visual formalism for defining model transformations which is especially
useful for debugging purposes. Since the flow of model elements undergoing cer-
tain transformations can be directly followed by observing the flow of tokens,
undesired results can be detected easily. Another characteristic of TNs that fa-
cilitates debugging is live programming, i.e., some piece of transformation logic
can be executed and thus tested immediately after definition without any further

compilation step. Therefore, testing can be done independently of other parts of
the TN by just setting up a suitable token configuration in the input places.

Implicit Control Flow Eases Evolution. The control flow in a TN is
given through data dependencies between various transitions. As a consequence,
when changing a transformation, one needs to maintain a single artifact only
instead of requiring additional efforts to keep control flow and transformation
logic (in form of rules) synchronized. For instance, when a rule needs to be
changed to match for additional model elements, one would have to take care to
call this rule at a time when the elements to be matched already exist.

Transitions by Color-Patterns Ease Development but Lower Read-
ability. Currently, the precondition as well as the postcondition of a transition
are just encoded by one-colored as well as two-colored tokens. On the one hand,
this mechanism eases development since, e.g., for changing the direction of a
link it suffices just to swap the respective color patterns of the meta tokens
of the input placeholders and the output placeholders. On the other hand, the
larger the TN grows the less readable this kind of encoding gets. Therefore, it
has been proven useful to assign each input as well as each output placement a
human-readable label, that describes the kind of input and output, respectively.

State Space Explosion Limits Model Size. A known problem of formal
verification by Petri Nets is that the state space might become very large. Cur-
rently, the full occurrence graph is constructed to calculate properties leading to
memory and performance problems for large source models and transformation
specifications. Often a marking M has n concurrently enabled, different binding
elements leading all to the same marking. Nevertheless, the enabled markings
can be sorted in n! ways, resulting in an explosion of the state space. As model
transformations typically do not care about the order how certain elements are
bound, Stubborn Sets [13] could be applied to reduce the state space nearly to
half size, thus enhancing scalability of our approach.

6 Related Work
In the following, related work regarding (i) debugging support, (ii) understand-
ability, and (iii) formal verification of transformation languages is discussed.

Debugging Support of Transformation Languages. In general, there is
little debugging support for transformation languages. Most often only low-level
information available through the execution engine is provided, but traceability
according to the higher-level correspondence specifications is missing. For exam-
ple, in the Fujaba environment, a plugin called MoTE [21] compiles TGG rules
[12] into Fujaba story diagrams that are implemented in Java, which obstructs
a direct debugging on the level of TGG rules. In [7], the generated source code
is annotated accordingly to allow the visualization of debugging information in
the generated story diagrams, but not on the TGG level. In addition to that,
Fujaba supports visualization of how the graph evolves during transformation,
and allows interactive application of transformation rules. Approaches like VIA-
TRA [1], which produce debug reports that trace an execution, only, but do not
provide interactive debugging facilities. Although the ATL debugger [11] allows
the step-wise execution of ATL byte-code, only low-level debugging information

is provided, e.g., variable values. This limited view hinders observing the exe-
cution of the whole transformation, e.g., the coherence between different rules.
SmartQVT and TefKat [15] allow for similar debugging functionality.

Hibberd et al. [8] present forensic debugging techniques for model transfor-
mations by utilizing the trace information of model transformation executions
for determining the relationships between source elements, target elements, and
the involved transformation logic. With the help of such trace information, it is
possible to answer debugging questions implemented as queries which are impor-
tant for localizing bugs. In addition, they present a technique based on program
slicing for further narrowing the area where a bug might be located. The work
of Hibberd et al. is orthogonal to our approach, because we are using live debug-
ging techniques instead of forensic mechanisms. However, our approach allows
to answer debugging questions based on the visualization of the path a source
token has taken to become a target token.

Summarizing, what sets TNs apart from these approaches is that all debug-
ging activities are carried out on a single integrated formalism, without the need
to deal with several different views. Although there are declarative approaches
based on relational languages, e.g., Prolog-based approaches [18], that do not
induce a gap between the specification and the execution, their debugging fea-
tures are considered not that adequate for our purposes since the unification
and backtracking processes in Prolog give rise to the possibility of an increased
confusion about the location of errors [4]. Furthermore, our approach is unique
in allowing interactive execution not only by choosing rules or by manipulating
the state directly, but also by allowing to modify the structure of the TN itself.
This ability for live-programming enables an additional benefit for debugging
and development: one can correct errors (e.g., stuck tokens) in TNs right away
without needing to recompile and restart the debug cycle.

Understandability of Transformation Languages. Concerning the un-
derstandability of model transformations in terms of a visual representation and
a possibility for a graphical simulation, only graph transformation approaches
like Fujaba allow for a similar functionality. However, these approaches neither
provide an integrated view on all transformation artifacts nor do they provide an
integrated view on the whole transformation process in terms of the past state,
i.e., which rules fired already, the current state, and the prospective future state,
i.e., which rules are now enabled to fire. Therefore, these approaches provide
snapshots of the current transformation state, only.

Verification Support of Transformation Languages. Especially in the
area of graph transformations, some work has been conducted using Petri Nets
to check formal properties of graph transformation rules. Thereby, the approach
proposed in [20] translates individual graph transformation rules into a Place/-
Transition Net and checks for its termination. Another approach is described
in [6], where the operational semantics of a visual language in the domain of
production systems is described with graph transformations. The models of the
production system, as well as the graph transformation rules are transformed
into Petri Nets in order to make use of the formal verification techniques for

checking properties of the production system models. Varró [19] presents a trans-
lation of graph transformation rules to transition systems (TS), serving as the
mathematical formalism of various different model checkers to achieve formal
verification of model transformations. Thereby, only the dynamic parts of the
graph transformation systems are transformed to TS to reduce the state space.

Summarizing, these approaches only check for confluence and termination of
the specified graph transformation rules, but compared to our approach, they
do not consider additional properties which might be helpful to point out the
origin of an error. Additionally, these approaches are using Petri Nets only as a
back-end for automatically analyzing properties of transformations, whereas we
are using TNs as a front-end for fostering debuggability.

7 Future Work

Since the research is in its initial phase, currently a first prototype is available
only, which should be evaluated on basis of the following two research questions:

Question 1: Does the proposed approach foster the detection of bugs? Re-
garding this issue, an empirical study will be conducted with students from our
model engineering courses (around 200 master students). The aim of this empir-
ical study is to evaluate if the offered debugging facilities lead to decreased time
required for detecting a certain bug. In this respect, the students will be divided
into subgroups and each subgroup will be provided with an erroneous example
in a certain transformation language like ATL, QVT and the TN formalism.
Then the students will have to debug the examples with the provided debugging
facilities. The evaluation will take place by measuring the time required to find
the bug. A source to acquire complex transformations scenarios for evaluating
this research question could be the GraBaTs tool contest4.

Question 2: Do the offered verification possibilities help in finding bugs?
Concerning this question, a test set of erroneous transformation examples will
be collected by asking the students of our model engineering course to not only
submit the correct version of the assigned transformation example but also to
submit preceding erroneous examples. Thereby, we will collect a set of erroneous
examples with “real-world” bugs. This test set will then be used to check whether
our proposed verification possibilities are useful in detecting these bugs.

References

1. A. Balogh and D. Varró. Advanced model transformation language constructs in
the VIATRA2 framework. In Proc. of SAC ’06, 2006.

2. J. Bézivin, B. Rumpe, A. Schürr, and L. Tratt. Model Transformations in Practice
Workshop of MoDELS’05, Montego Bay, Jamaica, 2005.

3. E. Biermann, C. Ermel, and G. Taentzer. Precise Semantics of EMF Model Trans-
formations by Graph Transformation. In Proc. of MoDELS’08, pages 53–67, 2008.

4. P. Brna, M. Brayshaw, M. Esom-Cook, P. Fung, A. Bundy, and T. Dodd. An
Overview of Prolog Debugging Tools. Instructional Science, 20(2):193–214, 1991.

4 http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/

5. K. Czarnecki and S. Helsen. Feature-based Survey of Model Transformation Ap-
proaches. IBM Systems Journal, 45(3):621–645, 2006.

6. J. de Lara and H. Vangheluwe. Translating Model Simulators to Analysis Models.
In Proc. of 11th Int. Conf. on Fundamental Approaches to Software Engineering,
pages 77–92, Budapest, Hungary, April 2008.

7. L. Geiger. Model Level Debugging with Fujaba. In Proc. of 6th Int. Fujaba Days,
pages 23–28, Dresden, Germany, September 2008.

8. M. T. Hibberd, M. J. Lawley, and K. Raymond. Forensic Debugging of Model
Transformations. In Proc. of MoDELS’07, pages 589–604, Nashville, USA, 2007.

9. K. Jensen and L. M. Kristensen. Coloured Petri Nets - Modeling and Validation
of Concurrent Systems. Springer, 2009.

10. F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A Model Transformation
Tool. Science of Computer Programming, 72(1-2):31–39, June 2008.

11. F. Jouault and I. Kurtev. Transforming Models with ATL. In Proc. of the Model
Transformations in Practice Workshop at MoDELS’05, pages 128–138, Montego
Bay, Jamaica, 2005.

12. A. Koenigs. Model Transformation with TGGs. In Proc. of Model Transformations
in Practice Workshop of MoDELS’05, Montego Bay, Jamaica, 2005.

13. L. Kristensen and A. Valmari. Finding Stubborn Sets of Coloured Petri Nets
without Unfolding. In Proc. of Int. Conf. on Application and Theory of Petri
Nets, pages 104–123. London, UK, 1998.

14. A. Kusel. TROPIC - A Framework for Building Reusable Transformation Compo-
nents. Proc. of the Doctoral Symposium at MoDELS, Technical Report 2009-566,
School of Computing, Queen’s University, Kingston, Canada, 2009.

15. M. Lawley and J. Steel. Practical Declarative Model Transformation with Tefkat.
Model Transformations in Practice Workshop of MoDELS’05, pages 139–150, 2005.

16. T. Murata. Petri nets: Properties, analysis and applications. Proc. of the IEEE,
77(4), 1989.

17. Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/-
Transformation Specification. www.omg.org/docs/ptc/07-07-07.pdf, 2007.

18. B. Schätz. Formalization and Rule-Based Transformation of EMF Ecore-Based
Models. In Proc. of SLE’08, 2008.

19. D. Varró. Automated Formal Verification of Visual Modeling Languages by Model
Checking. Journal of Software and Systems Modelling, 3(2):85–113, 2003.

20. D. Varró, S. Varró-Gyapay, H. Ehrig, U. Prange, and G. Taentzer. Termination
Analysis of Model Transformation by Petri Nets. In Proc. of Int. Conf. on Graph
Transformation, pages 260–274, Natal, Brazil, 2006.

21. R. Wagner. Developing Model Transformations with Fujaba. In Proc. of the 4th
Int. Fujaba Days 2006, pages 79–82, Bayreuth, Germany, 2006.

22. M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schoenboeck, and
W. Schwinger. Right or Wrong? - Verification of Model Transformations using
Colored Petri Nets. In Proc. of 9th OOPSLA Workshop on Domain-Specific Mod-
eling, Orlando, USA, 2009.

23. M. Wimmer, G. Kappel, J. Schönböck, A. Kusel, W. Retschitzegger, and
W. Schwinger. A Petri Net based Debugging Environment for QVT Relations.
In Proc. of the 24th Int. Conf. on ASE’09, pages 1–12, 2009.

24. M. Wimmer, A. Kusel, T. Reiter, W. Retschitzegger, W. Schwinger, and G. Kappel.
Lost in Translation? Transformation Nets to the Rescue! In Proc. of 3rd Int. United
Information Systems Conf., pages 315–327, Sydney, Australia, 2009.

