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Abstract. Situation awareness in large-scale control systems such as
road traffic management aims to predict critical situations on the basis
of spatio-temporal relations between real-world objects. Such relations
are described by domain-independent calculi, each of them focusing on a
certain aspect, for example topology. The fact that these calculi are de-
scribed independently of the involved objects, isolated from each other,
and irrespective of the distances between relations leads to inaccurate
and crude predictions. To improve the overall quality of prediction while
keeping the modeling effort feasible, we propose a domain-independent
approach based on Colored Petri Nets that complements our ontology-
driven situation awareness framework BeAware!. These Situation Predic-
tion Nets can be generated automatically and allow increasing (i) predic-
tion precision by exploiting ontological knowledge in terms of object char-
acteristics and interdependencies between relations and (ii) increasing
expressiveness by associating multiple distance descriptions with tran-
sitions. The applicability of Situation Prediction Nets is demonstrated
using real-world traffic data.
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1 Introduction

Situation awareness in large-scale control systems. Situation awareness is
gaining increasing importance in large-scale control systems such as road traffic
management. The main goal is to support human operators in assessing current
situations and, particularly, in predicting possible future situations in order to
take appropriate actions pro-actively to prevent critical events. The underlying
data describing real-world objects (e. g., wrong-way driver) and their relations
(e. g., heads towards), which together define relevant situations (e. g., wrong-
way driver rushes into traffic jam), are often highly dynamic and vague. As a
consequence reliable numerical values are hard to obtain, which makes qualitative
situation prediction approaches better suited than quantitative ones [14].
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Ontology-driven situation prediction based on spatio-temporal calculi.
Recently, ontology-driven situation awareness techniques [9], [2] have emerged as
a basis for predicting critical situations from spatio-temporal relations between
objects. Such relations are expressed by employing relation calculi, each of them
focusing on a certain spatio-temporal aspect, such as mereotopology [23], ori-
entation [11], or direction [22]. These calculi are often formalized by means of
Conceptual Neighborhood Graphs (CNGs, [13]), imposing constraints on the ex-
istence of transitions between relations. CNGs are an important construct for
modeling continuously varying processes [20], and are adopted in, for example,
qualitative simulation [10], prediction [6], tracking moving objects [25], and agent
control [12]. The domain-independent nature of calculi (i) leaves interpretations
(e. g., Close means within 10km) to applications, (ii) does not consider object
characteristics (e. g., whether they are moveable), (iii) is irrespective of inter-
dependencies (e. g., topological transitions depend on spatial distance), and (iv)
does not express any kind of distance for transitions such as probability, which al-
together lead to inaccurate and crude situation predictions. Existing approaches
try to increase quality by constructing domain- and even situation-specific calculi
manually, which, however, requires considerable modeling effort.
Colored Petri Nets to the rescue. In order to achieve a proper balance be-
tween prediction quality and modeling effort, we propose a domain-independent
approach on the basis of Colored Petri Nets (CPNs, [16]) that complements
our ontology-driven situation awareness framework BeAware! [5]. Representing
CNGs as CPNs allows, on the one hand, increasing prediction precision by ex-
ploiting ontological knowledge included in the framework in terms of object char-
acteristics and interdependencies between spatio-temporal relations and, on the
other hand, increasing prediction expressiveness by associating transitions with
dynamically derived distances for multiple view-points. These so called Situation
Prediction Nets (SPN) are derived automatically from the situation awareness
ontologies of BeAware!. Petri net properties are preserved, which enables fea-
tures such as predicting multiple situation evolutions in parallel, which are not
as easily realizable with alternative formalisms such as state transition diagrams.
The applicability of SPNs is demonstrated using real-world traffic data.
Structure of the paper. In Sect. 2, a brief overview of our work on situation
awareness is given, detailing further the challenges tackled in this paper by means
of a road traffic example. Section 3 discusses related work, Sect. 4 introduces
SPNs, and their applicability is discussed in Sect. 5. Finally, Sect. 6 concludes
the paper with lessons learned and an outlook on further research directions.

2 Motivating Example

Road traffic management systems responsible for example, for improving traffic
flow and ensuring safe driving conditions are a typical application domain of
situation awareness. Based on our experience in this area, examples from road
traffic management further detail the challenges of enhancing the quality of
neighborhood-based predictions [10] in situation awareness. In such neighborhood-



based predictions, the relations of a current situation are the starting point for
tracing transitions in CNGs to predict possible future situations.

In our previous work [5], we introduced a generic framework for building
situation-aware systems that provides common knowledge about (i) situations,
which consist of objects and relations between them, and (ii) relation neighbor-
hood in a domain-independent ontology. This ontology is used in generic com-
ponents to derive new knowledge from domain information provided at runtime.
A prototypical implementation supports assessing situations in real-world road
traffic data, which in turn forms the basis for simple predictions [6] following a
neighborhood-based approach. To illustrate the shortcomings of neighborhood-
based prediction approaches—which are rooted in relation calculi and CNG char-
acteristics in general—let us consider the following example: Suppose that an
initial situation is assessed in which a wrong-way driver is heading towards an
area of road works, as depicted in Fig. 1. This initial situation is characterized
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Fig. 1: Prediction of possible future situations from an assessed, current one.

by two relations (Disrelated from Region Connection Calculus (RCC) [23] and
Far from Spatial Distance calculus) between the objects Wrong-way driver and
Road works. Human operators would like to know potential future situations—
for instance, a wrong-way driver in the area of road works—in order to take
appropriate actions. With neighborhood-based prediction, we can provide this
information by following the edges of Disrelated (1) and Far (3, 4) in the
respective CNGs, thereby predicting five possible subsequent situations, which
form the basis for further predictions. This leads, however, to combinatorial ex-
plosion, making such crude predictions—even when using small CNGs as in the
example above—inaccurate and incomprehensible to human operators. Current
approaches [1] try to tackle these problems with manually defined constraints re-
sulting in high modeling effort. To further illustrate the challenges of enhancing
prediction quality, we provide examples below and a summary in Fig. 2.
Challenge A: Increasing precision with object characteristics. CNGs
model relations independently of objects and their characteristics, which results
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Fig. 2: Challenges in prediction quality enhancement.

in a vast number of predicted situations, of which many are actually impossi-
ble. Let us revisit our example: Since a wrong-way driver has non-permeable
boundaries, all predictions that require areas of other traffic objects to become
a proper part of the wrong-way driver are wrong (i. e., resulting in impossible
situations, e. g., “Wrong-way driver Proper Part Inverse road works”). If only
we had knowledge about object characteristics, such as boundary permeability,
available in CNGs, we could increase prediction precision as we exclude impossi-
ble situations. In [4], we laid the basis for tackling this challenge by proposing an
ontology for representing object characteristics and corresponding optimization
rules. In this paper, we describe how to translate this knowledge to SPNs.

Challenge B: Increasing precision with relation interdependencies. A
CNG describes relations of a single calculus without taking interdependencies
between different calculi into account, which again leads to a large number of
false predictions. For example, let us reconsider the initial situation “Wrong-
way driver disrelated and far from traffic jam” involving two different calculi.
In a world in which motion is continuous, transitions in these calculi are not
independent. In our example, this means that two objects will first transition
in Spatial Distance calculus from Far to Close, then advance to Very Close

before a transition in RCC from Disrelated to Partially Overlapping can
happen. If only we were able to describe such relation interdependencies between
different calculi, we could further increase prediction precision.



Challenges C and D: Increasing expressiveness with distance descrip-
tions. CNGs only describe the mere existence of transitions between relations,
but do not associate any distance descriptions with them. Human operators,
however, are keen to know details beyond existence, such as temporal distance,
probability, impact, and confidence. For example, the duration of a transition
from Far to Close depends on the speed of both objects, while the transition
probability is influenced by the direction of motion (i. e., whether or not the
wrong-way driver heads towards road works, which is expressed by an orienta-
tion relation FrontFront of OPRA [11]). If only we had such knowledge about
object characteristics, for example their speed, and about relation interdepen-
dencies, for example mereotopology on spatial distance, we could derive distance
descriptions to increase prediction expressiveness.

3 Related Work

In this section, we discuss related research in qualitative neighborhood-based pre-
diction and simulation because, in fact, such predictions are based on simulating
evolutions of situations. We distinguish between methods trying to increase pre-
cision and those focusing on expressiveness. Since our approach generates CPNs
from ontologies, we also cover related work in this area.
Increasing precision. Increasing precision is a major concern in fields such
as qualitative simulation [1], [7] and robot agent control [12]. In [1], a quali-
tative simulation method was presented which manually defines (i) simulated
situations more precisely with unmodifiable relations and object characteristics
(e. g., relative positions of static objects, termed intra-state constraints), and
(ii) customized CNGs (termed inter-state constraints, or dynamic constraints
in a similar approach [7]) to describe valid transitions for determining the next
simulated situation. Similarly, in [12], the effect of object characteristics (e. g.,
whether objects can move or rotate) on the conceptual neighborhood of a partic-
ular calculus was emphasized. To represent this knowledge in terms of CNGs, six
different manually defined conceptual neighborhoods of the orientation calculus
OPℛAm were introduced. The drawback common to all these approaches is that
intra- and inter-state constraints (CNGs) must be defined manually for each do-
main or even worse for each prediction. Situation Prediction Nets, in contrast,
can be derived automatically from such ontological knowledge, allowing us, at
the same time, to increase prediction precision.
Increasing expressiveness. Increasing expressiveness is of concern, for in-
stance, when assigning preferences to CNGs in order to customize multimedia
documents [18] or to describe costs for assessing spatial similarity [19]. Laborie
[18] uses spatio-temporal calculi to describe relations between parts of a multi-
media document, and CNGs to find a similar configuration, in case a multimedia
player cannot deal with the original specification of the document. In order to
increase expressiveness with preferences for selecting the most suitable configura-
tion, distances between relations are described with statically defined, quantita-
tive weights on CNG edges. Similarly, Li and Fonseca [19] increase expressiveness



with weights to describe distances in terms of static costs for making transitions
in a CNG. These costs are used to assess spatial similarity: less costly transitions
connect relations that are more similar. We take these approaches further by in-
creasing expressiveness with qualitative distances for multiple view-points which
incorporate relation interdependencies in addition to object characteristics.

Translating ontologies to Petri nets. Petri nets are commonly known models
appropriate for describing the static and dynamic aspects of a system, thereby
enabling prediction of future situations by simulating evolutions [24]. Of partic-
ular interest for defining our Situation Predictions Nets are extensions to the
original place-transition net formalism in the form of hierarchical Colored Petri
Nets [16], because they allow representing ontological knowledge with complex
data types. Translations from ontologies to Petri nets are described in the lit-
erature as a pre-requisite, for instance, for defining a hybrid ontological and
rule-based reasoner [26] or for achieving formal analyses of Web services [8]. In
[26], patterns were presented for translating OWL axioms of a particular ontol-
ogy with their accompanying SWRL rules into Petri nets in order to create a
combined ontological and rule-based reasoner. In [8], translations from concepts
in OWL-S Web service specifications (such as choice, sequence, and repeat-until)
into a custom-defined Petri net variant were introduced to check static properties
of the Web service, such as its liveness. Both approaches focus on translations
from ontologies to Petri nets, but, in contrast to our approach, they do not
exploit dynamic information to influence the behavior of their nets.

4 From Ontologies to Situation Prediction Nets

In this section, we propose Situation Prediction Nets (SPN) based on CPNs for
tackling the challenges described in Sect. 2 with the goal of enhancing prediction
quality in domain-independent situation awareness. Note that the modeling ex-
amples given in this section—in order to keep them concise and comprehensible—
only show simplified subsets of our nets, describing aspects relevant to situation
awareness, such as mereotopology, distance, speed, and orientation.

As illustrated in Fig. 3, the overall architecture of our approach formalizes
a conceptual view of objects, spatio-temporal relations between them (i. e., a
prediction’s static definition), and situations (i. e., a prediction’s dynamic start-
ing point) as knowledge for situation-aware systems in an ontology1, which in
turn forms the basis for generating Situation Prediction Nets. This situation
awareness ontology is structured into: (i) a domain-independent part including
spatio-temporal calculi and their CNGs, accompanied by algorithms for situation
assessment, duplicate detection, and prediction, forming our situation aware-
ness framework BeAware! [5], and (ii) a domain-dependent part extending the
domain-independent part during implementation of situation-aware systems.

1 Our situation awareness ontology [5] builds upon the notion of Barwise and Perry [3],
which makes the proposed approach applicable to a wide range of efforts in situation
awareness, for instance, to Kokar’s approach [17].
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Fig. 3: From ontological knowledge to Situation Prediction Nets.

Translating from ontological knowledge to CPNs. We first describe how
to translate automatically ontological knowledge to plain CPNs as a basis for
Situation Prediction Nets. As illustrated in Fig. 3 and formalized in Tab. 1,
translating the static structure of a CNG (an undirected, unweighted graph)
to a CPN (a bipartite directed graph) is straightforward: (i) We represent every
calculus on a dedicated Petri net page, (ii) define the CPN’s color set, (iii) create
one place per node of the corresponding CNG, (iv) represent every edge with
two transitions (one for each direction), and connect transitions with arcs to the
respective places. (v) Situations, being defined by objects and relations, can be
modeled by objects as two-colored tokens, being composed of the two objects to
be related, and placing them in the corresponding relation places. For example,
the situation “wrong-way driver disrelated from, close to, and heading towards
road works” is modeled by tokens consisting of the objects wrong-way driver
and road works placed in Disrelated, Close, and FrontFront (see Fig. 3).



Table 1: Ontology to CPN translation.

Ontology concept CPN concept

A Situation Awareness Ontology is a tuple SAW =
(RC,OT,RT, ST,AC,RN, rcm, n, st, occ, rcd, idf),
satisfying the requirements below.

CPN is a tuple CPN = (�, P, T, A,N,C,G,E, I),
a hierarchical CPN is a tuple HCPN = (S, . . .) sat-
isfying the requirements below [15].

(i) RC is a finite set of relation calculi S is a finite set of pages, each one being a CPN
S = RC

(ii) OT is a finite set of object types, ST is a finite set
of situation types, such that ST ⊆ OT

� is a finite set of non-empty types, called color sets.
C is a color function C : P → �
E is an arc expression function E : A →
expression, such that ∀a ∈ A : [Type(E(a)) =
C(p(a))MS ∧ Type(V ar(E(a))) ⊆ �

The color set, color function and arc expression consists of object tuples (we only consider binary relations):

� = (OT × OT ) E(a) =
{
(o1, o2) in every case C(p) =

{
(OT × OT ) in every case

(iii) RT is a finite set of relation types, RT ∩ OT = ∅
rcm is a relation calculus membership function,
rcm : RT → RC

P is a finite set of places

All relations of a family are added to the set of places of the family’s corresponding page.
∀s ∈ S∃rc ∈ RC : Ps = {r ∈ RT ∣ rcm(r) = rc}, every relation is represented by a place

∪
Pi =

∪
RTi

(iv) n is a neighborhood function n : RT → RT , defining
for each relation type a finite set of relation neigh-
bors ∀r ∈ RT : RNr = {r′ ∣ n(r) = r′}

T is a finite set of transitions.
A is a finite set of arcs, P ∩T = P ∩A = T ∩A = ∅
N is a node function, N : A → P × T ∪ T × P

For each pair of neighboring relation types, a transition with two arcs connecting the respective places exists:
∀r, r′ ∈ RT : n(r) = r′ ⇒ ∃a1, a2 ∈ A, t ∈ T such that N(a1) = (r, t) ∧ N(a2) = (t, r′)
Only one transition exists per pair of neighboring relation types: ∀t, t′ ∈ T : N(a) = (r, t) ∧ N(a′) =

(t, r′) ∧ N(a′′) = (r, t′) ∧ N(a′′′) = (t′, r′) ⇒ t = t′
(v) st is a situation type definition function, st :

(RT, (OT × OT )) → ST
I is an initialization function P → expression such
that ∀p ∈ P : [Type(I(p)) = C(p)MS ]

Situation types become initial markings: I(p) =

{
(o1, o2) if ∃s ∈ ST, o1, o2 ∈ OT : st(p, (o1, o2)) = s

∅ otherwise

In this section, we propose translations from object characteristics and rela-
tion interdependencies to Petri nets, thus promoting CPNs to SPNs.
Challenge A: Object characteristics exploited in guards. The first step
in enhancing prediction quality, as shown in Fig. 4 and formalized in Tab. 2, aims
to increase prediction precision by disabling wrong transitions between relations
on the basis of object characteristics, such as permeability and moveability. In
SPNs, (vi) object characteristics carried by two-colored tokens (assigned to ob-
jects by an object change characteristic function) are exploited in guards on
transitions. These guards express optimization rules given by inherent charac-
teristics of relations, such as IsPermeable, IsMoveable, and IsScalable [4],
thereby defining firing conditions of transitions more precisely. For example, to
determine whether the transition from Disrelated to Partially Overlapping

should be disabled for a token even though it is placed in Disrelated, guard
1 in Fig. 4 checks whether either object can move. The information for this
check is supplied by objects: The guard evaluates to true for Wrong-way driver

objects, and hance the transition remains enabled. In contrast, guard 2 checks
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whether the first object of the token has a permeable boundary (i. e., whether it
allows the second object to enter its area), which is not the case for Wrong-way

drivers. Consequently, the transition is disabled.

Table 2: Translations necessary for considering object characteristics.

Ontology concept CPN concept

(vi) AC is a finite set of attribute change types (e. g.,
moveable)
occ is an object change characteristic function, occ :
OT → AC
rcd is a relation change dependency function deter-
mining whether its from o1 or to o2 must fulfill the
requirement, rcd : RT → AC

G is a guard function, G : T → expression, such
that ∀t ∈ T : [Type(G(t)) = B∧Type(V ar(G(t))) ⊆
�]
P ∪ T is called the set of nodes
Out maps each node to its output nodes, such that
Out(x) = {x′ ∈ X ∣ ∃a ∈ A : N(a) = (x, x′)}

The transition is enabled, if the change dependencies of relation represented by a particular place are fulfilled
by the incoming tokens.

G(t) =

⎧⎨⎩
∃p ∈ Out(t) : p ∈ P ∧ rcd(p) ∈ occ(o1) if from o1(p) = o1
∃p ∈ Out(t) : p ∈ P ∧ rcd(p) ∈ occ(o2) if from o1(p) = o2
false otherwise

Challenge B: Relation interdependencies expressed by configurable
dependency pages. In a world in which motion is continuous, relation inter-
dependencies between different calculi may reduce the number of transitions
between relations, as described in Sect. 2. These interdependencies, however,
vary across different situations: For example, in the situation “Traffic jam dis-
related from and close to road works”, transitions in RCC depend on spatial
distance, but in other cases, they may for instance depend on orientation. To
tackle challenge B, we therefore need concepts both to represent interdepen-
dencies between relations of different calculi, and to achieve configurability on
the basis of situations, eliminating the need for manually composed situation-
dependent calculi. In order to keep the modeling effort low by eliminating the
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need to create customized calculi, we split interdependencies into two parts, as
shown in Fig. 5 and formalized in Tab. 3: The first part describes that other cal-
culi may depend upon a particular relation (Very Close in our example), while
the second part specifies that a particular transition (Disrelated to Partially

Overlapping in the example) depends on certain preconditions being met (vii).
A transition in-between combines these two parts and, in our example, forms the
precondition “Transition from Disrelated to Partially Overlapping depends on
Very Close”. This transition also serves as an extension point for specifying ad-
ditional dependencies, which are accumulated in the place All Preconditions

Fulfilled. One may use this extension point, for instance, to add orientation
information as a further precondition.

Now that we know how to represent dependencies between different calculi
conceptually, let us turn our attention to making these dependencies config-
urable to accommodate different situations. For this purpose, we represent con-
figurations on dedicated Dependency Configuration pages, making use of the
Petri net design pattern “Deterministic XOR-Split” [21]. If the current situation
makes it necessary to consider relation interdependencies (which is the case for
the situation in our example), this design pattern results in a token being placed
in Waitn, meaning that we need to wait for a token to appear in Relationn,
in order to fulfill our precondition (i. e., place a token in Fulfilledn). If the
current situation does not consider relation interdependencies, this pattern ful-
fills the precondition directly (i. e., it is not relevant whether a token appears
in Relationn). In order to prevent tokens from accumulating in Fulfilledn—
which would make multiple transitions possible without actually evaluating the
interdependencies—we follow the Petri net design pattern “Capacity Bounding”
[21] with an anti-place Evaln restricting the capacity of Fulfilledn to 1.

Table 3: Translations necessary for considering relation interdependencies.

Ontology concept CPN concept

(vii) idf is an interdependency function idf : RT →
RT , defining for each relaton type a finite set of
depended-on relations ∀r ∈ RT : RDr = {r′ ∣
idf(r) = r′}

A token is a pair (p, c) where p ∈ P ∧ c ∈ C(p), a
marking M is a multi-set over tokens in a CPN.

In order to model Deterministic XOR Split, we extend the color set with type boolean: � = (OT × OT ) ∪ B
For each depended-on relation n ∈

∪
RDi, we create a dedicated dependency configuration page:

Pn = {Relationn,Waitn, Fulfilledn, Evaln}
Tn = {Tn1, Tn2}
An = {RTn1,WTn1, ETn2, Tn1R, Tn1F, Tn2W,Tn2F}
Gn(t) =

{
true

En(a) =

⎧⎨⎩
∃s ∈ ST, p ∈ P, c ∈ C(p) : (p, c) ∈ M ∧ st(p, c) = s then true else empty if a = Tn2W

∀s ∈ ST∃p ∈ P, c ∈ C(p) : (c, p) ∈ M ⇒ st(p, c) ∕= s then true else empty if a = Tn2F

(o1, o2) if a ∈ {RTn1, Tn1R}
b otherwise

In(p) =

{
true if p = Evaln
∅ otherwise

We extend the guard functions on transitions to also check relation interdependencies.

G(t) =

⎧⎨⎩
cases from above

true if ∃(p, c) where p = All Preconditions Fulfilled ∧ c ∈ �
false otherwise

Challenges C and D: Distances derived from axiomatic mappings in
code segments. Building upon the concepts of increasing precision introduced
above, we describe methods for increasing expressiveness using distance descrip-



tions. Let us recall the example from Sect. 2, in which temporal distance—
“distant” if one object moves slowly or “soon” if both objects move fast—
describes the transition from Disrelated to Partially Overlapping in more
detail. For tackling challenges C and D, we need knowledge in the form of ax-
ioms, which map from object characteristics, like speed in our example, and from
relations between objects to distance descriptions, as shown in Fig. 6. In road
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colset TYPE 
  = with WrongWayDriver | RoadWorks;
colset SIZE
  = with Small | Large;
colset SPEED
  = with Zero | Slow | Fast;
colset CHARACTERISTICS
  = record size  : SIZE
         * speed : SPEED;
colset OBJECT 
  = record t : TYPE
         * c : CHARACTERISTICS;
colset OBJECT_PAIR 
  = product OBJECT * OBJECT;

val speed_tempdist_mapping =
[ [ (* Distances from Disrelated to Partially Overlapping *)
    [Distant, Distant, Distant],
    [Distant, Distant, Soon],
    [Distant, Soon, Soon]
  ]
]

colset TEMP_DIST
  = with Distant | Soon;
colset DISTANCE
  = record temporal : TEMP_DIST;
colset DISTANCES
  = list DISTANCE;
colset DIST_OBJECT_PAIR
  = record dists : DISTANCES
         * pair  : OBJECT_PAIR;
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Fig. 6: Distances derived from axiomatic mappings in code segments.

traffic management, such axioms model domain knowledge providing rough esti-
mations in the absence of real-world training data. If, in some other domain, such
training data is available, learning from observed situation evolutions helps to
further refine these axioms. Note that for simplicity, axioms are given in tabular
form in this paper, but other representations, such as Hidden Markov Models
and Bayesian nets, are also possible.

Using these axioms, code segments on transitions estimate distances in the
prediction process. For this purpose, in addition to two-colored object tokens,
the current marking in an SPN is reified as n-colored tokens (each color repre-
senting a particular place) and disseminated to transitions using the Petri net
design pattern “Shared Database” [21]. The code segment in Fig. 6 derives es-
timations for temporal distance and probability, describing transitions between
Disrelated and Partially Overlapping in more detail. Temporal distances
are looked up in axiom tables using object characteristics (speed in our exam-
ple), while probability is determined using the SPN’s current marking.

5 Evaluation

In this section, we evaluate the applicability of SPNs using real-world data from
the domain of road traffic management covering Austrian highways over a period



of four weeks. These data were collected from multiple sources, such as traffic
flow sensors, road maintenance schedules, and motorists reporting incidents to
a call center. The recorded data set used for this evaluation consists of 3,563
distinct road traffic objects, comprising, among others, 778 traffic jams, 819 road
works, 1,339 other obstructions, 460 accidents, and 64 weather warnings. As a
proper starting point for situation prediction, we derived relations between traffic
objects using our situation-awareness prototype BeAware! to detect situations
that possibly require a human operator’s attention. In order to restrict detected
situations to those most relevant, we defined 13 situations in cooperation with
the Austrian highways agency, of which three interesting ones2 were selected for
this evaluation. Table 4 lists these situations together with the characteristics of
involved objects and the number of occurrences in our data set.

Table 4: Overview of situations that are starting points for predictions.
Situation description and formalization, including object characteristics #

Sit. 1 traffic jam close to another traffic jam (may merge) 17
TrafficJam(o1) ∧ TrafficJam(o2) ∧Disrelated(o1, o2) ∧ Close(o1, o2) ∧ FrontBack(o1, o2)
Traffic jam (o1): moveable, permeable, scalable, large, medium speed
Traffic jam (o2): moveable, permeable, scalable, medium size, slow

Sit. 2 wrong-way driver heading towards road works (may cause an accident) 10
WrongWayDr.(o1)∧Roadworks(o2)∧Disrelated(o1, o2)∧Close(o1, o2)∧FrontFront(o1, o2)
Wrong-way driver: moveable, non-permeable, small, fast
Road works: permeable, large, static

Sit. 3 poor driving conditions (snow) in the area of road works (may evolve towards border) 2
PoorDrivingConditions(o1) ∧ Roadworks(o2) ∧ ProperPart(o1, o2) ∧ V eryClose(o1, o2)
Poor driving conditions: moveable, permeable, medium size, slow
Road works: permeable, large, static

Evaluation method. Based on the situations detected, we predicted possible
future situations with SPNs. We discuss the predicted situations in the context
of our major goals: We determined the effectiveness of increasing precision (chal-
lenges A and B) by comparing the resulting number of possible future situations
to that derived from the respective unoptimized calculi. (H1: Optimizing calculi
reduces the number of falsely predicted situations while retaining critical ones).
The potential of distance descriptions for increasing expressiveness (challenges
C and D) was evaluated by comparing the results to recorded real-world data,
using duration and probability as example distances. (H2: Temporal distances
and probabilities match real-world evolutions). It must be noted that, although
covering a period of four weeks, the data with which we were provided were
updated very infrequently. Hence, we obtained only a small number of observed
evolutions. Although the first evaluation indicates that the approach we propose
to challenges C and D is applicable, further (real-world) observations are needed
to confirm H2. To this end, we are continuously extending our data set.

Evaluation setup. In our evaluation, we employed the guards IsPermeable,
IsMoveable, and IsScalable, which use object characteristics, in conjunction
with interdependencies between the calculi mereotopology, spatial distance, and

2 Showing strengths, and shortcomings indicating potential improvements in SPNs.



size. In particular, transitions in RCC require objects to be very close to each
other; transitions to Proper Part (Inverse) and Equals check relative sizes;
spatial distances when being Partially Overlapping, Proper Part (Inv.),
or Equals are restricted on the basis of object size to increase precision. For
increasing expressiveness, we used temporal axioms mapping object speed to
durations (on the basis of domain bindings defining spatial distances), as well as
probability axioms mapping orientation of objects towards each other to prob-
abilities. Figure 7 summarizes the achieved prediction quality enhancement. It
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Fig. 7: Evaluation overview.

can be seen that object characteristics alone are not effective, but in combination
with relation interdependencies they exclude many false predictions, and that
the predicted distances correspond to the expected overall evolution. Below, we
discuss these results in more detail.

Situation 1: Traffic jams close to each other. In the first situation, two
traffic jams are very close (about 0.5km apart, as stated in the real-world data),
but still disrelated from each other (meaning that they will probably merge) with
the rear one being larger, and growing faster, than the front one (real-world data,
cf. Table 4). Traffic jams, which can move, scale, and have permeable boundaries,
do not allow us to exclude situations by inspecting object characteristics. In this
case, prediction precision can only be increased by additionally taking relation
interdependencies—as described above—into account, reducing the number of
predicted situations to nine (excluding evolutions such as traffic jams partially
overlapping but far from each other). In these predicted situations, two crucial
evolutions are preserved: the traffic jams may drift apart or merge (confirms
H1). Distances for duration and probability are based on the current motion of
traffic jams and state that merging is more likely than drifting apart, although



it will take a considerable amount of time. This prediction was confirmed by
our data set, which showed that the observed traffic jams indeed merged into a
single large one about 90 minutes after detection.
Situation 2: A wrong-way driver heads towards road works. In the
second scenario, a wrong-way driver (small, fast) is detected to head towards
road works (large, static). The fact that a wrong-way driver’s boundary is not
permeable, discards predictions involving Proper Part Inverse and reduces
their number from 20 to 16 solely on the basis of object characteristics. With
relation interdependencies, a further reduction to 7 (size relationship between
the two objects) results in the following predicted evolutions: the wrong-way
driver may enter and then drive past the area of road works, or he/she may turn
around (never observed in our data set). The most likely scenario is that, due
to the wrong-way driver’s current orientation and speed, he/she may enter the
area of road works. This prediction partially matches our data set, in which,
ten minutes after being detected, the wrong-way driver entered the area of road
works (becoming Proper Part in accordance with our prediction) and then,
luckily and against all odds, managed to drive past the road works (which was
assigned only low probability).
Situation 3: Snow in the area of road works. In our final scenario, poor
driving conditions (a medium-sized area of snowfall) are detected within a large
area of road works. The non-deterministic nature of weather conditions, together
with the limited amount of information currently available to our system (e. g.,
directions of weather movements are not provided), makes it impossible to ex-
clude situations on the basis of object characteristics. It also does not allow us
to exclude a large number of evolutions when considering relation interdepen-
dencies, and makes deriving probabilities impossible (no direction given). Only
approximate durations (distant and very distant) may be given on the basis of
the domain knowledge that weather conditions typically change slowly. These
predicted durations are consistent with observations in our real-world data re-
porting poor driving conditions over a period of three hours in one case and over
about a day in another case.

6 Lessons Learned and Future Work

In this section, we present lessons learned from implementing and using Situation
Prediction Nets and, based on these findings, indicate directions for future work.
Object characteristics are only effective in combination with relation
interdependencies. Situations described with objects and relations are the ba-
sis for neighborhood-based predictions in situation awareness. The potential for
enhancing prediction quality when using object characteristics in isolation may,
depending on the domain, therefore be rather limited (as shown for road traffic
management by our evaluation). Only in combination with relation interdepen-
dencies, one can achieve substantial improvements in such a case.
CPNs are suitable for deriving, but not for keeping track of, distance
descriptions. Distance descriptions must be retained for later examination by



human operators. In a naive approach, distances are attached to tokens or accu-
mulated in dedicated places, resulting in prediction state space being no longer
bounded by the number of possible combinations between relations. Persistent
storage outside the CPN seems to be better suited to preventing this.
Distances in axiomatic mappings should be learned. Distances and prob-
abilities modeled a-priori in axiomatic mappings are only a starting point for the
system. In order to keep them up-to-date, a learning component should analyze
events occurring in the domain (e. g., to learn that something that was considered
unlikely actually occurs more often than assumed).
Recursive aggregation of situations in predictions facilitates re-use.
In our previous work [5], we encouraged re-use of situations as objects in re-
cursively defined higher-level situations. For example, a wrong-way driver could
head towards road works in snowfall. We could re-use the situation “Poor driv-
ing conditions in the area of road works”, and relate the wrong-way driver with
this situation. SPNs, therefore, need to be extended with concepts for aggregat-
ing simulations of one net into the simulation of another one, for instance by
representing the marking of one Petri net in a two-colored token of another one.
Predictions using partial information require planning. Neighborhood-
based prediction assumes that starting points for predictions already comprise
all relevant objects. This is particularly problematic if causal relations between
objects are described. For example, the emergence of the critical situation “Acci-
dent causes traffic jam” should clearly be indicated by the corresponding initial
situation—the occurrence of an accident. However, the absence of relations pre-
vents our current approach from predicting any situation in this case. We intend
to extend SPNs with ideas from qualitative planning [22]. Critical situations
could then be represented as goals, and the planning approach should yield the
necessary steps (e. g., emergence of a traffic jam) for reaching them.
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