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ABSTRACT
Model transformations play a key role in the vision of Model-
Driven Engineering. Thereby, the resolution of structural
heterogeneities between metamodels (MMs) represents the
key challenge. For this task, current approaches require the
definition of partly tricky, low-level recurring transforma-
tion logic but neglect to offer reusable components. More-
over, little attention has been paid to heterogeneities caused
by the concept of inheritance, although extensively used
in MMs. Therefore, we propose to specify model trans-
formations in a plug & and play manner by a set of pre-
defined mapping operators (MOps) representing a DSL to
resolve structural heterogeneities. For coping with inheri-
tance in MMs, we introduce an inheritance mechanism be-
tween MOps allowing to reuse parts of the mapping def-
initions. Moreover, dedicated MOps for resolving hetero-
geneities when one MM comprises inheritance hierarchies
whereas the other one does not are presented, which are well-
known problems in object-relational transformations and ob-
ject-oriented refactorings.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software

General Terms
Languages

Keywords
Model Transformation, Reusability, Inheritance

1. INTRODUCTION
Model-Driven Engineering (MDE) places models as first-

class artifacts throughout the software lifecycle [4] whereby
model transformations play a vital role. In the context of
transformations between different metamodels (MMs) and
their corresponding models, the overcoming of structural
heterogeneities, being a result of applying different meta-
modeling constructs for the same semantic modeling concept
is the key challenge. As a simple case study Fig. 1 shows
two MM extracts of the UML ActivityDiagram versions 1.4
and 2.2 from this year’s Transformation Tool Contest1 serv-
ing as a running example throughout the paper. Whereas

∗This work has been funded by the Austrian Science Fund
(FWF) under grant P21374-N13.
1http://www.planet-research20.org/ttc2010/

in version 1.4 (cf. left-hand side (LHS) of Fig. 1) differ-
ent kinds of control nodes are represented by the attribute
Pseudostate.kind, the semantically equivalent information
is represented in version 2.2 (cf. right-hand side (RHS) of
Fig. 1) by a type hierarchy, i.e., explicit classes inheriting
from ActivityNode are available.
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Figure 1: UML Activity Diagram Versions

As the example indicates, a semantic concept in one MM
can be expressed by any of the common core concepts of
semantic data models [8], i.e., classes, attributes, references,
and inheritance, in the other MM resulting in manifold het-
erogeneities [3, 13]. For their resolution, current best prac-
tices comprise specifying model transformations between dif-
ferent MMs having to deal with all the low-level intricacies of
a certain transformation language. Moreover, current trans-
formation languages lack appropriate reuse mechanisms.

We therefore propose to specify model transformations by
means of abstract mappings using a set of reusable transfor-
mation components, called mapping operators (MOps) to
resolve recurring structural heterogeneities. The rationale
behind is to follow an MDE-based approach, since abstract
mappings can be seen as platform-independent transforma-
tion models specified using a predefined library of MOps,
resembling, in terms of MDE, a DSL to resolve structural
heterogeneities. Although abstracting from the underlying
transformation language, abstract mappings can be auto-
matically translated to different platforms, i.e., transfor-
mation languages by means of higher-order transformations
(HOTs) [18] since the MOps exhibit a clearly defined op-
erational semantics. An initial set of MOps has been pre-
sented in [19] focusing on the resolution of heterogeneities
between classes, attributes and references, only. Based on
this on work we present in this paper first an inheritance
mechanism between MOps allowing to reuse parts of the
mapping definitions for coping with MM inheritance. Sec-
ondly, dedicated inheritance MOps (iMOps) for resolving



heterogeneities when one MM uses inheritance whereas the
other expresses the same semantic concepts without the us-
age of inheritance. The motivation behind this work is that
inheritance is extensively used in MMs as, e.g., the evolu-
tion of the UML standard reveals [14]. Thereby, substantial
changes concerning the inheritance hierarchies as well as the
application of abstract classes have taken place, emphasizing
the need for support to resolve inheritance heterogeneities.

The remainder of this paper is structured as follows. Where-
as Section 2 revisits the MOps already proposed in [19], Sec-
tion 3 introduces an inheritance mechanism between MOps
and Section 4 presents dedicated iMOps for resolving hetero-
geneities caused by inheritance. The subsequent Section 5
gives a brief overview on the prototypical implementation of
the approach. Finally, Section 6 surveys related work and
Section 7 concludes this paper with a critical discussion as
well as an outlook on future work.

2. MOps IN A NUTSHELL
We briefly revisit our MOps [19] resolving heterogeneities

wrt. to classes, attributes and references. The presented
MOps can be divided into so-called kernel MOps and com-
posite MOps building the basis for the newly introduced
iMOps in the subsequent section.

Kernel MOps. In order to provide a MOps kernel, i.e., a
minimal set of required MOps to overcome structural hetero-
geneities in-the-small, we systematically combined the core
concepts of semantic data models, being (i) classes, (ii) at-
tributes, and (iii) references with different mapping cardinal-
ities, thereby complementing the work of Legler and Nau-
mann [13] focusing on attributes only. Therefore, MOps are
provided for the basic tasks of a model transformation, being
(i) copying, (ii) merging and (iii) generating2. These tasks
are supported for all the core concepts of semantic data mod-
els as can be seen in Fig. 2. In this respect, a C2C operator
is used to map a LHS class to a RHS class and expresses
that each instance of the LHS class is copied to an accord-
ing instance of the RHS class. In contrast, a Cn

2 C operator
maps several LHS classes to a single RHS class, thus merg-
ing a certain combination of instances of the LHS classes to
a single instance of the RHS class. Finally, a 02C operator
can be used in the situation that no LHS class is mappable
to a RHS class thus simply generating instances of the RHS
class. The described operational semantics for the 2Class-

MOps can be transferred analogously to the 2AttributeMOps

as well as to the 2ReferenceMOps.
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Figure 2: Kernel MOps

As can be seen in Fig. 2, each MOp has input ports with
required interfaces (left side of the component) as well as
output ports with provided interfaces (right side of the com-
ponent), typed to classes (C), attributes (A), and references
2Please note that kernel MOps for splitting are not necessary
being simply accomplished by several copying MOps.

(R) in terms of Ecore3 types. Thus, metamodel indepen-
dence is achieved, i.e., MOps can be reused between arbi-
trary Ecore-based MMs. Since there are dependencies be-
tween MOps, e.g., a link can only be set after the two objects
to be connected are available, each 2ClassMOp additionally
offers a trace port (T) at the bottom, providing context in-
formation, i.e., offering information about which output ob-
jects have been produced from which input objects. This
port can be used by other MOps to access context infor-
mation via required context ports (C) with corresponding
interfaces on top of the MOP, or in case of 2ReferenceMOps
via two ports, whereby the top port depicts the required
source context and the bottom port the required target con-
text (cf. Fig. 2). Since MOps are expressed as components,
the transformation designer can apply them in a plug & play
manner by binding their interfaces.

Composite MOps. Besides kernel MOps a set of com-
posite MOps has been introduced in [19] encapsulating a
larger recurring pattern of heterogeneity and therefore mak-
ing the approach more scalable. In this respect, typical het-
erogeneities, e.g., vertical partitioning, i.e., attributes of a
LHS class are distributed over several different RHS classes,
have been modeled (cf. EBNF of the VerticalPartitioner

shown in Table 1) allowing the transformation designer to
benefit from this pre-modeled knowledge. Therefore, the
concrete approach for specifying a mapping is as follows.
The transformation designer detects a certain recurring het-
erogeneity and applies the corresponding composite MOp
in the so-called black-box view. In this view, only classes
are connected to the composite MOp, thereby providing an
abstract high-level view on a model transformation. On
switching to the white-box view, the fixed parts of a pat-
tern get generated. Now, the transformation designer can
complement the mapping by adding the variable parts, i.e.,
attribute and reference mappings, as required.
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Figure 3: Whitebox-View of Composite MOp

For exemplifying this, Fig. 3 shows the application of the
VerticalMerger composite MOp in the ActivityDiagram
case study. Thereby the heterogeneity is resolved, that the
guard of a transition is expressed by two separate classes
Guard and BooleanExpression in UML 1.4, whereas it is ex-
pressed by a single class OpaqueExpression (inheriting from
ValueSpecification) in UML 2.2. Thus, logic is needed,
that is able to merge instances of the classes Guard and
BooleanExpression to instances of the class OpaqueExpres-
sion. Therefore, the VerticalMerger composite MOp has
been applied in the blackbox-view. When switching to the
whitebox-view, the fixed parts of the composite MOp - being
in this case the Cn

2 C according to the EBNF given in Table 1

3http://www.eclipse.org/modeling/emf/



Table 1: Composite MOps

Copier LHS class corresponds to exactly one RHS class, i.e., Copier MOp 
copies objects and its corresponding attributes and references Copier = C2C { A2A | A

n
2A | 02A | R2R | R

n
2R | 02R }.

VerticalPartitioner
LHS class corresponds to several RHS classes, i.e., Vertical- 
Partitioner splits one source object into several target objects as well as 
its corresponding attributes and references

VerticalPartitioner = Copier { ObjectGenerator | Copier }.

VerticalMerger
Several LHS classes correspond to exactly one RHS class, i.e., 
VerticalMerger merges several source objects to one target object as 
well as its corresponding attributes and references

VerticalMerger = Cn2C { A2A | A
n
2A | 02A | R2R | R

n
2R | 02R }.

ObjectGenerator
No LHS class corresponds to an according RHS class, i.e., 
ObjectGenerator generates a new target object, as well as its 
corresponding attributes and references

ObjectGenerator = 02C { A2A | A
n
2A | 02A | R2R | R

n
2R | 02R }.

Composition of Kernel MOps (EBNF)MOp Description

- get pre-generated. Now the transformation designer needs
to complement the mapping by adding the variable parts as
required. In this case three copying attribute MOps (cf. A2A
in Fig. 3) are needed, that map the corresponding attributes.
In order to further support the transformation designer in
this step, a simple name matching of attributes and refer-
ences takes place, which in this case leads to the automatic
generation of the three required mappings since the names
of the attributes match perfectly.

Although this solution allows to transform models cor-
rectly, it neglects the existence of the inheritance relation-
ships between the classes and therefore has some main draw-
backs. Firstly, the attribute mappings go beyond the scope
of the mapped classes, as is the case with the attribute name

which is defined in the classes ModelElement and NamedEle-

ment leading to confusing mapping specifications. Secondly,
such attribute mappings which go beyond the scope of the
class are likely to be redundant, since other classes also
inheriting from some base class (like ModelElement) will
probably re-specify such mappings. Thus, a mechanism is
needed, that allows to reuse (inherit) such mappings. Fi-
nally, the same problem arises in the context of reference
mappings. Therefore, in the following section an inheritance
mechanism between MOps is introduced.

3. AN INHERITANCE MECHANISM
BETWEEN MOps

After briefly revisiting existing MOps, we introduce an in-
heritance mechanism for MOps allowing to reuse parts of a
mapping specification. The inheritance principle of object-
oriented MMs is applied to MOps in the way that (i) a MOp
between subclasses (submapping) inherits the feature map-
pings of a MOp between superclasses (supermapping) allow-
ing for reuse and that (ii) a MOp between subclasses may
refine the mapping specification by additional feature map-
pings. Thereby, a MOp might inherit from multiple other
MOps, i.e., multiple inheritance is supported. Furthermore,
mappings between superclasses can be set abstract, i.e., the
mapping itself is not executable, needed in case the RHS
class is abstract. On the execution level, the introduction
of inheritance between MOps means that a mapping is ex-
ecuted additionally for all instances of subclasses which are
not affected by a submapping. For being able to introduce
an inheritance relationship between MOps certain precon-
ditions must hold. Firstly, it has to be ensured that either
the participating LHS classes of the supermappings and the
submappings are in an inheritance relationship or all map-
pings have the same LHS class as input. The same con-
straint must hold on the RHS. These constraints must be

ensured since the submappings inherit the feature mappings
of the supermappings and therefore the features of the su-
perclasses must also be available on instances transformed
by the submappings.

To exemplify this, Fig. 4 depicts the example introduced
in Fig. 3 resolved with inheritance between the mappings
allowing to overcome the drawbacks raised in the previ-
ous section. Now, two abstract mappings have been added
between the classes ModelElement and NamedElement and
the classes Guard and ValueSpecification. This allows
to keep the dependent mappings, i.e., attribute mappings
and reference mappings in the scope of the mapping of the
owned class, leading to well-structured mapping specifica-
tions. Moreover, dependent mappings can be inherited, re-
moving redundancy in the mapping specification (e.g., A2A

between ModelElement.name and NamedElement.name has to
be specified only once in the example) and thus leading to
easier maintainable and less error-prone mappings.
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Figure 4: Whitebox-View with Inheritance

4. iMOps
After presenting an inheritance mechanism we now discuss

iMOps resolving heterogeneities when one MM uses inheri-
tance whereas the other one does not. The provided iMOps
are summarized in Table 2 and represent well-known pat-
terns from the area of object-relational transformations [11]
and refactorings [7] (cf. known uses column). Due to space
limitations we will only discuss the A2I (Attribute2Inheri-
tance) in detail and briefly discuss the remaining iMOps.

A2I iMOp. For resolving the heterogeneity that a LHS
class offers type information by means of an attribute whereas
the RHS MM provides explicit type information by means
of an inheritance hierarchy an A2I iMOp is provided. An
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example of an A2I situation is depicted in Fig. 5 resolving
the example described in Section 1 (cf. Fig. 1). Thereby, the
transformation designer connects the single LHS class to the
input port and the RHS classes of the inheritance hierarchy
to the output ports in the blackbox-view (cf. top of Fig. 5).
When switching to the whitebox-view (cf. bottom of Fig. 5),
for each connected RHS class a Copier with a to be com-
pleted condition is pre-generated according to the EBNF
shown in Table 2, whereby the Copiers have to inherit from
each other. Thereby, the required conditions split the ob-
ject set of the LHS according to the type information into
subsets in the RHS corresponding to the subclasses of the
inheritance hierarchy. When taking a look at the EBNF in
Table 2, one can see that this pattern may not only consist
of Copiers but of VerticalPartitioners and ObjectGens

too. This is due to the fact, that an attribute in the LHS
acting as input for MOps producing arbitrary RHS elements
may carry type information, which might be encoded by an
inheritance hierarchy in the RHS.

If we exchange LHS and RHS MMs of our example, i.e.,
the LHS MM provides explicit types whereas the RHS MM
uses an attribute to represent the type information an I2A

iMOp can be applied, thus representing the opposite of the
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A2I iMOp. In this case again Copiers could be used whereby
the abstract Copier again maps the common attributes and
the inheriting Copiers map the specific types. However,
instead of the condition these Copiers require a MOp that
generates the according attribute values, i.e., an 02A MOp
setting the according Pseudostate.kind value.

R2I and I2R iMOps. For resolving the heterogeneity
that a LHS MM uses delegation whereas the RHS MM uses
inheritance the R2I iMOp is provided as sketched in Fig. 6.
Thereby the referenced LHS class A is mapped to the root of
the RHS hierarchy A’ by an (abstract) Copier. The refer-
ring LHS class B is mapped to the RHS class B’ by a Verti-

calMerger which inherits from the base mapping, thereby
reusing the attribute mapping between a and a’. For the
case that the LHS MM uses inheritance whereas the RHS
MM uses delegation the I2R iMOp is provided.

C2I and I2C iMOps. A common scenario during MM
evolution is that several independent classes are arranged
in an inheritance hierarchy. To resolve this heterogeneity a
C2I iMOp is provided as sketched in Fig. 6. For each path
of the RHS inheritance hierarchy a set of mappings inherit-
ing from each other is required. Thus, the example exhibits
two abstract Copiers with again one Copier inheriting from
them. Nevertheless, no common mapping for the root class
of the RHS inheritance hierarchy can be introduced since the
attributes owned by the root class originate from different
LHS classes. If an LHS inheritance structure is represented
by independent RHS classes an I2C iMOp can be applied
whereby the MOps contained in the whitebox exhibit a con-
dition which filters instances of a specific type only.

Table 2: Overview of iMOps resolving Non-Overlapping Heterogeneities

A2I
(Attribute2Inheritance)

LHS MM encodes type information by 
attribute values; RHS MM provides 
explicit types in an inheritance hierarchy

A2I =  RootMapping {ChildMapping}.
RootMapping = (Copier | VerticalMerger | ObjectGenerator).
ChildMapping = (Copier | VerticalMerger | ObjectGenerator).

Replace Type Code with Subclasses [7]
One Inheritance Tree One Table [11]

I2A
(Inheritance2Attribute)

LHS MM provides explicit types in an 
inheritance hierarchy; RHS MM encodes 
type information by attribute values

I2A = RootMapping ChildMapping {ChildMapping}.
RootMapping = (Copier | VerticalMerger).
ChildMapping = (Copier | VerticalMerger).

Replace Subclass with Fields [7]
One Inheritance Tree One Table [11]

R2I
(Reference2Inheritance)

LHS MM relates classes by references;    
RHS MM provides an explicit inheritance 
hierarchy

R2I = [RootMapping] ChildMapping {ChildMapping}.
RootMapping = (Copier | VerticalMerger).
ChildMapping = (VerticalMerger).

Replace Delegation with Inheritance [7]
One Class One Table [11]

I2R
(Inheritance2Reference)

LHS MM provides explicit inheritance 
hierarchy; RHS MM relates classes by 
references

I2R = [RootMapping] ChildMapping {ChildMapping}.
RootMapping = (Copier | VerticalMerger).
ChildMapping = (VerticalMerger).

Replace Inheritance with Delegation [7]
One Class One Table [11]

C2I
(Class2Inheritance)

Independent LHS MM classes are 
contained in an inheritance hierarchy in 
RHS MM

C2I = [RootMapping] ChildMapping {ChildMapping}.
RootMapping = (Copier | VerticalMerger).
ChildMapping = (Copier | VerticalMerger).

Extract Superclass [7]
One Inheritance Path One Table [11]

I2C
(Inheritance2Class)

LHS inheritance hierarchy is represented 
by independent RHS classes

C2I = [RootMapping] ChildMapping {ChildMapping}.
RootMapping = (Copier | VerticalMerger).
ChildMapping = (Copier | VerticalMerger).

One Inheritance Path One Table [11]

Known UsesiMOp Description

A

R

C

iMOps EBNF



5. PROTOTYPICAL IMPLEMENTATION
This section discusses our prototypical implementation,

which bases on the Atlas Model Weaver (AMW) [6] as well
as a higher-order transformation (HOT) for generating exe-
cutable ATL code [10] out of the mappings.

Mapping Specification. The AMW framework, pro-
viding a generic infrastructure to declaratively specify (plug)
mappings between two arbitrary MMs, has been accordingly
extended with our MOps whereby for each MOp a direct or
indirect subclass of WLink of the AMW MM is defined. This
way the abstract syntax of our mapping DSL is defined, act-
ing as input MM for the HOT. To ensure basic verification
support of the specified mappings, constraints are provided
using the EMF Validation Framework4, e.g., every MOp has
to be correctly connected to its source and target MM ele-
ments as well as to its context mappings.
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Figure 7: Prototypical Implementation

Mapping Execution. To execute (play) the platform-
independent mappings, a mapping is automatically trans-
formed to a concrete transformation language, represent-
ing the platform-dependent transformation model by means
of a HOT (cf. Fig. 7). The HOT has to cope with ker-
nel MOps only, since composite MOps and iMOps solely
base on kernel MOps whereby each kernel MOp exhibits a
clearly defined operational semantics [19]. Therefore, new
user-defined composite MOps comprising kernel MOps can
be added without the need of altering the HOT. In our
prototype, ATL has been chosen as concrete transforma-
tion language. On examining the generated code our MOps
abstract from ATL-specific intricacies as detailed in the fol-
lowing. For kernel MOps dealing with copying, partitioning
and merging, declarative ATL code is generated in terms of
matched rules. In case of MOps generating RHS elements,
the provided declarative constructs miss expressivity, thus
imperative code blocks need to be generated. Although ATL
provides a basic rule inheritance mechanism, it is not able
to (i) cope with multiple inheritance between rules and (ii)
inherit between rules exhibiting different signatures, e.g., a
matched rule merging several LHS classes (originating from
a VerticalMerger) is not allowed to inherit form a simple
matched rule (originating from a Copier) as required in our
example depicted in Fig. 4. To overcome these shortcomings
again imperative code blocks have to be generated empha-
sizing the provided abstraction of our proposed (i)MOps.
Needless to say, it would be possible to transform our MOPs
to different transformation languages, e.g., TGGs [12] or our
own transformation language TROPIC [20], which could ad-
ditionally be used to debug our mappings.

4http://www.eclipse.org/modeling/emf/?project=validation

6. RELATED WORK
In the following we firstly relate our approach to existing

mapping tools and secondly investigate literature on trans-
formation patterns.

Mapping Tools. In the area of MDE to the best of
our knowledge only the work presented in [6] provides pre-
defined weaving operators which roughly correspond to our
MOps. Similar to our prototypical implementation they
base on AMW and specify their operators by extending
the basic weaving model. Nevertheless, they do not pro-
vide operators dealing with heterogeneities caused by dif-
ferent metamodeling constructs including inheritance. In
the area of data engineering, current mapping tools, e.g.,
Clio/Clip [16] and Mapforce5, do not only support mappings
of relational schemas but also of XML schemas. Although
in XML schema type derivation, i.e., inheritance between
complex types, is allowed, neither Clio/Clip nor Mapforce
provide support to map schemas using different inheritance
hierarchies. Finally, in the area of ontology engineering,
approaches like MAFRA [15] provide mapping support for
integrating different ontologies. Within the MAFRA frame-
work a mapping language called Semantic Bridge Ontology
(SBO) provides different means of linking concepts from
a source ontology to a target ontology. In addition, SBO
allows the specification of relationships between mappings
whereby the subBridgeOf relationship is similar to the in-
heritance mechanism between our MOps. Different to our
approach is that no pre-defined, coarse-grained MOps are
available that resolve typical heterogeneities caused by in-
heritance, e.g., the resolution of the example in [15] requires
the user to assemble several bridges which can be resolved
by the A2I composite MOp in our approach. Summarizing,
current mapping tools provide only very limited support for
mapping inheritance hierarchies.

Transformation Patterns. Concerning reusable trans-
formation patterns, in the area of model engineering only
language-dependent patterns, i.e., idioms, have been pro-
posed so far such as patterns for graph transformations [1]
and patterns for QVT [9]. The situation is different in the
area of data engineering where a huge body of literature
exists, that analyzes potentially occurring mapping situa-
tions irrespective of any concrete specification language like
[3] and [13] to mention just a few. Besides these classifi-
cations of mapping situations, also collections of concrete
patterns have been published in the area of data engineer-
ing [5] and in the area of ontology engineering [17]. Only
the latter two consider patterns resolving inheritance het-
erogeneities to a certain extent. In [5], additionally the I2A
scenario is discussed but no comprehensive overview of all
scenarios is given. Finally, a first benchmark for mapping
systems [2] has been proposed recently, describing recur-
ring mapping patterns in the form of a collection of prob-
lems that a dedicated mapping tool should be able to cope
with, but again this work does not focus on heterogeneities
caused by inheritance. When considering related work from
more widely related areas like object-oriented refactoring
and object-relational transformations, then interesting pat-
terns (e.g., [7] and [11]) with respect to inheritance can be
found. Summarizing, this rich body of existing literature
just emphasizes the need for a library of reusable MOps en-
capsulating these recurring transformation patterns.

5http://www.altova.com/mapforce.html



7. DISCUSSION AND FUTURE WORK
In the course of this work, the ActivityDiagram case study

of this year’s Transformation Tool Contest has been con-
ducted. This case study has been solved by the usage of
9 composite MOps encapsulating 34 kernel MOps, 85 %
thereof responsible for copying, 6 % for merging and 9 % for
generating. The high percentage of copying results from the
fact that the case studies represents an evolution scenario.
Nevertheless, one can see that by analyzing the kernel MOps
one may draw conclusions about the complexity of a certain
model transformation. By further critically reflecting our
MOps several issues for future work have been identified.

Introduction of new Composite MOps. Most of our
MOps have been explored in integration scenarios between
CASE tools and UML tools. For further evaluating the pro-
posed approach we plan to conduct several case studies com-
prising the complete mapping of UML 1.4 class diagrams to
UML 2.2 class diagrams. Thereby, we would like to analyze
how often certain patterns wrt. our current set of MOps
occur. Moreover, we expect to detect recurring situations
neglected so far, being candidates for new composite MOps.

Validation of Mappings. The provided kernel and com-
posite MOps (including iMOps) are specified by means of a
MM, allowing to validate a specified mapping. In order to
enhance this basic validation support, enhanced analysis of
the LHS MM and RHS MM should be incorporated in the
future by using OCL constraints. By this we would like
to ensure that only executable model transformations are
derived from the mappings, i.e., errors should be detected
already in the specification phase and not during runtime.

Enabling Interactive Guidance. Currently the spec-
ification of a mapping is entirely up to the transformation
designer without any guidance. To alleviate this shortcom-
ing interactive guidance should be provided supporting (i)
the specification of the whole mapping (guidance in the
large) and (ii) the specification of the MOps (guidance in
the small). Concerning the first issue, we envision to pro-
pose strategies how to divide and conquer a whole mapping
problem, e.g., abstract classes first, top down the inheritance
hierarchy or containment references first. Since there are no
best practices available in this context further research is
needed. Concerning the second issue, wizards could be em-
ployed in the application of a MOp to reduce overhead and
to minimize the number of errors, e.g., when applying the
A2I iMOp the transformation designer could be guided in
providing correct conditions for the Copiers.

Debugging of Mappings. The operational semantics
of our MOps is currently defined using a HOT to ATL.
Thus, there is an impedance mismatch between the abstract
mapping specification and the executable code, which hin-
ders understandability and debugging on the mapping level
when executing a derived transformation. Therefore, the
translation to other transformation languages should be in-
vestigated, trying to identify which transformation language
fits best to the mapping specification. In this respect, the
applicability of our own transformation language TROPIC
[20] should be investigated as well.
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