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Abstract. Although model transformations presumably play a major
role in Model-Driven Engineering, reuse mechanisms such as inheritance
have received little attention so far. In this paper, we propose a com-
parison framework for rule inheritance in declarative model-to-model
transformation languages, and provide an in-depth evaluation of three
prominent representatives thereof, namely ATL, ETL (declarative sub-
sets thereof), and TGGs. The framework provides criteria for compari-
son along orthogonal dimensions, covering static aspects, which indicate
whether a set of inheriting transformation rules is well-formed at compile-
time, and dynamic aspects, which describe how inheriting rules behave
at run-time. The application of this framework to dedicated transforma-
tion languages shows that, while providing similar syntactical inheritance
concepts, they exhibit different dynamic inheritance semantics and offer
basic support for checking static inheritance semantics, only.
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1 Introduction

Model-Driven Engineering (MDE) defines models as first-class artifacts through-
out the software lifecycle, which leads to a shift from the “everything is an object”
paradigm to the “everything is a model” paradigm [5]. In this context, model
transformations are crucial for the success of MDE, being comparable in role
and importance to compilers for high-level programming languages. Support for
large transformation scenarios is still in its infancy, since reuse mechanisms such
as inheritance have received little attention so far [10], although the concept of
inheritance plays a major role in metamodels, as revealed, e.g., by the evolution
of the UML standard [13]. As inheritance is employed in metamodels to reuse
∗ This work has been funded by the FWF under grant P21374-N13.
† The author’s work is funded by a postdoctoral research grant provided by the Insti-
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feature definitions from previously defined classes, inheritance between transfor-
mation rules is indispensable in order to avoid code duplication and consequently
maintenance problems. Although this need has been recognized by developers
of transformation languages, the design rationales underlying individual trans-
formation languages are not comparable at first sight. This makes it difficult to
understand how these constructs are to be used.

Therefore, we propose a comparison framework for rule inheritance in declar-
ative model-to-model transformation languages that makes explicit the hidden
design rationales. The proposed framework categorizes the comparison crite-
ria along three orthogonal dimensions analogous to the three primary building
blocks of programming languages [2]. The first two dimensions comprise static
criteria: (i) the syntax a transformation language defines with respect to in-
heritance and (ii) static semantics, which indicates whether a set of inheriting
transformation rules is well-formed at compile-time. The third dimension of the
comparison framework describes how inheriting rules interact at run-time, i.e,
dynamic semantics. On the basis of this framework, inheritance mechanisms in
dedicated transformation languages (ATL [9], ETL [11], TGGs (MOFLON) [10])
are compared. The results show that the inheritance semantics of these languages
differ, which has profound consequences for the design of transformation rules.

Outline. Section 2 provides the rationale of this work, and Section 3 presents
the comparison framework with its three dimensions. In Section 4, we compare
the inheritance mechanisms of ATL, ETL and TGGs and present lessons learned.
Finally, Section 5 gives an overview on related work, and Section 6 concludes.

2 Motivation

When developing a framework for comparing rule inheritance in transformation
languages, one starting point is to look at the well-known model transformation
pattern (cf. Fig. 1) and to examine where the introduction of inheritance would
play a role. Obviously, a transformation language must define syntactic concepts
(cf. question 1 in Fig. 1), which leads to the first dimension of our comparison
framework, namely syntax. In this respect, the following questions are of interest:

– Which types of inheritance are supported? Does the transformation language
support only single or multiple inheritance?

– Are abstract rules supported? Is it possible to specify transformation behav-
ior that is purely inherited?

In addition to syntax, further well-formedness constraints on the transformation
rules must hold (cf. question 2 in Fig. 1), which represents the second dimension,
namely static semantics. Thereby, the following questions may arise:

– In which way may a subrule modify a superrule? For instance, how may the
types of input and output elements be changed in subrules such that they
may be interpreted in a meaningful way?

– When is a set of inheriting rules defined unambiguously? Are there sets of
rule definitions that do not allow selecting a single rule?
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Fig. 1. Model-to-Model Transformation Pattern

A transformation specification is usually compiled into executable code, which
is interpreted by a transformation engine that takes a source model and tries to
select and execute rules in order to generate a target model. Again several ques-
tions concerning the interpretation of inheritance at run-time arise (cf. question 3
in Fig. 1), which leads to the third dimension, namely dynamic semantics:

– Which instances are matched by which rule? If a rule is defined for a super-
type, are the instances of the subtype also affected by this rule?

– How are inheriting rules executed? Either top down or bottom up in the rule
inheritance hierarchy?

3 Comparison Framework

This section presents our framework for comparing inheritance support in declar-
ative transformation languages which are used to describe transformations be-
tween object-oriented metamodels, conforming to, e.g., Ecore or MOF2. Al-
though metamodeling languages such as MOF2 support refinements between
associations, e.g., subsets or redefines, these are out of scope of this paper.
As shown in Fig. 2, the comparison criteria can be divided into the three di-
mensions of (i) syntax, (ii) static semantics, and (iii) dynamic semantics. These
dimensions and the corresponding sub-criteria are described in the following.

3.1 Syntax

This subsection provides criteria for comparing transformation languages in
terms of syntactic concepts that they support. We consider both general criteria
(e.g., the numbers of input and output elements of a rule) and inheritance-related
criteria (e.g., whether single or multiple inheritance is supported).
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To identify the criteria for comparison, we analyzed (i) the features of trans-
formation languages and (ii) the classification of model transformation approaches
presented in [7]. The identified features are expressed in a metamodel (MM),
shown in Fig. 3 illustrating the core concepts of transformation languages. A
Transformation typically consists of several TransformationRules, including
an InPattern, referring to InputElements of the source MM, and an OutPattern,
referring to OutputElements of the target MM. Please note that programmed
graph transformations and TGGs distinguish between (i) rule parameters and
(ii) input/output elements, whereby we consider only the latter. A general distin-
guishing criterion is the allowed number of input and output elements. Further-
more, transformation languages typically support the definition of a Condition,
which may be interpreted in different ways (cf. Section 3.3). Finally, they provide
the possibility of setting the values for target features by means of Assignments.

In the context of inheritance-related aspects, three criteria are relevant. First,
a TransformationRule may inherit from either one or multiple other transfor-
mation rules, depending on whether single or multiple inheritance is supported.
Second, the concept of abstract rules may be supported in order to specify
that a certain rule is not executable per se but provides core behavior that can
be reused in subrules. Finally, one can distinguish between different refinement
modes by which inherited parts are incorporated into inheriting rules (cf. enu-
meration RefinementMode in Fig. 3). First, override implies that when a subrule
refines an assignment of a superrule, the assignment of the subrule is executed
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together with those assignments in the superrule which are not overridden. In
the refinement mode inherit first the overridden assignments are executed, and
then the overriding assignment may alter the resulting intermediate result (such
as by initializing some state by a supercall and then altering this intermediate
result). Third, merge means that again both assignments are executed, but first
the assignments of the subrule and then the overridden assignments of the su-
perrule are executed. Finally, the refinement mode extend induces that inherited
assignments may not be changed at all. For consistency reasons, all assignments
in a single rule should follow the same refinement mode (cf. class Refinement).

3.2 Static Semantics

In the previous subsection, we identified criteria targeting the comparison of
syntactic concepts. Here we elaborate on criteria relevant for checking the static
semantics of inheritance. These criteria reflect the following semantic constraints:
(i) incompatibility of input and output elements of subrules and superrules in
terms of type and number, (ii) non-instantiability of abstract classes, (iii) ambi-
guities in rule definitions, and (iv) conflicts in multiple inheritance.

Incompatibility of Input and Output Elements. In the context of trans-
formation rules, both feature assignments and conditions should be inheritable
to subrules. Thus, it has to be ensured that the types of the input and output
elements of subrules have at least the features of the types of the elements of
the superrule. Thus, types of the input and output elements of a subrule might
become more specific than those of the overridden rule. The inheritance hierar-
chy of the transformation rules must therefore have the same structure as the
inheritance hierarchy of the MMs. This means that co-variance for input and
output elements is demanded, conforming to the principle of specialization in-
heritance in object-oriented programming. This is in contrast to popular design
rules for object-oriented programming languages, where a contra-variant refine-
ment of input parameters and a co-variant refinement of output parameters of
methods is required to yield type substitutability, also known as specification
inheritance [12]. Additionally, the number of input and output elements should
be extensible. Therefore, four cases of potential variations of input elements in
type and number can be distinguished:

– Same number, different types (a). As an example, Fig. 4(a) shows two
rules A2X and B2Y that are bound to the source base classes A and B and to
the target base classes X and Y, where both rules simply copy the contained
features. Since source class C inherits from both classes A and B and the
target class Z from the classes X and Y, the rule C2Z may inherit from the
rules A2X and B2Y. Thus, the feature assignments of the superrules are reused
(cf. grey assignments in Fig. 4(a)).

– Same number, equal (source or target) types (b). This case (cf.
Fig. 4(b)) may be counterintuitive, since inheritance is usually used to spe-
cialize some core behavior for subsets of instances, and subtypes are typically
used to construct these subsets. In this case – at first sight – no subsets (ac-
cording to specialization inheritance) are built, and it is unclear which rule
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should be executed for a combination of instances. Therefore, the subsets
needed must be built by applying corresponding disjoint conditions to the
subrules in case of equal source types. In case the target type remains equal,
feature assignments refer to target elements of the superrule. These scenarios
occur if either the source or the target metamodel makes use of inheritance.

– Different number, different types (c). Here, the subsets needed are built
through the specialization of at least one input element (cf. Fig. 4(c)).

– Different number, equal types (d). In this case, only the number of
input or output elements is extended, but the types of elements bound in
subrules remain the same. Thereby, the same problem as in case (b) arises,
where the subsets must be realized by means of conditions which may require
certain relationships between the matched input elements (cf. Fig. 4(d)).

One interesting question in the context of cases (b) and (d) is whether the
instances that do not fulfill any of the conditions of the subrules are matched
by the superrule (provided that the superrule is concrete). Since this question is
closely related to dynamic semantics, we further discuss it in Section 3.3.

Non-Instantiability of Abstract Classes. Since abstract classes cannot
be instantiated, it must be ensured statically that no concrete rule tries to create
instances of an abstract target class as output. Only abstract rules are allowed
in this case, since they are not themselves executed but must be refined by
a subrule. The situation is different for abstract source classes: although an
abstract source class cannot have any direct instances, indirect instances may
be affected by the transformation rule.

Ambiguities in Rule Definitions. An ambiguity between inheriting trans-
formation rules may arise if a rule requires multiple input elements, and if there
is no single rule for which the match in run-time types is closer than all the
other rules. This is analogous to the problem that arises in multiple dispatch-
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ing as needed for multi-methods (cf. [1, 6]), since choosing a method requires
the run-time type not of a single input element, but of a set of input elements.
Thus, the method whose run-time types most closely match the statically speci-
fied types should be dispatched at run-time. A simple example of such a problem
is depicted in Fig. 5(a). Three transformation rules are specified taking two in-
put elements of different MM types, respectively. Now, suppose that a pair of
instances (b,y) of type B and Y is transformed, and let us assume that the rules
might also match indirect instances. The transformation engine should now look
for a rule whose arguments most closely match the pair (b,y). In this case, no
single rule can be determined, since Rule2 and Rule3 are equally good matches.
Thus, the set of defined transformation rules is ambiguous.

Conflicts in Multiple Inheritance. The diamond problem [16], also re-
ferred to as fork-join inheritance [15], arises, when contradicting assignments
are inherited via different inheritance paths. Consider, for instance, the common
superrule A2W in Fig. 5(b), which contains an assignment for copying a feature
value. This assignment is overridden within the transformation rules B2X and
C2Y. Thus, it cannot be decided in the rule D2Z which assignment should be
applied, unless assistance is given by the transformation designer.

3.3 Dynamic Semantics

Now we shift our focus from static to dynamic semantics, i.e., how transformation
specifications may be interpreted at run-time. In this context, two main aspects
are investigated: (i) which rules apply to which instances, i.e., dispatch semantics
and (ii) how a set of inheriting rules gets executed, i.e., execution semantics.

Dispatch Semantics. In order to execute transformation specifications, it
must be determined which rules apply to which instances, i.e., transformation
rules must be dispatched for source model instances. In [7], potential strategies
and scheduling variations of rules were discussed, but without any focus on in-
heritance. Thus, literature does not indicate, whether type substitutability should
be considered. This principle is well-known in object-oriented programming and
states that, if S is a subtype of T, objects of type T may be safely replaced



by objects of type S [12]. Type substitutability for transformation rules would,
thus, mean that if a rule can be applied to all instances of class T, then this rule
can also be applied to all instances of all subclasses of T. Consequently, if no
specific subrule is defined for instances of a subclass, then these instances of the
subclass may be transformed by the rule defined for the superclass.

Concerning the evaluation of the condition two main strategies can be fol-
lowed during dispatching. First, the condition is part of the matching process,
i.e., if the condition fails, the rule is not applicable, but a superrule might be
applied (rule applicability semantics). Second, the condition is not part of the
matching process, i.e., the matching takes only place on the specified types of
the input elements and thus, those elements, which do not fulfill the condition,
are filtered, but never matched by a superrule anymore (filter semantics).

Execution Semantics. After having determined which rules are applicable
to which source model instances, the question arises how a set of inheriting rules
is executed. A first distinguishing criterion is, whether the concept of inheritance
is directly supported by the execution engine or whether it is first flattened to
ordinary transformation code in a pre-processing step. Independent of whether
the inheritance hierarchy is flattened or not, various strategies may be applied
to evaluate conditions and to execute assignments. This raises questions such as
“Are conditions of a superrule also evaluated?” and “Are the assignments of a
superrule executed before the assignments of a subrule?”. Hence, we investigated
the main characteristics of executing methods in an inheritance hierarchy in
object-oriented programming [16]: (i) the completion of the message lookup, i.e.,
whether only the first matching method is executed (asymmetric) or all matching
methods along the inheritance hierarchy are executed (composing), and (ii) the
direction of the message lookup, i.e., whether a method lookup starts in the
subclass (descendant-driven) or in the superclass (parent-driven).

4 Comparison of Transformation Languages

In this section we use the criteria introduced in the previous sections to compare
inheritance support in model-to-model transformation languages. The results
are based on a carefully developed test set, which includes at least one test case
for each criterion. These documented test cases, including the example code, the
MMs, and source models, can be downloaded from our project homepage6.

Comparison Setup. For the comparison we considered common model-to-
model transformation languages which offer dedicated inheritance support and
allow relationships between source and target models to be specified in a declar-
ative way. We examined the declarative subsets of the hybrid transformation
languages ATL (version 3.1.0) and ETL (version 0.9.0). There are different im-
plementations of TGGs, whereby our comparison bases on the one of MOFLON.
Although MOFLON’s current implementation of the execution engine of TGGs
(MOFLON 1.5.1) does not yet support inheritance, TGGs were included, since
specific literature concerning inheritance support exists [10]. In order to compare

6 http://www.modeltransformation.net



the bidirectional TGG-based model transformation approach with the unidirec-
tional languages ATL and ETL, we considered only the unidirectional forward
translation. Although the QVT standard specifies the declarative transformation
language QVT Relations, it is not included in this survey, since QVT Relations
support only redefinition of whole rules, i.e., they do not allow the reuse of origi-
nal rule definitions, and no inheritance between rules is offered, as is the focus of
our framework. Actual mapping refinement is only mentioned in the QVT Core
part, which leaves the transfer to QVT Relations open. Fig. 6 shows an example
of the differences between the languages when transforming UML Statemachines
into Petri Nets. The rule State2Place transforms State instances that are not
of the kind initial into corresponding Place instances, while inheriting from
the rule ModelElem2Element, which specifies the name assignment.

4.1 Comparison of Syntax

When comparing the supported language features (cf. Table 1), differences in
the number of allowed input elements can be detected. Whereas ATL (multiple
elements in from pattern) and TGGs (source object graph) allow several input
elements to be bound to a rule, this is not possible in ETL (cf. single variable
after transform keyword in Fig. 6). However, all of the languages evaluated sup-
port multiple output elements (multiple elements in to pattern in ATL and ETL,
target object graph in TGGs). Finally, all transformation languages allow for the
specification of conditions (OCL expressions in ATL and TGGs, and a guard in
ETL). ETL and TGGs support multiple inheritance, whereas ATL is restricted
to single inheritance (keyword extends in ATL and ETL, inheritance arrow
on type level of TGGs). All languages provide means to define abstract rules
(keyword abstract in ATL, annotation @abstract in ETL, property abstract
in TGGs). Finally, concerning potential refinement modes of assignments, none
of the approaches evaluated provide specific keywords for explicitly choosing
the semantics to be applied. Instead, ATL and ETL implicitly assume over-
ride semantics, and TGGs support the refinement mode extend since only new
assignments may be added, but existing ones must not be modified.

In summary, all of the approaches evaluated support similar syntactic con-
cepts in terms of inheritance. The main differences lie in the type of inheritance
supported and the implicitly assumed refinement modes of assignments.

Table 1. Comparison of Syntax

Rule Part Values ATL ETL TGGs

I t El t 1 | 1 1 1 1Input Elements 1 | 1…n 1..n 1 1..n 

Output Elements 1 | 1…n 1..n 1..n 1..n 

Condition Yes | No Yes Yes YesCondition Yes | No Yes Yes Yes

Type of Rule 
Inheritance

Single | Multiple Single Multiple Multiple

Abstract Rules Yes | No Yes Yes Yes

Refinement Modes
of Assignments

Override | Inherit |
Merge | Extend

Override 
(implicit)

Override 
(implicit)

Extend

* Not yet implemented in MOFLON
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Fig. 6. Transformation example in ATL, ETL and TGGs

4.2 Comparison of Static Semantics

This part of the comparison evaluates to which extent the static semantics of
inheritance is checked in each transformation language (cf. Table 2). Concerning
input and output elements, in ATL a violation of co-variance is detected at run-
time, since missing features result in a “feature not found” exception. In ETL no
error is reported, and a target model with invalid features is created. In TGGs
this results in a compile-time error in the upcoming implementation, since the
main principle is that applying the subrule should guarantee the existence of the
subgraph created by the superrule. Concerning the number of input elements, in
ATL a run-time error also occurs, if the number is changed in any way, i.e., ATL
prohibits to extend number of input elements. ATL does not raise any exception
if the number of output elements is restricted, since they are produced even if
they are not respecified. In ETL, the restriction of the number of input elements
is not applicable, since ETL restricts the number of input elements to exactly
one anyway. In ETL a run-time error (“index out of bound” exception) is raised



Table 2. Comparison of Static Semantics with respect to Inheritance

Verification 
Target

Fault Values ATL ETL TGGs

N i t [C il Ti | N E (i lid

Input 
Elements

Non‐co‐variant
Type Change

[Compile‐Time|
Run‐Time|No] Error

Run‐Time Error
No Error (invalid 
target model)

Compile‐Time Error 

Restriction in 
N b

[Compile‐Time|
R Ti |N ] E

Run‐Time Error 
( l ith t i )

n.a. (cf. syntax) Compile‐Time Error 
Number Run‐Time|No] Error (also with extension)

( y ) p

Output

Non‐co‐variant 
Type Change

[Compile‐Time|
Run‐Time|No] Error

Run‐Time Error
No Error (invalid 
target model)

Compile‐Time Error 

Output 
Elements Restriction in 

Number
[Compile‐Time|

Run‐Time|No] Error

n.a. (output elements
are still produced even 
if not specified again)

Run‐Time Error 
Compile‐Time Error  
(except of output to 
input modification)

Abstract 
Target 
Classes

Concrete Rules 
for Abstract 
Target Classes

[Compile‐Time|
Run‐Time|No] Error

Run‐Time Error Run‐Time Error
Run‐Time Error 
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if the number of output elements is restricted. In TGGs, to conform to the
main principle that applying the subrule should guarantee the existence of the
subgraph created by the superrule, only an extension of the number of input and
output elements is allowed, which is again ensured statically.

None of the languages evaluated detect concrete rules referencing abstract
classes at compile-time, but run-time errors are thrown. ATL does not throw
exceptions for ambiguous rule definitions – neither at compile-time nor at run-
time. Instead, the first matching rule defined in the file is executed. In ETL,
the problem of ambiguous rule definitions cannot arise, since multiple input el-
ements are not supported. In TGGs, a run-time error is thrown. It must be
noted that in the area of multi-methods, there are approaches for explicit dis-
ambiguation (e.g., [3] proposes a minimal set of method redefinitions necessary
for disambiguation), which could be reused in transformation languages. The
diamond problem in multiple inheritance does not apply to ATL, since multiple
inheritance is not supported. Although the diamond problem is detected in ETL
at compile-time, it is checked on a coarse-grained level, i.e., diamonds that do
not include ambiguous assignments also cause errors. In TGGs, this problem is
checked statically. Analogously to the explicit disambiguation of rule definitions,
the transformation designer could be supported by proposals which assignments
must be overridden in order to achieve unambiguous assignment definitions.

In summary, ATL and ETL provide limited support for static inheritance
checks. Only the diamond problem gets statically checked by ETL. In contrast,
the TGG-related publication lists a number of static checks that will be consid-
ered in the upcoming implementation of rule inheritance.

4.3 Comparison of Dynamic Semantics

In order to compare the dynamic semantics, the dispatch semantics and the exe-
cution semantics are investigated (cf. Table 3). Considering the dispatch seman-
tics, one can see that the output models produced by ATL and TGGs (Fig. 6(a)



and (c)) include only one Place instance, since only the State s2 fulfills the
specified condition in the subrule. As ATL and TGGs support type substitutabil-
ity and rule applicability semantics for conditions, instance s1 is matched by
the more general superrule ModelElem2Element, and therefore creates the tar-
get Element s1. Also the indirect instance t1 is matched by the superrule, and
therefore the target Element t1 is created. In contrast, ETL does not support
type substitutability by default. Thus, although the specifications in ETL and
ATL are syntactically similar, the produced target models are quite different.
ETL’s target model contains only a Place s2 produced by the rule State2Place.
The dispatch semantics may be modified by annotating rules with @greedy in
ETL. Such rules also match indirect instances, but the interpretation is different
to ATL and TGGs, since the superrule still regards all instances irrespective of
whether the instances have already been matched by subrules or not. Adding
the @greedy annotation to the rule ModelElem2Element in our example would
therefore create four instances in total: three Elements s1, s2, and t1 produced
by the superrule ModelElem2Element, and one Place s2 produced by the sub-
rule State2Place. Even if type substitutability is enabled in ETL, the result of
the condition evaluation does not influence the dispatch semantics because the
superrule always matches all direct and indirect instances, disregarding subrules.

Regarding the inheritance support in the engine, in ATL inherited rules are
flattened during compilation and can thus use optimization strategies, i.e., the
ATL compiler inlines the assignments of a superrule. In contrast, ETL supports
inheritance in the execution engine, which reduces the amount of code generated.
In TGGs, this criterion is not applicable, since an inheriting TGG rule contains a
copy of the superrules, which causes code duplication. Concerning the evaluation
of the conditions, all transformation languages we compared exhibit a composing
completion of the lookup, i.e., an instance processed by a subrule must fulfill all
the specified conditions up the inheritance hierarchy. The actual evaluation is
parent-driven in ATL and descendent-driven in ETL. In TGGs, this criterion
is not applicable, since a subrule lists all its inherited conditions. Concerning

Table 3. Comparison of Dynamic Semantics of Inheritance

Criterion Subcriterion Values ATL ETL TGGs
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Assignments
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Parent‐
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n.a.



assignments the same strategy as for conditions is applied. Thus, in ATL (i)
the assignments of the superrule, which are not overridden, (ii) the overridden
assignments, and (iii) new assignments specified in the subrule are executed
realizing the optimization strategy. In contrast, in ETL, (i) the assignments of
the superrule, and (ii) the assignments of the subrule are executed. In TGGs this
is again not applicable. More specifically, TGGs enforce composition already in
the syntax, which causes code duplication.

In summary, the main difference in terms of dynamic semantics lies in the
application of type substitutability, which is user-definable in ETL, but inter-
preted in a different way than in ATL and TGGs. ETL has the disadvantage that
several target instances for a single source instance are created when a superrule
is annotated with @greedy. Moreover, all of the transformation languages im-
plement a composing behavior for conditions and assignments. Thus, the lookup
direction does not influence the result of the transformation.

4.4 Lessons Learned

This subsection presents lessons learned from our comparison.
Similar Syntax, Different Semantics. As the example in Fig. 6 reveals,

similar syntax (cf. ATL and ETL) does not necessarily lead to the same results,
which implies different dynamic semantics. This is undesirable, since the dy-
namic semantics is not made explicit by any syntactical elements to the trans-
formation designer. Thus, the transformation designer must know the design
decisions taken in each transformation language in order to obtain the desired
result. Therefore, the current situation concerning rule inheritance is comparable
to the situation in the early stages of object-oriented programming, where no
common agreements on the dynamic semantics of inheritance had been reached.

Limited Support for Static Semantics. Currently, support for checking
the static semantics is limited. This gives rise to run-time errors or – even worse
– to erroneous target instances with no error message. Thus, the tedious task of
checking the static semantics is left entirely to the transformation designer.

Fixed Dynamic Semantics. As introduced above, different kinds of re-
finement modes may be desirable. The evaluation of the languages has shown,
that each of them assumes a certain refinement mode, but none of them al-
lows the transformation designer to choose between different options. Thus, the
languages support only fixed dynamic semantics for rule inheritance. Since dif-
ferent dynamic semantics are suitable for different transformation scenarios, the
transformation designer should be enabled to alter the dynamic semantics. The
introduction of a super reference as in object-oriented programming languages
would enable the transformation designer to express different refinement modes.

Consequences for Transformation Interoperability. The discovered
differences in the interpretation of inheritance lead to profound consequences
for transformation development, and thus, for transformation interoperability.
Concerning ATL, the main restriction is the support for single inheritance only.
Although multiple inheritance can be achieved by simulation, this leads to code
duplication reducing the advantages of the concept of inheritance significantly.



In contrast, although TGGs and ETL allow for multiple inheritance, they ex-
hibit other intricacies. In case of TGGs, assignments are duplicated in any case.
ETL provides a different interpretation of type substitutability, leading to re-
dundant instances. Thus, transformation interoperability demands for a detailed
knowledge to achieve exactly the same outcome of a transformation expressed
in different transformation languages.

5 Related Work

This section considers two threads of related work. First, we focus on inheritance
support in transformation languages, and second, since inheritance is mainly a
reuse mechanism, we broaden the scope to other reuse facilities.

Inheritance Support in Transformation Languages. Although inher-
itance plays a vital role in object-oriented modeling, and thus also in model
transformations, no dedicated survey exists to the best of our knowledge. Only
a small number of publications mention inheritance explicitly. Inheritance sup-
port in ATL is briefly described in [9], and that in ETL in [11], but rather on a
syntactical level, while the actual execution semantics are left open. A detailed
discussion of static semantics that must be considered in TGG rule inheritance
may be found in [10]. For graph transformations in general, Bardohl et. al [4]
introduced type substitutability when executing graph transformation rules, i.e.,
(abstract) supertypes may be used in patterns which are then applicable to sub-
types at run-time. Finally, in the QVT standard [14] detailed semantics with
respect to inheritance is defined only for QVT Operational.

Reuse Facilities in Model Transformations. General work has been
done in composing transformations. Wagelaar et. al. [18] proposed a superim-
position mechanism of transformations to build the union of all transformation
rules. Thereby rules can be added and redefined (i.e., replacing a rule by a new
one), whereby it is impossible to refer to the original rule. This is similar to the
mechanism in QVT Relations, in which a transformation can extend another
transformation and redefine existing rules [14]. Another reuse mechanism is to
provide predefined transformations that can be adapted to specific MMs. Varró
et al. [17] introduced generic transformations in VIATRA2 which in fact resem-
bles the concept of templates in programming languages. Another approach to
generic transformations was proposed in [8], where transformations are designed
between generic “concepts models”. These transformations can be bound to con-
crete MMs, but only if they have the same structure. Finally, Wimmer et. al. [19]
presented mapping operators which allow to specify model transformations by
means of reusable components, similar to mappings known in data engineering.

In summary, only basic approaches for reuse are available, which confront
the transformation designer with code duplication and maintenance problems.

6 Conclusion and Future Work

In this paper, we have presented a systematic comparison of inheritance sup-
port in the transformation languages ATL, ETL, and TGGs. We (i) identified



syntactic concepts required for inheritance, (ii) elaborated on static semantics
that should be checked between inheriting rules, and (iii) investigated poten-
tial dynamic semantics of rule inheritance. Thus, the design rationales behind
the realizations have been made explicit. Since we have considered declarative
model-to-model transformations only, future work will comprise an investigation
of inheritance support in imperative transformation languages, including also the
imperative parts of hybrid transformation languages.
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