
From the Heterogeneity Jungle
to Systematic Benchmarking∗

M. Wimmer1, G. Kappel1, A. Kusel2,
W. Retschitzegger2, J. Schoenboeck1, and W. Schwinger2

1 Vienna University of Technology, Austria
{lastname}@big.tuwien.ac.at

2 Johannes Kepler University Linz, Austria
{firstname.lastname}@jku.at

Abstract. One of the key challenges in the development of model trans-
formations is the resolution of recurring semantic and syntactic hetero-
geneities. Thus, we provide a systematic classification of heterogeneities
building upon a feature model that makes the interconnections between
them explicit. On the basis of this classification, a set of benchmark
examples was derived and used to evaluate current approaches to the
specification of model transformations. We found, that approaches on
the conceptual level lack expressivity whereas execution level approaches
lack support for reuse. Moreover, only few of the approaches evaluated
provide key features such as an automatic trace model or the ability to
reuse specifications by inheritance.

Key words: Syntactic and Semantic Heterogeneities, Mapping Bench-
mark

1 Introduction

Publicationoo
l1

name:String
kind:IntegerM

 T
o

ki d

kind:Integer

M
M

l2

Kind
St i

Publication
St i

1..1
kind

 T
oo

l

name:Stringname:String

M
M

Fig. 1. Heterogenous MMs

With the rise of model-driven engineering
(MDE), models and associated transforma-
tions for migrating, merging, or evolving mod-
els have become the main artifacts of the soft-
ware engineering process [3]. One of the key
challenges in this respect is the resolution of
recurring heterogeneities between the corre-
sponding metamodels (MMs) to preserve se-
mantics, (i) at the conceptual level by means
of mapping tools that provide reusable components as, for instance proposed in
[7] and [21], and (ii) at the execution level by means of dedicated transforma-
tion languages [5]. Heterogeneities result from the fact that semantically similar
metamodeling concepts (M2) can be defined by different meta-metamodeling
concepts (M3), which leads to differently structured metamodels. As a simple
example, Fig. 1 shows two MMs of fictitious, domain-specific tools that admin-
istrate publications. Whereas Tool1 models the type of a publication by the
∗ This work has been funded by the Austrian Science Fund under grant P21374-N13.

attribute Publication.kind (e.g., conference or journal), Tool2 represents the
same semantics by using the class Publication, which refers to a class Kind, to
determine the kind of publication.

Up to now, it has been unclear which kinds of heterogeneity must be resolved
in model-to-model transformations. Therefore, this paper proposes a systematic
classification of heterogeneities between object-oriented MMs by adapting and
extending existing classifications in data and ontology engineering. The design
rationale was to identify a complete set of potential points of variation between
two Ecore-based MMs. This provided the basis for establishing a benchmark that
allows evaluation of existing approaches with respect to their ability to resolve
heterogeneities. To show the applicability of this benchmark, existing mapping
tools and transformation languages from different domains were evaluated by
using selected example scenarios defined for our benchmark, each posing certain
challenges to the benchmarked approaches. Further example scenarios of our
benchmark can be found in [22] and on our project web page3.

The remainder of this paper is structured as follows. Section 2 presents the
identified points of variation of meta-metamodels and gives a first overview of
our classification. The exemplary benchmark scenarios together with their chal-
lenges and how existing approaches deal with them are discussed in Section 3.
Lessons learned are summarized in Section 4. Finally, related work is referred to
in Section 5, and Section 6 reports on future work.

2 Systematic Classification of Heterogeneities

According to a substantial body of literature [2, 4, 9, 12–15, 18, 20], heterogeneities
can be divided into two main classes: (i) syntactic heterogeneities, i.e., differences
with respect to how something is represented by a MM and (ii) semantic het-
erogeneities, i.e., differences with respect to what is represented by a MM.

ENamedElement
name : Stringname : String

EClassifierETypedElement
…ordered : boolean

lowerBound : int
Order

Multiplicity
upperBound : int

Multiplicity

Concreteness

eStructuralFeatures0..*
EStructuralFeature

EClass
abstract : boolean

eS
0..

…
eReferenceType

1..1
Context

eReferenceType
DirectConstraint

EReference
containment boolean C t i tcontainment: booleanEAttribute

…

Containment

NamingNaming

I h i T

Breadth

Inheritance Type

Breadth

Depth

SuperTypes
*

EDataType
…

eAttributeType
1..1

tion

Datatype

Fig. 2. Variation Points in Ecore-based MMs

Syntactic Hetero-
geneities. Syntactic het-
erogeneities result from
the fact that semanti-
cally similar concepts can
be defined by different
metamodeling concepts,
which leads to differ-
ently structured meta-
models. To obtain a sys-
tematic classification of
different kinds of syntac-
tic heterogeneity, we in-
vestigated potential points of variation between two Ecore4-based metamodels.
Fig. 2 depicts the relevant part of the Ecore meta-metamodel potentially causing
3 www.modeltransformation.net
4 http://www.eclipse.org/modeling/emf/

Table 1. Common Core Concepts in Different Domains

Common Core Concepts Ecore XML Schema OWL
Class EClass <xs:complexType> <owl:Class>

Attribute EAttribute <xs:attribute> <owl:DatatypeProperty>
Reference EReference <xs:key>, <xs:keyRef> <owl:ObjectProperty>
Inheritance eSuperTypes <xs:extension base> <rdfs:subClassOf>

syntactic heterogeneities, and omits all the Ecore concepts which are used merely
for Java code generation in the EMF framework. It must be emphasized at this
point that the core concepts of Ecore resemble the fundamental ingredients of
semantic data models [11], which are also prevalent in other domains such as
data and ontology engineering (as depicted in Table 1). Hence, the following
findings apply to a broader field.

Based on this design rationale, we introduce a classification of heterogeneities
(cf. Fig. 3). It is expressed by means of the feature model formalism [6], which al-
lows us to identify clearly the interconnections between the different kinds of het-
erogeneity. We distinguish two types of syntactic heterogeneity : simple naming
differences (i.e., differences in the values of the name attribute of ENamedElement:
cf. Fig. 2) and more challenging structural differences. Although names play an
important role when deriving the semantics of a concept, the semantics cannot
be inferred automatically, which leads to the synonym and homonym problem.
With respect to structural differences, two main cases can be distinguished: core
concept differences and inheritance differences. The former occur due to differ-
ent usage of classes, attributes, and references (represented by C, A, and R in
Fig. 3) and can be further divided into heterogeneities between (a) the same
and (b) different metamodeling concepts. Two main differences may emerge in
case (a) – either the concepts exhibit different attribute/reference settings (cf.
Fig 2) or a different number of concepts has been used in the MMs to express
the same semantic concept (cf. Source-Target-Concept Cardinality in Fig. 3). An
example of the first case would be that one of two EClasses used is defined as
abstract, which leads to a concreteness heterogeneity. An example of the second
case is that in the left hand side (LHS) MM, two EAttributes, firstName and
lastName, are used whereas in the right hand side (RHS) MM, this information
is contained in just one EAttribute: name. Concerning case (b), heterogeneities
are derived by systematically combining the identified core concepts. For in-
stance, an EAttribute in the LHS MM is represented by an EClass in the RHS
MM (cf. example in Fig. 1). Finally, heterogeneities may not only be caused
by the concepts of classes, attributes, and references but also by the concept
of inheritance. In this respect, we distinguish between heterogeneities that may
occur although both MMs use inheritance (cf. “same metamodeling concept in-
heritance” in Fig. 3) and heterogeneities that occur if only one MM makes use
of inheritance (cf. “different metamodeling concept inheritance” in Fig. 3).

Semantic Heterogeneities. Two main cases of semantic heterogeneity can
be distinguished: (i) differences in the number of valid instances and (ii) differ-
ences in the interpretation of the instance values [12]. In case (i), all the set-
theoretic relationships may occur as modeled by the corresponding sub-features.
In case (ii), a variety of modifications of the values may be necessary to translate

HeterogeneityHeterogeneity

Syntactic HeterogeneitySemantic Heterogeneity

Name StructureNumber of
Instances

Interpretation of
Instance Values

C C t
DisjointIntersection Subset Superset

Core Concept

Source ConceptSource-Target-Concept
Cardinality

Same Meta-
modeling Concept

Different Meta-
modeling ConceptyCardinality modeling Conceptmodeling Concept g pmodeling Concept

1:1 n:1 1:n C2C A2A R2R C2A 2RR2C R2AA2Cm:n

ReferenceReference ReRe
Context Context

Reference
Source

Re
T

Order

Multiplicity Multiplicity

Order

C A R

Datatype

Multiplicity Multiplicity

Direction

C A R

yp

ContainmentConstraint

Constrai

Required Feature

Optional Feature

XOR Features

OR Features

Legend

I h itInheritance

Same Meta-
d li C t

Different Meta-
d li C tmodeling Conceptmodeling Concept modeling Conceptmodeling Concept

I2I I2C A2II2R C2II2A R2I

eference eference Concretenesseference
Target

Concreteness
Breadth

Depth

C A R

p

Inheritance Type

C A R

int

Fig. 3. Heterogeneity Feature Model

LHS MM values into RHS MM values such that the values conform to the in-
terpretation of the RHS MM. Thus, semantic heterogeneities cannot be derived
from the syntax (since in both cases the MMs can be represented syntactically
in the same way) but only by incorporating interpretation, i.e., by assigning
meaning to each piece of data [10]. For further details about the classification
the reader is referred to [22].

3 Benchmark Examples Applied

The proposed classification was then used to derive appropriate benchmark
examples. Since the classification makes the interconnections between hetero-
geneities explicit, a systematic set of benchmark examples, i.e., a set that fully
covers the feature model, can be built. Each benchmark example is character-
ized by a description, source and target metamodels and corresponding models.
To aid comprehension, examples using ontological concepts were preferred over
those using linguistic concepts. Below, we present three of the proposed exam-
ples that we used to evaluate the ability of mapping tools and transformation
languages to resolve certain heterogeneities. Each example is a representative of
a main branch in the feature model: (i) core concepts with same metamodeling
concept heterogeneities, (ii) core concept with different metamodeling concept
heterogeneities and (iii) inheritance heterogeneities.

Evaluated Approaches. The benchmark examples were applied to a care-
fully selected bundle of approaches: at the conceptual level, three mapping tools
from different domains and, at the execution level, two dedicated model trans-
formation languages. Among the mapping tools were AMW [7] from the area of
model engineering, the commercial tool MapForce5 from data engineering, and
5 http://www.altova.com/de/mapforce.html

MAFRA6 from ontology engineering. AMW allows the definition of so-called
weaving links between Ecore-based MMs to form a mapping definition which
can be transformed into executable ATL code. In contrast, MapForce allows
mapping definitions between diverse schema languages, for instance, relational
or XML schemas. For executing the specified mapping definitions, several target
languages such as Java and XSLT are supported. Finally, MAFRA supports for
mappings between RDF- and OWL-based ontologies and XML schemas which
are directly executed within the tool. Among the transformation languages evalu-
ated were ATL7, a representative of hybrid rule-based transformation languages,
and AGG8, a declarative graph-based transformation language. The results of
the comparison are summarized in Table 2 and described in detail below.

3.1 Benchmark Example 1

The first benchmark example belongs to the category of core concept hetero-
geneities between the same MM concepts (cf. Fig. 3), and poses four main chal-
lenges, as detailed below (cf. Fig. 4). Since the overall goal of all our transfor-
mations is to minimize information loss and to produce only valid instances,
instance P2 remained in the RHS although it does not reference any journal
publication in the LHS model. Interestingly, the RHS MM in this example is
more restrictive than the LHS MM, since the EAttribute Prof.bornIn always
requires a value, and since each instance of Prof requires at least one link to
a journal publication. Since these restrictions do not exist in the LHS MM, in-
stances of it may break them. Therefore, some resolution strategy is needed –
either by auto-generating values or by incorporating user-interaction in order to
produce valid instances of the RHS MM.

Challenge 1: A2A, Multiplicity Difference, Datatype Difference.
In our example, this challenge arises between the EAttributes Professor.-
dateOfBirth and Prof.bornIn. The main challenge is to extract the year of
birth as an integer value from the LHS date structure. In the absence of a date
either (i) a null-value (with semantics exists but not known, leading to an invalid
target model), or (ii) a (user- or auto-generated) value requiring a corresponding
function is produced. All evaluated approaches were able to meet this challenge,
although the specification effort varied. For example, in MapForce dedicated
components such as substitute-missing (cf. Fig. 5 (a)) are available, whereas
in the other tools the function must be defined from scratch.

Challenge 2: Semantic Heterogeneity, A2A. The second challenge ex-
hibits a semantic heterogeneity between the EAttributes Professor.salary
and Prof.salary, since Professor.salary is encoded in dollars, whereas Prof.-
salary is encoded in euros, i.e., there is a difference in the interpretation of the
values. A conversion of values from dollars to euros must thus be realized in a
function. This imposes requirements similar to those in the first challenge, and

6 http://mafra-toolkit.sourceforge.net
7 http://www.eclipse.org/atl
8 http://user.cs.tu-berlin.de/ gragra/agg

Professorte x

0..*
publicationsname:String

dateOfBirth:Date [0..1]Currency =
D ll

Publication
name:Stringnc

re
t

yn
ta
x

dateOfBirth:Date [0..1]
salary:Integer

Dollar name:String
type:StringCo

n Sy

EClass 1:1 C2C Naming DifferenceEClass

b t t f l
name = ‘Professor‘

EAttributeeStructuralFeatures

1:1, C2C, Naming Difference

abstract = false EAttribute
name = ‘name‘

eAttributeType
1:1, A2A (no hete1:1, A2A (no hete

lowerBound = 1
upperBound = 1

EStringeAttributeType

Chal

EAttribute 1:1 A2A Naming Difference Multiplicit

Chal

tt bute
name = ‘dateOfBirth‘
lowerBound = 0 EDataType

eStructuralFeatures eAttributeType

1:1, A2A, Naming Difference, Multiplicit

lowerBound = 0
upperBound = 1

EDataType
name = ‘Date‘ Ch

EAttribute
‘ l ‘

1:1, A2A, Semantic H1:1, A2A, Semantic H
name = ‘salary‘
lowerBound = 1

B d 1
EIntegereStructuralFeatures

eAttributeType

upperBound = 1

fta
x Cha

EReference
name = ‘publications‘ 1:1, R2R, Naming Difference,1:1, R2R, Naming Difference,Sy

nt

p

lowerBound = 0
1

ordered = falseeStructuralFeatures

tr
ac
t

upperBound = -1
containment = falseA

bs
t

Ch ll 3eReferenceType Challenge 3

EClass
name = ‘Publication‘

1:1, C2C, Naming Difference, Semantic Heterogeneity

abstract = false

EAtt ib tEAttribute
name = ‘name‘ eAttributeType

1:1, A2A (no heter

lowerBound = 1
upperBound = 1

eStructuralFeatures
eAttributeType

EAttribute
eAttributeType

EAttribute
name = ‘type‘
lowerBound = 1

1:0, Information Loss1:0, Information Loss
lowerBound = 1
upperBound = 1eStructuralFeatures

P1:ProfessorP1:Professor
name = ‘Prof1‘
dateOfBirth = 12 04 1956nc

es

dateOfBirth = 12.04.1956
salary = 5000 P2:Professor

‘P f2‘ns
ta
n

publications publications
name = ‘Prof2‘
dateOfBirth = ‘‘

l 3000pl
e
In

P10:Publication
name = ‘Paper1‘

P11:Publication
name = ‘Paper2‘

salary = 3000

xa
m
p

name = Paper1
type = ‘Conference‘

name = Paper2
type = ‘Journal‘

Ex

Prof
Journal

name:String1..*
journalsname:String

bornIn:Integer [1 1]
Currency =

Euro name:StringbornIn:Integer [1..1]
salary:Integer

Euro

EClass

abstract = false
name = ‘Prof‘

EAttribute
eStructuralFeatures

EAttribute
name = ‘name‘ eAttributeType

rogeneity)rogeneity)

lowerBound = 1
upperBound = 1

EString
yp

llenge 1

EAttributey Difference Datatype Differencey Difference Datatype Difference

llenge 1

tt bute
name = ‘bornIn‘
lowerBound = 1St t lF t

eAttributeType

y Difference, Datatype Differencey Difference, Datatype Difference

lowerBound = 1
upperBound = 1

eStructuralFeatures
hallenge 2

EAttribute
‘ l ‘ EInteger

HeterogeneityHeterogeneity
name = ‘salary‘
lowerBound = 1

B d 1

EInteger
eStructuralFeatures

eAttributeType

upperBound = 1

f
llenge 4

EReference
name = ‘journals‘ Multiplicity Difference Multiplicity Difference j

lowerBound = 1
ordered = falseeStructuralFeatures

upperBound = -1
containment = false

eReferenceType

EClass
name = ‘Journal‘
abstract = false

EAtt ib tEAttribute
name = ‘name‘ eAttributeType

rogeneitiy)rogeneitiy)

lowerBound = 1
upperBound = 1

eStructuralFeatures
eAttributeType

P2 P fP1:Prof
name = ‘Prof1‘

P2:Prof
name = ‘Prof2‘

Autogenerated
or user-

i ibornIn = 1956
salary = 3970

bornIn= 2000
salary = 2382

interaction
necessary

journals

y y

journals
A t t d

P11:Journal P0:Journal

j
Autogenerated

or user-
interaction

name = ‘Paper2‘ name = ‘TODO‘
interaction
necessary

Fig. 4. Benchmark Example 1 – Heterogeneities between same MM concepts

the evaluation therefore results in similar findings. The exemplary solution of
this challenge in MapForce is shown in Fig. 5 (a).

Challenge 3: Semantic Heterogeneity, C2C. The third challenge again
includes a semantic heterogeneity – but this time a difference in the number of
valid instances, since only journal instances should be transformed. Resolving
the heterogeneity requires a corresponding condition, that identifies instances
that remain valid in the context of the RHS EClass. All approaches were able
to achieve this. The exemplary solution of this challenge in AMW is shown in
Fig. 5 (b).

Challenge 4: R2R, Multiplicity Difference. Finally, the fourth challenge
consists of a multiplicity difference between the EReferences Professor.publi-
cations and Prof.journals. Since challenge 3 requires transformation only of
journal instances, the first sub-challenge here is to identify links that do not
refer to journal instances. Ideally, this should be achieved automatically by a
built-in trace model that keeps track of which source elements have been used
to create certain target elements. Moreover, since the goal is to generate only
valid target instances, the second sub-challenge is to generate journals and link
them correctly (instead of generating null values with semantics does not exist
when a professor does not have any). All approaches were able to resolve the
heterogeneity of the first sub-challenge. However, the effort needed differed, since

Ch ll 1Challenge 1

Challenge 2

() E l 1 Ch ll 1 2 l d i M F(a) Example 1: Challenges 1 + 2 resolved in MapForce

Weaving links

(b) Example 1 partly resolved in AMW

g
describing the

mapping

(b) Example 1 partly resolved in AMW

Fig. 5. Exemplary Solutions for Benchmark Example 1

the condition required for filtering journal instances (as in challenge 3) had to
be duplicated in all mapping approaches due to insufficient trace model support.
As for the second sub-challenge, AMW and MAFRA were not able to link newly
generated objects due to insufficient trace model support. Although MapForce
does not support a trace model, it resolved this example, since only one journal
object with a fixed key value had to be generated, and this can be referred to
by the foreign key. Both, ATL and AGG were able to resolve this heterogene-
ity using their trace models. ATL provides a built-in trace model which can be
queried (resolveTemp mechanism), whereas in AGG the trace model must be
maintained manually.

In summary, the fourth challenge appeared to be the most problematic one
in this example for the approaches evaluated.

3.2 Benchmark Example 2

The second benchmark example belongs to the category of core concept hetero-
geneities when using different metamodeling concepts (cf. Fig. 3) and poses two
main challenges. The example instances reveal that the intention is to create a
Kind object only for distinct values of the attribute Publication.kind. There-
fore, the RHS model contains only a single Kind object named Journal (cf. K1
in Fig. 6), which is referenced by the Publication objects P1 and P2.

Challenge 1: A2C. The first challenge in this benchmark example is the
generation of Kind objects for distinct values of the kind attribute. A trace model
is required to keep track of whether an object has already been created for a
value. Since no explicit trace model is available in AMW and MAFRA, they were
not able to resolve this heterogeneity. Although MapForce also does not provide
explicit trace information, it offers a dedicated distinct-values component,

Inter‐ConcepInter Concep

P bli tie Publication
name:Stringcr

et
e

nt
ax g

kind:String
Co

nc Sy
n

EAttributeEAttribute
name = ‘name‘eStructuralFeatures
lowerBound = 1
upperBound = 1 1:1, A2A, N1:1, A2A, N

ax

EString
eAttributeType

eAttributeType

Sy
nt
a eAttributeType

ac
t
S

EClass
name = ‘Publication‘

A
bs
tr

abstract = false
name = ‘Publication‘

A

EAttribute
name = ‘kind‘
lowerBound = 1
upperBound = 1eStructuralFeatures 1:1, A2A, Naming Di1:1, A2A, Naming Di

es P1:Publication

ta
nc
e P1:Publication

name = ‘P1‘
P3 P bli ti

e
In
st kind = ‘Journal‘ P3:Publication

name = ‘P3‘

m
pl
e P2:Publication

name = ‘P2‘
kind = ‘Conference‘

Ex
a name P2

kind = ‘Journal‘

pt A2C CA2Rpt, A2C, CA2R

ki d
Kind

name:String
Publication

title:String
1..1
kind

unique
name:Stringtitle:String q

EClass
eStructuralFeatures

EClass

abstract = false
name = ‘Publication‘

EAttribute
name = ‘title‘abstract = false lowerBound = 1
upperBound = 1Naming DifferenceNaming Difference pp

eAttributeType

EString

EReference
Challenge 2

EReference
name = ‘kind‘
ordered = false

eAttributeType1:1, CA2R, Naming
lowerBound = 1
upperBound = 1

ordered = false, , g
Difference

upperBound = 1
containment = falseeStructuralFeatures

eReferenceType

C

eReferenceType

EClass
name = ‘Kind‘
abstract = false

EAttribute
name = ‘name‘
lowerBound = 1

eStructuralFeaturesChallenge 1
o e ou d
upperBound = 1fference, Context Differencefference, Context Difference

P1: Publication
title = ‘P1‘

P2: Publication
title = ‘P2‘

P3: Publication
title = ‘P3‘

kind kind kind

K1: Kind K2: Kind
name = ‘Journal‘ name = ‘Conference‘

Fig. 6. Benchmark Example 2 – Different Metamodeling Concept Heterogeneities

which produces target elements for distinct input values only. In ATL a so-called
unique lazy rule can be applied (cf. Fig. 7 (b)). Using the built-in trace model,
this type of rule always generates and returns the same target object. AGG offers
no dedicated support: the heterogeneity must be resolved by using user-defined
graph transformation rules and a negative application condition that prevents
multiple creation of Kind objects (cf. Fig. 7 (a)).

Challenge 2: CA2R. In addition to creating objects based on distinct
LHS values, the second challenge in this example is to correctly link the gen-

Negative
application Challenge 1

User-
i t i d

Produced

application
condition
ensures
distinct

b h i

g

(a) Example 2: Challenge 1 resolved in AGG

maintained
tracelink

Kind
instance

behavior

rule Publication2Publication {
from pub1 : MM!Publication
to pub2 : MM1!Publication (

Challenges 1 + 2
LHS Ontology RHS Ontology

title <- pub1.name,
kind <- thisModule.Kind(pub1.kind)

)
}

(1) Kind objects
d d b}

unique lazy rule Kind{
from e : String

are produced by
calling the Kind
ruleUnique lazy

rule for
to d : MM1!Kind(

name <- e
)

}

(2) Correct linking
happens through
assignment

rule for
producing

objects from
distinct

Inheritance
between

concept bridges}

(b) Example 2: Challenges 1 + 2 resolved in ATL
values

(c) Example 3 resolved in MAFRA
concept bridges

Fig. 7. Exemplary Solutions for Benchmark Examples 2 and 3

erated target elements. Establishing such links requires information about the
relationships between the concepts to be linked in the LHS model. In the LHS
MM of this example, the source of the EReference Publication.kind is rep-
resented by the EClass Publication and the target of the EReference by the
EAttribute Publication.kind. Therefore, this heterogeneity is classified as
C(lass)A(ttribute)2R(eference). To obtain the information needed to establish
the links, the approaches must again support queries to the trace model. Since
AMW and MAFRA could not cope with challenge 1, they were also not able to
resolve this heterogeneity. MapForce was also unable to resolve this kind of het-
erogeneity, since the internal trace model of the distinct-values component
cannot be queried. Although the trace model produced by the unique lazy rule
in ATL also cannot be queried, the elements produced can be linked correctly
by calling the unique lazy rule in the assignment (cf. Fig. 7 (b)). In AGG the
user-maintained trace model can be used to resolve this heterogeneity.

In summary, the mapping tools evaluated provide only limited support for
resolution of the various metamodeling concept heterogeneities. Detailed knowl-
edge of the transformation languages is required when using them to resolve
heterogeneities, which further emphasizes the need for direct support by dedi-
cated components.

3.3 Benchmark Example 3

The third benchmark example belongs to the category of inheritance hetero-
geneities with different metamodeling concepts (cf. Fig. 3) and poses one chal-
lenge. As the example instances show (cf. Fig. 8), the type of an LHS Research-
Staff object is identified by the value of its EAttribute ResearchStaff.kind,Inheritance Difference,

x

ResearchStaffyn
ta
x

ResearchStaff
name:String

et
e
Sy

kind:String

on
cr
e

Co

EClass
name = ‘ResearchStaff‘
abstract = false
name = ResearchStaff

EAttribute 1:1 A2A (no hetEAttribute
name = ‘name‘
l B d 1

1:1, A2A (no het

lowerBound = 1
upperBound = 1 EString

eStructuralFeatures eAttributeType

eAttrib teT peta
x

EAttribute

eAttributeType

 S
yn
t

name = ‘kind‘
lowerBound = 1

eStructuralFeaturestr
ac
t

lowerBound 1
upperBound = 1

A
bs
t

A2I

h llChallenge 1

R1:ResearchStaff R2:ResearchStaff R3:ResearchStaff

pl
e

ce
s

name = ‘staff1‘
kind = ‘Professor‘

name = ‘staff2‘
kind = ‘FullProf‘

name = ‘staff3‘
kind = ‘Assistant‘xa

m
p

st
an
c

kind Professor kind FullProf kind Assistant

Ex In
s

, Non‐Overlapping, A2Ipp g

ResearchStaff

name:Stringname:String

AssistantProfessor

FullProf

EClEClass
name = ‘ResearchStaff‘
abstract = true

eSuperTypes

EAttributeterogeneity)terogeneity) EAttribute
name = ‘name‘
l B d 1 ESt ieAttributeType

terogeneity)terogeneity)

lowerBound = 1
upperBound = 1

EStringeStructuralFeatures
yp

EClass
name = ‘Professor‘
abstract = true

S T

EClasseSuperTypes

eSuperTypes

abstract = false
name = ‘FullProf‘

EClassEClass
name = ‘Assistant‘
abstract = false

R3:AssistantR2:FullProf 3 ss s a

name = ‘staff3‘

u o

name = ‘staff2‘

Fig. 8. Benchmark Example 3 – Different Metamodeling Concept Heterogeneities

whereas the RHS MM provides an explicit type hierarchy. Thus, the problem
may arise, that the EAttribute of the LHS MM contains values that do not
correspond to any (concrete) EClass in the RHS MM. This is the case in the
example with the instance R1, since the corresponding EClass Professor in the
RHS MM is abstract and can thus not be instantiated, which causes information
loss.

Challenge 1: A2I. To resolve this heterogeneity, objects must be filtered by
using a certain attribute value and should provide means to deal with inheritance
in order to reduce the specification overhead. With the exception of MapForce,
which cannot display correctly XML schemas that make use of type derivation,
all mapping tools were able to resolve this heterogeneity, although no dedicated
components are available. In contrast to AMW, MAFRA allows for inheritance
between mappings and thus reduces specification overhead (cf. Fig. 7 (c)). Of
the transformation languages evaluated, only ATL supports inheritance between
rules, whereas AGG does not.

In summary, although the resolution of this heterogeneity can be achieved in
all approaches except in MapForce, no approach provides dedicated support. The
approaches that enable resolution can be further divided into those supporting
inheritance (ATL, MAFRA), which allow reuse in specifications, and those not
supporting inheritance (AMW, AGG), which require duplication of parts of the
specification.

Table 2. Comparison of Approaches

Model Engineering Data
Engineering

Ontology
Engineering

AMW ATL AGG MapForce MAFRA

Example 1

A2A,
Multiplicity and
Datatype

User-defined
extension

Conditional
assignment

with function

User-defined
Java-function

Function library
(value translations and

substitute-missing
component for default

Property bridge with
a user-defined

service

~~
1

~ ~
Datatype
Difference

with function component for default-
value generation)

service

A2A,
Semantic User-defined

t i
User-defined

F ti
User-defined
J f ti

Function library
available for diverse

Property bridge
with a user-defined

~~
2

~~
Semantic
Heterogeneity

extension Function Java-function available for diverse
value translations

with a user defined
service

C2C,
Semantic

Equivalence
component with Condition Condition Condition Concept bridge

ith diti

~~~ 

s

2

3 Semantic 
Heterogeneity

component with 
condition

Condition Condition Condition with condition

R2R,
Multiplicity 

No reference to 
newly generated Query of the User-maintained

Has to be simulated
by the generation of No reference to 

newly generated 
~~~ 

ll
e
n

g
e
s 3

4 Multiplicity
Difference

newly generated
objects possible trace model tracelinks foreign-key-values

according to a query

newly generated
objects possible

Example 2

C
h

a
l 4

A2C No distinct
semantics supported

Unique lazy
rule

User-maintained
tracelinks

Distinct-values
component

No distinct
semantics supported

~

~~

~

1

CA2R No tracemodel
available

Query of the
trace model

User-maintained
tracelinks

No tracemodel
available

No tracemodel
available

Example 3

~~ 2

p

A2I
No inheritance

support - simulation
by code duplication

Inheriting
rules

No inheritance
support - simulation
by code duplication

No support for
inheritance

Inheriting concept
bridges

~~ ~~
1

supported resolvable (no
dedicated support) non-resolvable ~

4 Lessons Learned

In this section, we present the lessons learned from applying our examples.
Absence of Trace Model Limits Applicability. Current mapping tools

in the area of data engineering typically rely on the specification of simple cor-
respondences between source and target elements, which may be refined by con-
ditions or functions. However, these correspondences do not offer trace informa-
tion, which would support the definition of dependent mappings. For instance,
a value mapping always occurs in the context of a certain object mapping and
is thus dependent on the element mapping. This deficiency leads to less expres-
sive mapping specifications, as also discussed in [16]. The developers of mapping
tools in the area of ontology engineering and model engineering recognized this
need and thus implemented dependent mappings. However, simple dependencies
between mappings, for instance, composition of mappings, are still insufficient,
which leads to the problems, for example, in an A2C heterogeneity, in which
explicit queries to the trace model are needed. Transformation languages can
be divided into approaches providing automatic trace information, as in ATL,
and approaches requiring manual generation of trace information, as in AGG.
ATL provides trace information only for the declarative parts (matched rules)
and not for the imperative parts of the language. Finally, a user-specified trace
model leaves the entire tedious and error-prone process of setting up the trace
information correctly to the transformation designer.

Transformation Languages Lack Reuse Facilities. Transformation lan-
guages such as ATL and AGG provide the expressivity to overcome the het-
erogeneities identified in our examples. Nevertheless, they lack adequate reuse
facilities, which forces the transformation designer to respecify the resolution of
recurring heterogeneities over and over. Especially in complex scenarios (e.g.,
when generating new target elements, as in the first example, or when dealing
with unequal concept heterogeneities, as in the second example), the transforma-
tion designer must handle low-level intricacies of the transformation language.
In order to avoid this tedious and error-prone task, transformation languages
should provide idioms that resolve these structural heterogeneities, for instance,
predefined, parameterizable rules in ATL or in AGG. A fact that hinders the
provision of such predefined components is that transformation rules are based
on the specific types defined in the corresponding metamodels. Thus, a notion
of generic transformations which resembles the concept of templates in C++ or
generics in Java is required.

Lack of Inheritance Support Encourages Code Duplication. Inheri-
tance, which is heavily used in metamodels, supports the reuse of attribute and
reference definitions. Thus, when a mapping is specified between subclasses, then
it should be able to reuse attribute and reference mappings of mappings between
superclasses; i.e., inheritance between mappings should be supported. The same
holds true for transformation languages. Otherwise, duplicated mapping defini-
tions or transformation rules induce both, a bigger specification overhead and
maintenance problems in the future, as is the case in AGG.

Mapping Tools Struggle with Function/Condition Definitions. Map-
ping tools have the main advantage of providing predefined components for the
resolution of heterogeneities, but the definition of functions and conditions poses
a major problem. Each mapping tool provides a specific basic set of components.
For instance, MapForce provides a library of low-level functions such as string
conversion functions. However, such a library is naturally never complete, which
leads to limitations in expressivity. Thus, incorporating an expressive language
with which the transformation designer is familiar could resolve this problem.

Mapping Tools Lack Adequate Extension Mechanisms. Since map-
ping tools struggle with resolving certain kinds of heterogeneity, an adequate
extension mechanism that allows addition of user-defined components should
be offered. MapForce supports user-defined components but only on the basis
of predefined ones. Although this enhances the scalability of the approach by
composing several low-level components, expressivity is not increased. In con-
trast, both AMW and MAFRA allow increasing expressivity by user-defined
components but require heavyweight programmatic extensions. In AMW, both,
the metamodel describing the set of predefined components and the transfor-
mation generating ATL code from a mapping specification must be extended.
MAFRA supports new components, but they must be coded manually in so-
called user-defined services.

Mapping Tools Lack Comprehensive Validation Support. A major
advantage of describing model transformations at a conceptual level by means
of mapping tools is that comprehensive validations can be done at design time.
To verify that the components are configured correctly, structural validations
examine the required input and output parameters and metamodel-based val-
idations check the interpretation of the mapped metamodels. For instance, a
reference is only mapped correctly if both its source and target class have also
been mapped. MapForce and MAFRA support only structural validations. AMW
does not support validation at all, which results in potentially erroneous ATL
code.

5 Related Work

Two threads of related work are considered: First, we compare our feature-
based classification to existing classifications. Second, we relate the mapping
benchmark to existing mapping benchmarks. We start with examining the most
closely related area, model engineering, and then proceed to the more widely
related areas of data engineering and ontology engineering.

5.1 Heterogeneity Classifications

Model Engineering. Although model transformations, and thus the resolution
of heterogeneities between MMs, play a vital role in MDE, to the best of our
knowledge no dedicated survey exists that examines potential heterogeneities.

Data Engineering. In the area of data engineering, in contrast, extensive
literature exists, over decades, highlighting various aspects of heterogeneities in
the context of database schemata. Batini et al. [2] presented a first classifica-
tion of semantic and structural heterogeneities that arise when two different
schemas are integrated. Kim et al. [13] introduced a systematic classification of
possible variations in an SQL statement, detailing Table-Table and Attribute-
Attribute heterogeneities (e.g., with respect to cardinalities). The classification
of Kashyap et al. [12] provides a broad overview of potential heterogeneities in
a data integration scenario with semantic heterogeneities and conflicts that oc-
curr between the same modeling concepts. Blaha et al. [4] described patterns
that resolve syntactic heterogeneities, both between the same and different MM
concepts. Finally, the classification of Härder [9] and Legler [15] presented a sys-
tematic approach to attribute mappings by combining attribute correspondences
with potential cardinalities.

Ontology Engineering. In ontology engineering, both pattern collections
and classifications exist. A pattern collection by Scharffe et al. in [17] presented
correspondence patterns for ontology alignments, but on a rather coarse-grained
level. For instance, their conditional patterns dealing with attribute differences
and transformation patterns deal only vaguely with different metamodeling con-
cept heterogeneities. Visser et al. [20] and Klein [14] provided classifications in
the form of comprehensive lists of semantic heterogeneities but neglected syn-
tactic heterogeneities.

In summary, although there are several classifications available, none focuses
explicitly on the domain of MDE. Since the benchmarks in the area of data en-
gineering base on the relational data model, they do not include potential het-
erogeneities stemming from the explicit concepts of references and inheritance
in object-oriented metamodels. Although in ontology engineering references and
inheritance are explicit concepts, their interest is to resolve semantic hetero-
geneities rather than syntactic heterogeneities. Finally, current classifications
fail to explicate how types of heterogeneity relate to each other. We formalized
these relationships in a feature model.

5.2 Mapping Benchmarks

Model Engineering. To the best of our knowledge, no benchmark for mapping
systems in the area of MDE exists. However, a benchmark for evaluating the
execution performance of graph transformations [19] has been proposed.

Data Engineering. In the area of data engineering Alexe et. al. [1] proposed
a first benchmark for mapping systems that focuses on resolving syntactic and
semantic heterogeneities in information integration. Although the benchmark
provides a first set of mapping scenarios, it remains unclear how the scenarios
were obtained and whether they provide full coverage in terms of expressivity.
Even though XQuery expressions are given to define the semantics, some of the
XQuery functions assume the availability of custom functions which are not pro-
vided. Since RHS models are also not given, it is hard to know the actual outcome
of the transformation. A further benchmark called THALIA was presented by

Hammer et. al [8], which provides researchers with a collection of twelve bench-
mark queries expressed in XQuery. They focus on the resolution of syntactic and
semantic heterogeneities in an information integration scenario. For each query a
so-called reference schema (i.e., global schema) and a challenge schema (i.e., the
schema to be integrated) are provided together with corresponding instances.
Although the authors claim to provide a systematic classification of semantic
and syntactic heterogeneities resulting in the queries, the rational behind the
systematic is not explained further.

Ontology Engineering. In ontology engineering, no dedicated mapping
benchmark exists. However, there have been efforts to evaluate matching tools,
i.e., tools for automatically discovering alignments between ontologies, which
resulted in an ontology matching benchmark9. Although the goal of the evalua-
tion is different, the examples could also be of interest for a dedicated mapping
benchmark.

In summary, although both benchmarks from the area of data engineering
provide useful scenarios in the context of XML, they do not provide a system-
atic classification that results in a systematic set of benchmark examples for
evaluating the expressivity of a mapping tool.

6 Conclusion and Future Work

In this paper we have introduced a systematic classification of heterogeneities
between Ecore-based MMs. This classification can also be applied to other do-
mains, that use the same core concepts on which this classification is based, i.e.,
classes, attributes, references and inheritance. Furthermore, three of the pro-
posed benchmark examples were used to evaluate mapping tools from diverse
engineering domains and to compare solutions realized with the transformation
languages ATL and AGG. Further work includes the completion of the bench-
mark examples to fully cover the classification and the evaluation of further
approaches.

References

1. B. Alexe, W.-C. Tan, and Y. Velegrakis. STBenchmark: Towards a Benchmark for
Mapping Systems. VLDB Endow., 1(1):230–244, 2008.

2. C. Batini, M. Lenzerini, and S. B. Navathe. A Comparative Analysis of Method-
ologies for Database Schema Integration. ACM Comp. Surv., 18(4):323–364, 1986.

3. J. Bézivin. On the Unification Power of Models. Journal on SoSyM, 4(2):31, 2005.
4. M. Blaha and W. Premerlani. A catalog of object model transformations. In Proc.

of the 3rd Working Conf. on Reverse Engineering, (WCRE’96), pages 87–96, 1996.
5. K. Czarnecki and S. Helsen. Feature-based Survey of Model Transformation Ap-

proaches. IBM Systems Journal, 45(3):621–645, 2006.
6. K. Czarnecki, S. Helsen, and U. Eisenecker. Staged Configuration Using Feature

Models. In Proc. of Third Software Product Line Conf., pages 266–283, 2004.

9 http://oaei.ontologymatching.org/2010/

7. M. Del Fabro, J. Bézivin, and P. Valduriez. Model-driven Tool Interoperability:
an Application in Bug Tracking 1. In Proc. of the 5th Int. Conf. on Ontologies,
DataBases, and Applications of Semantics (ODBASE’06), pages 863–881, 2006.

8. J. Hammer, M. Stonebraker, and O. Topsakal. THALIA: Test harness for the
assessment of legacy information integration approaches. In Proc. of the Int. Conf.
on Data Engineering, (ICDE’05), pages 485–486, 2005.

9. T. Härder, G. Sauter, and J. Thomas. The intrinsic problems of structural het-
erogeneity and an approach to their solution. The VLDB Journal, 8(1):25–43,
1999.

10. D. Harel and B. Rumpe. Meaningful modeling: What’s the semantics of ”seman-
tics”? IEEE Computer, 37:64–72, 2004.

11. R. Hull and R. King. Semantic Database Modeling: Survey, Applications, and
Research Issues. ACM Comp. Surv., 19(3):201–260, 1987.

12. V. Kashyap and A. Sheth. Semantic and schematic similarities between database
objects: A context-based approach. The VLDB Journal, 5(4):276–304, 1996.

13. W. Kim and J. Seo. Classifying Schematic and Data Heterogeneity in Multi-
database Systems. Computer, 24(12):12–18, 1991.

14. M. Klein. Combining and relating ontologies: an analysis of problems and solutions.
In Proc. of Workshop on Ontologies and Information Sharing, (IJCAI’01), pages
53–62, 2001.

15. F. Legler and F. Naumann. A Classification of Schema Mappings and Analysis of
Mapping Tools. In Proc. of the GI-Fachtagung für Datenbanksysteme in Business,
Technologie und Web (BTW’07), pages 449–464, 2007.

16. A. Raffio, D. Braga, S. Ceri, P. Papotti, and M. A. Hernández. Clip: a visual
language for explicit schema mappings. In Proc. of the 24th Int. Conf. on Data
Engineering (ICDE’08), pages 30–39, 2008.

17. F. Scharffe and D. Fensel. Correspondence Patterns for Ontology Alignment. In
Proc. of the 16th Int. Conf. on Knowledge Engineering, (EKAW’08), pages 83–92,
2008.

18. A. P. Sheth and J. A. Larson. Federated Database Systems for Managing Dis-
tributed, Heterogeneous, and Autonomous Databases. ACM Comput. Surv.,
22(3):183–236, 1990.

19. G. Varro, A. Schürr, and D. Varro. Benchmarking for graph transformation. In
Proc. of the 2005 IEEE Symposium on Visual Languages and Human-Centric Com-
puting, (VLHCC’05), pages 79–88, 2005.

20. P. R. S. Visser, D. M. Jones, T. J. M. Bench-Capon, and M. J. R. Shave. An
analysis of ontological mismatches: Heterogeneity versus interoperability. In Proc.
of AAAI 1997 Spring Symposium on Ontological Engineering, pages 164–172, 1997.

21. M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schönböck, and
W. Schwinger. Surviving the Heterogeneity Jungle with Composite Mapping Op-
erators. In Proc. of the 3rd Int. Conf. on Model Transformation, (ICMT’10), pages
260–275, 2010.

22. M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schönböck, and
W. Schwinger. Towards an Expressivity Benchmark for Mappings based on a
Systematic Classification of Heterogeneities. In Proc. of the First Int. Workshop
on Model-Driven Interoperability (MDI 2010) @ MoDELS 2010, pages 32–41, 2010.

