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Abstract. Benchmarking the quality of duplicate detection methods
requires comprehensive knowledge on duplicate pairs in addition to suf-
ficient size and variability of test data sets. While extending real-world
data sets with artificially created data is promising, current approaches
to such synthetic data generation, however, work solely on a quantitative
level, which entails that duplicate semantics are only implicitly repre-
sented, leading to only insufficiently configurable variability.

In this paper we propose SemGen, a semantics-driven approach to syn-
thetic data generation. SemGen first diversifies real-world objects on a
qualitative level, before in a second step quantitative values are gener-
ated. To demonstrate the applicability of SemGen, we propose how to
define duplicate semantics for the domain of road traffic management. A
discussion of lessons learned concludes the paper.

1 Introduction

Duplicate detection is an elementary part in data cleansing processes and ad-
dresses the identification of multiple different representations of one and the
same real-world object within a data set [16]. Such cleansing processes are vital
components in information systems that integrate multiple data sources, as it
is the case in systems that support situation awareness. We are currently devel-
oping a framework for realizing ontology-driven situation awareness techniques
[2], including duplicate detection techniques [3], in the sample domain of road
traffic management. Real-world objects are described by object representations
characterized by attributes that specify their spatial and temporal extent, for
example in the form of a region on a highway defined by a start and end point.
From such attributes, qualitative relations between objects can be derived that
characterize various aspects of objects. For example, from a spatial perspective
such aspects could be size, distance, or mereotopology of objects. In situation
awareness, spatio-temporal data on objects is incrementally reported in streams,
describing real-world evolution courses. Within these data, duplicates may oc-
cur in multiple forms (see [15] for a taxonomy on the subject). Most relevant
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for our domain are those arising from identical attribute values (e.g., two repre-
sentations of the same traffic jam with the same regions), contradictory values
(e.g., two representations of the same traffic jam differ in terms of spatial ex-
tent, which may be caused by measuring or entry errors), or missing values (e. g.,
only the start values of the region of a traffic jam are given). Duplicate detection
is therefore typically performed by computing similarity measures for pairs of
representations on a per-attribute basis, which are aggregated into an overall
duplicate decision [16].

A semantics-driven approach to synthetic data set generation. We have
defined the following three requirements for a test data generator that provides
synthetic data sets for testing duplicate detection methods: (i) Variability within
the generated data set has to be configurable with regard to multiple aspects to
support testing effectiveness. This entails providing accurate numbers on gen-
erated duplicates to allow the computation of measures such as precision and
recall. (ii) Distributions within an aspect in the generated data sets have to be
configurable, enabling testing duplicate detection methods for robustness. (iii)
Different quantitative representations should be realizable so that multiple du-
plicate detection methods can be tested. For instance, in the domain of road
traffic management duplicate detection methods might be required to interpret
regions with their spatial extent specified either in kilometers or with a dis-
tance measures basing on nodes in a graph describing highway exits. Therefore,
quantitative representation for both cases have to be generated.

In this paper we propose SemGen, a semantics-driven approach to synthetic
data generation. It is based on a qualitative definition of duplicate semantics
and requires a set of data with pairs of objects marked as duplicates of each
other—in the following called labelled duplicates—and non-duplicates, which are
both first diversified on a qualitative level according to duplicate semantics of
a domain, before in a second step quantitative values are generated, thereby
enabling the creation of data sets with high variability and in different sizes.
Structure of the paper. In Section 2 we detail on qualitative descriptions
of duplicate semantics, before we describe our approach in Section 3. Section 4
discusses relevant related work on synthetic test data generation, and finally
Section 5 concludes the paper with a discussion of its findings and an outlook
on further work.

2 Qualitative Description of Duplicate Semantics

Describing duplicate semantics using spatio-temporal relations on a qualitative
level has been proposed as a basis for duplicate detection in our previous work
[3]. In the following, we provide an overview on these qualitative descriptions and
show how to use them for controlling variability and distribution in a generated
data set.

Qualitative relations between two objects are expressed by employing rela-
tion calculi, each of them focusing on a certain spatio-temporal aspect, such as
mereotopology [17], orientation [9], or temporality [1]. These calculi are often
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Fig. 1: Conceptual neighborhood graphs of RCC and Allen’s Temporal Intervals.

formalized by means of Conceptual Neighborhood Graphs (CNGs, [10]), which
originate in the field of spatio-temporal reasoning. Sample graphs for the Re-
gion Connection Calculus (RCC, [17]) and Allen’s Temporal Intervals algebra
[1] are shown in Fig. 1. In addition, CNGs define similarity between relations
since, according to [11], relations are “conceptual neighbors if a direct transition
from one relation to the other can occur upon an arbitrarily small change in
the referenced domain” (e.g., ProperPart and PartiallyOverlapping are more
similar to Equals than Disrelated). In each such relation calculus, one can
define an identity relation [3], which states that two objects being in such a re-
lation are most similar according to the particular calculus’ aspect of the world
(e.g., rec: Equals is the identity relation of RCC, allen: Equals the one of Allen’s
Temporal Intervals). Qualitative relations between objects can be automatically
derived from their quantitative attributes using rule-based relation interpreta-
tions [2] (e. g., two traffic jams are PartiallyOverlapping if their spatial regions
overlap). We exploit these relations for describing in which aspects an object
and its duplicate should be alike or different. While a number of holding identity
relations shows that two objects are duplicates from identical attribute values
with regard to these aspects, duplicates arising from contradictory values, i.e.,
values describing the same real world object in different ways, can be created
by performing qualitative diversification. For example, if two objects are in a
relation allen: Equals, their lifespans are the same, i. e., they “exist” at the same
time. Still, they may differ, for instance, in a mereotopological aspect, described
by the relation rcc: PartiallyOverlapping holding between them. Note that du-
plicates arising from missing values are a special case not reflected on the level
of qualitative relations, because, as at this abstraction level we do not know



which concrete attributes contribute to a relation, no statement can be made on
missing attributes.

For describing duplicate semantics with this definition of CNGs and iden-
tity relations, we introduce the concept of similarity neighborhoods. A similarity
neighborhood is defined by the set of relations reachable within n hops from
the calculus’ identity relation. Let us denote an instance of a particular object
type O; as a reference object 0%, and the similarity neighborhood around o9
as Neateutus (097, m). Synthetic objects with relations which are part of the simi-
larity neighborhood (i. e., within n hops from the identity relation) are regarded
as duplicates to the reference object, whereas objects outside the neighborhood
are not labelled as duplicates. In Fig. 1, the similarity neighborhoods for RCC
and Allen’s Temporal Intervals algebra are shown.

By restricting n for each relation calculus to a particular value, we are able
to steer qualitative diversification on a per-calculus basis. In addition, one could
define n over multiple relation calculi, with the similarity of the synthetic object
being defined by different aspects. For this, a generalization of relation neighbor-
hood from one relation calculus to multiple calculi is necessary, which, however,
has already been shown to be straightforward [7] by counting relations in the
involved calculi. Finding an appropriate value for n is challenging and requires
profound knowledge on the domain’s properties. From our experience with du-
plicate detection in road traffic management we argue that, if using the CNGs
of RCC and Allen’s temporal intervals as shown above, n = 2 is a value yielding
reasonable results. Nevertheless, it is desirable to include a larger number of
different calculi, which in turn requires an adapted value for n. Using a total of
n = 2 hops in the CNGs of RCC and Allen’s temporal intervals, three different
neighborhoods are reachable:

Nyee(097,2): {ree:Disrelated}

Natten (097, 2): {allen:Overlapsrnverse, allen: During rnperse ¥

Nycenallen (091' ,2): {rec: Proper Part, rce: Proper Partpyerse, rec: PartiallyOver-
lapping} x {allen:Startsinyerse, allen:Finishespyerse }

Table 1 shows sample duplicates with relations holding between them and the
similarity neighborhood they belong to.

To correlate quantitative values with their qualitative representations, we
introduced rule-based relation interpretations that derive relations from object
attribute values [2]. As a prerequisite, these relation interpretations assume that
attribute values adhere to particular value ranges. These interpretations are
domain-dependent, since the definition of such value ranges differs between do-
mains. Again using road traffic management as a demonstration domain and
representing mereotopological relations in RCC, let us demonstrate this concept.
For deriving such mereotopological relations, using a strictly monotonic, linear
space (i.e., road traffic objects, such as traffic jams or roadworks, that occupy a
region on a highway) as value range, we can define regions as intervals, whereas
given, for example, objects anchored in Euclidian space, we can define a region
as a center point with a radius. We can now define the interpretations of rela-
tions in RCC (rcc = {Disrelated, PartiallyOverlapping, Proper Part, Proper-



Table 1: Sample duplicates with their respective relations.

Qualitative Relations Quantitative Values
ID [ Location | Time
[begin] end | begin [ end
rce:Equal A allen:Equals: T'J;’ located in TJy kn: km 2010-12-01 2010-12-01
Nycenatlen (T J1,0) — Duplicates (identical 6.5 8.0 08:00 09:00
values) ’ T km km 2010-12-01 2010-12-01
6.5 8.0 08:00 09:00
rce:PartiallyOverlapping A T km km 2010-12-01 2010-12-01
allen:Finishespyerse: 1T J2’ located in 2l 75 11.0 08:40 09:00
Nycenatten(TJ2,2) — Duplicates 70| m | km | 2010-12-01 | 2010-12-01
(contradictory values) Y21 8.0 | 138.5 08:20 09:00

(Legend: TJ = Traffic Jam)

PartInverse, Equals}) as functions fr.. : R X R — rec mapping object in-
tervals to particular relations (e.g., PartiallyOverlapping may be defined as
ol.start < o2.start A ol.end > o02.start A\ ol.end < 02.end, as T'J> in Table 1
shows). For the purpose of data generation, we use the inverse of these functions,
thereby mapping a qualitative relation onto a given value range. For example, for
the above specified function f,... we can use its inverse f;.l : recc — R x R to map
relations between two objects onto the underlying value range. The generation
of duplicates arising from missing values can be performed here by providing an
inverse function that either maps onto the value range or generates an empty
result, such as f.l:7cc > RV O xRV (.

Having laid the foundation for using qualitative data to describe how objects
are related, the next section presents our approach to synthetic data generation

exploiting the semantics of these relations.

3 Approach

SemGen, our semantics-driven approach to synthetic data generation creates
duplicates by taking existing real-world duplicates as the basis for creating ad-
ditional duplicates that closely resemble real-world characteristics. We control
variability in the synthetic data set by using qualitative descriptions as outlined
in the previous section. We propose a four-step process as depicted in Fig. 2:

1. Relation derivation between labelled duplicate pairs as starting points for the
subsequent diversification steps,

2. Qualitative diversification to change these relations along the configured as-
pects,

3. Quantitative diversification to map the meaning of each such relation onto
the attributes it is derived from, thereby finally characterizing synthetic ob-
jects in detail with sample attribute values derived from the attribute values
of the labelled duplicate pair, and finally

4. Export of generated synthetic objects to an output format suiting the dupli-
cate detection method to be evaluated, such as relational data or an ontology.
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Fig. 2: Overview of synthetic duplicate generation.

Input for this process is a reference data set with pairs of objects labelled as
duplicates as well as distinct objects. In road traffic management, such a data
set contains information on objects in terms of quantitative attributes, such as
spatial extent in kilometers or lifespan given as an interval of timestamps, and
in terms of meta-information, such as the data source an objects originates from
or an object’s type. Common object types are, for example, traffic jams, road
works, or lane closures.

Configuration mechanisms allow SemGen’s user to control various aspects of
the data generation process:

— the size of the generated data set,

the kinds of relation calculi that are included in the process,
— the distribution of relations within a calculus,

— the distribution of duplicates in the whole data set,

the distribution of object types in the resulting data set,

— and the ratio of duplicates to non-duplicates per object type.

Given our three causes for duplicates presented above—identical, contradic-
tory, and missing information—it is obvious that the generation of identical
duplicates is trivial, since the second step of this process can be omitted, there-
fore no values other than the original ones can be generated in step 3. Therefore,
we focus on the generation of duplicates arising from contradictory and missing
information.

(1) Relation derivation. As a prerequisite for the later process steps the
relations between objects in a reference data set are derived. These relations serve
as starting point for the subsequent qualitative diversification step. Currently,
relation calculi relevant to the generation of spatio-temporal data are supported
(RCC, spatial distance and size calculi [2], and Allen’s Temporal Intervals).

(2) Qualitative diversification with CNGs. On the qualitative level, we
employ the conceptual neighborhood of relations and identity relations intro-



duced in Section 2 to define the concept of similarity neighborhood for steering
qualitative diversification. We can now formulate an algorithm for choosing the
relations (of particular aspects) which must hold between a given labelled ref-
erence object and its generated synthetic duplicate object, thereby respecting a
similarity neighborhood constraint n for each relation calculus. Listing 1.1 shows
a pseudocode representation of this algorithm?. In principle, the algorithm iter-
ates over the relevant calculi and changes the relations between labelled reference
objects and their synthetic duplicates in a random fashion, but constrained by
the configured relation distribution. In order to determine the label of the syn-
thetic object, i. e., whether the synthetic object is still a duplicate to its reference
object, the algorithm checks whether or not the relation is within the neighbor-
hood of the labelled reference object. If so, the synthetic object is assigned the
same label as the reference object, otherwise it is not labelled. During this diver-
sification step, the generation of relations that describe a single synthetic object
in a conflicting and, hence, impossible way has to be avoided. An example for
such a conflicting configuration occurs, if the regions of two objects are equal,
while they are at the same time of different size.

Listing 1.1: Algorithm to find relations between a reference object and a synthetic
object.

function select_relations(
in configuration,
in ref_object,
in neighborhood_radii<calculus,n>,
out relations_to_synth,
out synth_labels)
var neighborhood: set<relations>;
rel: relation;
relations_to_synth: set<relations>;
synthetic_labels: set<label>;
for each (calculus in neighborhood_radii.keys)
neighbor_relations = N(object, neighborhood_radiil[calculus]);
repeat rel = random_select(neighbor_relations);
until configuration.is_relation_acceptable(rel);
if N.contains(rel) then
// relation is in similarity neighborhood
synth_label.add(get_label(ref_object));
end if
relations_to_synth.add(rel);
end
end

(3) Quantitative diversification. In quantitative diversification, concrete val-
ues for object attributes need to be correlated with qualitative relations. For cre-
ating sample attribute values, we use the inverse functions to our relation deriva-
tion rules as introduced above. Concrete values for a sample region for a synthetic

3 Note that, in this paper, the focus is put on showing its functional principle, thus
ignoring possible performance improvements.



Table 2: Exemplary qualitative and quantitative diversification.

(a) Qualitative diversification. (b) Quantitative diversification.
RCC ID | Location [ Time |
PO EQ PP PP | begin [ "end [begin] end |
n| 0 1 1 1
% Finishesrpyperse 0| ®
2  Duringrnverse 1
m% Owverlapsinverse 1 O1..n
s= Equals 1
<=t g Starts 1
a Finishes 2 O1..n
,,E, Startsrnverse 2
= Meetsnverse 2 ©@1..n

object are chosen randomly from applying the mapped interval to the region of
the labelled reference object (e.g., a synthetic duplicate that is ProperPart
of a labelled reference object has randomly chosen interval boundaries that lie
within the boundaries of this labelled reference object). Since the relation calculi
used for qualitative diversification are designed for reuse, interdependencies be-
tween them are not explicitly modeled. For example, the relation rcc:Disrelated
does not specify in which order and at which distance objects are placed on
the highway, leaving many options for quantitative diversification in a strictly
monotonic, ordinal value space representing regions on a highway. In case sev-
eral relation calculi, which describe the same real-world aspect, steer qualitative
diversification, interdependencies between them put constraints on quantitative
diversification. For instance, consider rcc:Disrelated and spatdist:VeryClose
as a result of qualitative diversification. Then, sample attribute values created
during quantitative diversification must satisfy both relation interpretations. To
generate duplicates arising from missing values, random null values replacing
sample attribute values can be generated during quantitative diversification to
better mimic real-world data.

Example. To further illustrate the process described above, we will use two
exemplary traffic objects T'J; and T'Js as shown in Table 1. As a minimal sample
configuration based on our experience from road traffic management systems, we
choose to use RCC as well as Allen’s Temporal Intervals as relation calculi and
configure a similarity neighborhood constraint of nrcc = 1 and nagen, = 2.
Table 2a shows the resulting similarity neighborhood as a matrix.

In step (1), we derive relations of the configured calculi for our reference
data set consisting, in this case, of two objects T'J; and T'J,, which results in
the relations {rcc: PartiallyOverlapping A allen:Finishesryerse} holding be-
tween T.J; and T'Jy (denoted in Table 2a as ®). This means that their spatial
regions overlap and, while the lifespan of T'Js begins after the one of T'J;, both
end at the same time. In step (2), these currently holding relations are diver-



sified within the configured relation neighborhoods. This results in 31 possible
additional configurations. Finally, in step (3), quantitative representations for
these relations are generated based on the original attribute values, with some
examples (denoted in Tab. 2a as ®, ©, ®) shown in Table 2b. Note that attribute
values affected in this process are highlighted.

4 Related Work

Automated generation of test data sets is an approach followed in a variety
of fields. In the following, we will present domains where data generation ap-
proaches are used in order to show commonalities and differences to using data
generators as a prerequisite for evaluating duplicate detection methods.

For database systems, Weis [18] distinguishes between data generators that
facilitate tasks such as evaluating duplicate detection methods, and those that
support the task of testing and improving the performance of a database sys-
tem. We first cover closely related work from generators that belong to the first
category, before we continue with more widely related approaches that fall into
the second one. Among those, judging from literature the most well known for
generating duplicates in relational data is DBGen, also known as UIS Database
Generator*, which manipulates records consisting of personal information such
as name, address, and social security number by introducing typographical er-
rors or completely changing them in a random fashion [12]. This approach has
been refined in [4] to overcome some original limitations, such as poor variability
in the set of possible values. Since both approaches are using implicit semantics
for domains relying on string-based information, they do not allow to configure
variability with regard to multiple aspects, and also lack support for multiple
quantitative representations. thus suffering from the limitations described such
as the lack of a semantically rich configuration mechanism allowing in-depth
control of the generation process. Another approach from the first category is
proposed in [8], where synthetic test data also containing duplicates is used to
test applications using a relational database. Their goal was to create data sets
that allow to verify the correct function of applications that access the database,
and to that end, a comprehensive data set covering all relevant cases is required,
which also includes the correct handling of duplicates. However, only identical
duplicates are regarded, and furthermore configuration mechanisms as proposed
here are missing. Thus, they are unable to configure variability with regard to
multiple aspects, and do not support more than one quantitative representation.

Other data generators in the database field support the syntactical task of
performance improvements by providing a large data set with known statistical
properties in an efficient and reproducible way. In the last years, numerous ap-
proaches have been presented for generating data, such as [13], which provides
efficient generation of large data sets in parallel and is flexibly configurable,
or [6], which provides a “Data Generation Language” for specifying the gener-
ated data, or [14], using a graph model to control the generation process. But

4 http://www.cs.utexas.edu/users/ml/riddle/data.html



their goal is to efficiently generate large data sets for performance testing which,
therefore, have to be consistent and must not contain duplicates. Thus, using
these generators for generating test data sets for duplicate detection methods is
not feasible. In the area of spatio-temporal databases, frameworks to generate
data on moving objects in a quantitative manner have been proposed [5], [?],
which focus on generating data to represent the evolution of objects in terms of
motion. While they are operating in a similar domain, again the focus is on the
generation of consistent data, not of duplicates with known properties.

In summary, although synthetic data generation is an issue in many do-
mains, qualitative approaches have not yet been the focus. Besides, many of these
quantitative approaches are heavily domain-specific, limiting their applicability
outside their original domain. To date, no data generator for the evaluation of
duplicate detection methods in spatio-temporal data has been proposed.

5 Discussion and Further Work

In this section, we discuss several lessons learned during the ongoing implemen-
tation of the presented approach, which at the same time represent the directions
followed by our further work.

Duplicate variability in real-world data configures qualitative diversi-
fication. By deriving relations between labelled duplicates in a small set of real-
world data, distribution characteristics per relation calculus can be controlled on
a qualitative level (e.g., in RCC, most duplicates may be rcc:PartiallyOver-
lapping, a smaller portion might be rcc:Equals, and some rcc:ProperPart).
Such distribution characteristics can be used for steering qualitative diversifi-
cation (thereby promoting CNGs to Bayesian networks), in order to generate
synthetic test data sets exhibiting near real-world characteristics.

Qualitative diversification should be aware of error models. In our ap-
proach, CNGs steer the qualitative diversification of synthetic duplicates. Al-
though such CNGs can be defined domain-independently, fitting them to the
errors encountered in a particular domain is possible. Depending on real-world
system factors, such as the type of user interface, various errors may occur: for
example, values may be simply outdated (differ from the real value by some
offset), or be entered with transposed digits. In road traffic management, for
example, traffic jams are either detected by sensors, which may fail arbitrarily
(e.g., a large traffic jam may be detected as two smaller, disrelated ones), or
entered by humans, which may enter wrong data. Such errors should be repre-
sented by adapting the respective CNGs and adding or removing edges, so that
errors are in the correct similarity neighborhood.

Characteristics of value ranges bound quantitative diversification. Value
ranges provide a model of the world, and may be instantiated to represent dif-
ferent real-world spaces. For example, consider our value range for objects on
highways being defined as intervals on a strictly monotonic, linear space. Each
concrete highway is an instance of such a linear space that may differ in length
from other instances. For quantitative diversification, we may use these addi-



tional characteristics as constraints, or deliberately ignore them to also create
inconsistent synthetic duplicates.

Generalizing qualitative and quantitative diversification to other do-
mains. Numerous causes for contradictory values in duplicates are known in
other domains [16], for instance errors in strings and numbers such as typo-
graphical errors and synonyms. Since a representation of these causes as a CNG
is possible, extending SemGen towards domains that rely on string representa-
tions will begin by defining an appropriate CNG together with relation derivation
functions and their inverse functions.
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